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Part I

Detecting the exit point of Brownian motion



Harmonic measure

I Let ⌦ ⇢ Rn+1, n � 1, connected and open.

⌦

@⌦

�u = 0

u = f

Dirichlet problem:

(D)

8
>>><

>>>:

�u = 0 in ⌦

u = f on @⌦

u 2 C

2
(⌦) \ C(@⌦)

f 2 C

c

(@⌦).

� := @
x1x1 + . . .+ @

x

n+1x

n+1
E

X

I Potential Theory: 9! a family of probability measures {!X

⌦

}
X2⌦

on
@⌦ called harmonic measure of ⌦ with a pole at X 2 ⌦ such that

u(X) =

Z

@⌦
f (Q) d!X

⌦

(Q) solves (D).

I Probability: Harmonic measure !X

⌦

(E) of E with a given pole X is
the probability that a Brownian motion starting at X will first hit @⌦ in
the set E.
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Examples of Harmonic Measure

I If ⌦ ⇢ R2 is a simply connected domain, @⌦ is Jordan curve

then
by Carathéodory’s theorem

 �1
(

E

)

 
Conformal

E

X

⌦

!X

⌦

(E) =

arclength( �1
(E))

2⇡

I If ⌦ = A(0, r,R) ⇢ Rn+1 is an annular region then the harmonic
measure of the inner shell S(0, r) is

X

S(0, r)

!X

⌦

(S(0, r)) =

8
<

:

log R�log |X|
log R�log r

if n = 1,

|X|2�(n+1)�R

2�(n+1)

r

2�(n+1)�R

2�(n+1) if n � 2.
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More examples of harmonic Measure

Assume ⌦ is at least C

1 and bounded. Let K

⌦

(X, ⇠) be the Poisson
kernel for ⌦ and E ⇢ @⌦;

!X

⌦

(E) =

Z
�

E

(⇠)K
⌦

(X, ⇠)dHn

(⇠).

Example
Let ⌦ = R2

+

and E = [�T, T]⇥ {0}, z = x + iy. Find !z

⌦

(E). Since
P(x, y) =

1
⇡

y

x

2
+y

2 . Then

!z

⌦

(E) =

Z

@⌦
�
[�T,T](t)

1
⇡

y

(x � t)

2
+ y

2 dt =

Z
T

�T

1
⇡

y

(x � t)

2
+ y

2 dt

=

1
⇡
arctan

✓
x + T

y

◆
� 1
⇡
arctan

✓
x � T

y

◆

Notice that !z

⌦

(E) is a harmonic function and
(

!z

⌦

(E) ! 1 as z ! E ⇢ @⌦,

!z

⌦

(E) ! 0 as z ! @⌦ \ E.
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Even more examples of Harmonic Measures

I If ⌦ = Bn+1, (n + 1)�dimensional unit ball, and X 2 ⌦. Then

!X

(E) =

1
Hn

(Sn

)

Z

E

1 � |X|2
|X � Y|n+1 dHn

(Y) for every Borel set E ⇢ Sn.

I When the pole X = 0 and ⌦ = Bn+1 then

!0
(E) =

Hn

(E)

Hn

(Sn

)

for every Borel set E ⇢ Sn.

I If ⌦ ⇢ Rn+1 is bounded domain of class C

1, then there is
K(X, Y) : ⌦⇥ @⌦ ! R such that

!X

(E) =

Z

E

K(X, Y) dHn

(Y) for every Borel set E ⇢ @⌦.

Hn is the n�dimensional Hausdorff measure which will be defined soon.
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Harmonic Measure at Different Poles

⌦

X

1

X

2

E

I For every borel set E ⇢ @⌦,
X ! !X

(E) is a non-negative
harmonic function in ⌦.

I Harmonic measure !X1 and
!X2 at different poles are
mutually absolutely continus;
!X1

(E) = 0 , !X2
(E) = 0.

c

�1!X1
(E)  !X2

(E)  c!X1
(E).

I Drop the pole X to get the
harmonic meeasure ! of ⌦.

I Therefore, the sets of harmonic measure zero do not depend on
the pole.
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Detecting the exit point of a Brownian motion

Consider a random Brownian particle moving in a domain ⌦ ⇢ R2.

I Aim is to find the point where it first hits
the boundary @⌦.

To do this we are allowed to place circular
detectors along the boundary which register
if the particle hits them.

If a detector of radius r costs us �(r) (for
some increasing � on (0,1)), can we de-
tect the exit point almost surely on a finite
budget?

I Note that to detect an exit at x, the point
must be contained in infinitely many detec-
tors whose radii tend to zero.
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Detecting the exit point of Brownian motion

I When ⌦ is the unit disk D, and the Brownian particle starts at 0
then the hitting distribution on @⌦ is normalized Lebesgue measure.

I Thus to detect the exit point almost surely, we must cover almost
every point of @⌦ by arbitrarily small balls.

I If �(r) � r then we can not detect the exit
point on a finite budget.

I However, if �(r) = o(r) then we can cover @⌦
by about n

k

balls of size 1/n

k

and let n

k

% 1 so
fast that

P
n

k

�(1/n

k

) < 1.

I If @⌦ is the von Koch Snowflake then it takes roughly 4n balls of
size 3n to cover the whole boundary, which we can do on a finite bud-
get iff �(t) = o(t

↵
), where ↵ = log 4/ log 3 > 1.

I However, not all parts of the snowflake are equally likely to be hit by
Brownian motion, and there is a small subset of @⌦ which still gets
hit with probability 1.
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Hausdorff measure and Hausdorff dimension

We estimate harmonic measure by comparing it to the more
geometrically defined Hausdorff measures:

Let � be increasing function on [0,1),

H�(E) := lim

�!0
inf

( 1X

i=1

�(r
i

); E ⇢
1[

i=1

B(x

i

, r

i

), r

i

 �

)
.

I When �(t) = t

↵ we then denote this by H↵;

H↵
(E) = lim

�!0
H↵

� (E) = lim

�!0
inf

( 1X

i=1

r

↵
i

; E ⇢
1[

i=1

B(x

i

, r

i

), r

i

 �

)
.

I H2 is multiple of Lebesgue area measure; H1 is length...

Hn

1(E) is called the Hausdorff content of E and is defined as

Hn

1(E) = inf

( 1X

i=1

(r

i

)

n

; E ⇢
1[

i=1

B(x

i

, r

i

)

)
.

I H↵
1(E)  H↵

� (E)  H↵
(E). But still H↵

1(E) = 0 () H↵
(E) = 0.
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Being singular ? – absolutely continuous ⌧

The Hausdorff dimension of a set E is defined by

dimH(E) = inf{↵; H↵
(E) = 0}.

The smaller ↵ is, the more expensive it is to cover E; the dimension
marks the transition from positive to zero cost coverings.

The dimension of a measure µ is the smallest dimension of a full
µ-measure set, i.e.,

dimH(µ) = inf{dimH(E) : µ(Ec
) = 0} = inf{↵ : µ ? H↵}

I µ ? ⌫ if there is a set E such that µ(E) = ⌫(Ec
) = 0

I µ ⌧ ⌫ if ⌫(E) = 0 ) µ(E) = 0.

I µ ⇠ ⌫ if ⌫ ⌧ µ ⌧ ⌫.

It is always true that dimH(µ)  dimH(supp(µ)).

Thus the detection question is really:
I For which � we have ! ? H� and when is ! ⌧ H�?
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Main question and the first result

I n � 1  dimH(!) < n + 1 (in fact Hn�1
(E) = 0 ) !(E) = 0).

Question
Find sufficient conditions (geometric and/or analytic) on ⌦ for which
we have ! ⌧ Hn on @⌦?

Theorem (F. and M. Riesz(1916))
Let ⌦ be a simply connected domain in the plane with H1

(@⌦) < 1.
Let  : D ! ⌦ be conformal.

Then  0 2 L

1
(@D). Moreover, for any Borel set E ⇢ @D,

H1
( (E)) =

Z

E

| 0
(e

i✓
)| d✓.

Hence, using !z

⌦

(K) = 1/2⇡ arclength( �1
(K)), K ⇢ @⌦, one has

!(A) = 0 () H1
(A) = 0 whenever A ⇢ @⌦ Borel.

i.e. ! ⌧ H1 ⌧ ! on @⌦.
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Thanks!



Detecting the exit point of Brownian motion

How does our problem about the cost of detecting exit points fit into
this notation?

A collection C of balls is called a Vitali covering of a set E

if for each ✏ > 0,

C✏ = {D 2 C : diam(D) < ✏} is also a cover.

We can detect a.e. exit point of Brownian motion on a finite �-budget
iff there is a Vitali covering of a full !-measure set E by balls of radius
{r

j

} such that
P
�(r

j

) < 1.

This happens iff H�(E) = 0 which happens iff ! ? H�.

I Conversely ! ⌧ H� holds iff any set E which we can afford to test
has zero !-measure.

Thus the detection question is really:
I For which � we have ! ? H� and when is ! ⌧ H�?
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Part II

Absolute continuity of harmonic measure on rough
domains



Necessary and sufficient conditions for absolute continuity

Question
Find sufficient conditions for ! ⌧ Hn

on @⌦?

I F. and M. Riesz(’16): If ⌦ ⇢ C is domain bounded by Jordan curve of
finite length then ! ⌧ H1 ⌧ ! on @⌦ (i.e., ! ⇠ H1).

I Lavrentiev(’36): Quantitative version.

I McMillan(’69): Let ⌦ ⇢ C be simply connected and E ⇢ @⌦ be cone
points of ⌦ then ! ⇠ H1 on E.

I Makarov(’85): If ⌦ is simply connected then dimH(!) = 1,
i.e., ! ⌧ H� where �(r) = r e

A

p
log

1
r

log log log

1
r for some A >> 1.

I Bishop and Jones(’90): Let ⌦ ⇢ C be simply connected. Then
! ⌧ H1 on � \ @⌦ whenever � is curve of finite length.

I Wu(’86): ! 6⌧ H2 for some topological sphere in R3.

I Bishop and Jones(’90): ! 6⌧ H1 for a connected domain in R2.
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Non-tangentially Accessible Domains(NTA)

I Openness

; Corkscrew condition.

I Path-connectedness ; Harnack chain condition.

⌦
@⌦

No interior corkscrew

No Harnack chain

z

I ⌦ is NTA ⌘
(

Interior Corkscrew and Harnack Chain.

Exterior Corkscrew.

I @⌦ is n�Ahlfors regular (AR) if

cr

n  Hn(@⌦ \ B(z, r))  cr

n whenever z 2 @⌦ and r 2 (0, diam(@⌦)).
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Examples of such domains

Smooth Domains Lipschitz Domains NTA Domains

I NTA domains need not be graph domains or of finite perimeter.



Rectifiability of a set

Let ⌃ = f (Rn) be a Lipschitz image of Rn.

I E ⇢ Rn+1 is n�rectifiable if there exists a family {⌃
i

}
i

of Lipschitz
images of Rn such that

i.e. E ⇢
 1[

i=1

⌃
i

!
[ ⌃0 with Hn(⌃0) = 0.

That is,

Hn

 
E \

1[

i=1

⌃
i

!
= 0,

I E ⇢ Rn+1 is n�purely unrectifiable if E contains NO n�rectifiable set F

with Hn(F) > 0.

I [Besicovitch-Federer] E is n�purely unrectifiable if 0 < Hn(E) < 1
and Hn(⇡

L

(E)) = 0 for almost every n�dimensional plane L ⇢ Rn+1.
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denotes the orthogonal projection of Rn+1 onto L.



An example of a purely unrectifiable set

The usual example is 4-corner Cantor set.

C0 C1 C2 C1 =
T
k

C

k

I There exists c > 1 such that for each z 2 C1 and r 2 (0,
p

2)

c

�1
r  H1(C1 \ B(z, r))  cr

I For almost every line L in R2, H1(⇡
L

(C1)) = 0.

I Hence C1 is a purely 1-unrectifiable.

I Every rectifiable curve intersects C1 in a set of zero H1-measure.
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Global results in higher dimension

I Dahlberg(’77): If @⌦ is a union of Lipschitz graphs then ! ⇠ Hn on @⌦.

I Wu(’86): Let ⌦ ⇢ Rn+1 be a domain satisfying exterior corkscrew
condition and suppose that � is a n�AR set and divides Rn+1 into two
NTA domains. Then !

⌦

⌧ Hn on � \ @⌦.

I David and Jerison(’90); I Semmes(’89):

If ⌦ is NTA and @⌦ is AR then ! ⇠ Hn on @⌦.

I Badger(’12): If ⌦ ⇢ Rn+1 is NTA with Hn(@⌦) < 1 then ! ⌧ Hn on
⇢

x 2 @⌦; lim inf
r!0

Hn(@⌦ \ B(x, r))

r

n

< 1
�
.

I Azzam, Mourgoglou, and Tolsa(’15): 9 NTA domain ⌦ with
Hn(@⌦) < 1 such that ! 6⌧ Hn|@⌦ (Using the deep result of Wolff which
was further developed by Lewis, Nyström, Vogel).
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Necessary conditions for Absolute Continuity

I Pommerenke(’86): If ⌦ ⇢ C is simply connected and ! ⌧ H1 on a set
E ⇢ @⌦ then ! a.e. point E is a cone point for ⌦ and !�almost all of F

can be covered by a countable union of 1�dimensional (possibly
rotated) Lipschitz graphs (i.e., !|

E

is rectifiable).

Theorem (Azzam-Hofmann-Martell-Mayboroda-Mourgoglou-Tolsa-
Volberg, (’15))

Let ⌦ ⇢ Rn+1
, n � 1, open and connected.

Let F ⇢ @⌦ with Hn(F) < 1.

1

If ! ⌧ Hn

on F =) !|
F

is n�rectifiable.

2

If Hn ⌧ ! on F =) F is n�rectifiable.

? Portion of the boundary should be contained in a nice rectifiable
set(like a graph or curve)!
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Notion of Capacity - First Definition

Let E be a closed subset of Rn+1, n � 2. Then

Cap(E) = inf

⇢Z
|rv|2dx, v 2 C

1
0 (Rn+1), v � 1 on E

�
.

If u is the minimizer of energy then u weakly satisfies
8
><

>:

�u = 0 in Rn+1 \ E,

u = 1 on E,
u ! 0 as |x| ! 1.

Indeed, if u solves abode Dirichlet problem then

u(x) = �c

n

|x|2�(n+1) + o(|x|1�(n+1)) for |x| ! 1.

Then,

Cap(E) = � = lim
|x|!1

u(x)

|x|(n+1)�2 .

This definition is called the electrostatic capacity of E.
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Notion of Capacity - Second Definition

Potential of a given measure µ is defined as

Uµ(x) =

Z

E

1
|x � y|(n+1)�2 dµ(y)

Then
Cap(E) = sup{µ(E); Uµ(x)  1, x 2 supp(µ)}.

Then Cap(E) = ⌫(E) for a measure ⌫ which is called equilibrium
measure and satisfying U⌫(x)  1 for x 2 supp(⌫) and U⌫(x) � 1 up to a
set of measure zero capacity on E. Note that U⌫ is a positive super
harmonic function in Rn+1 and harmonic outside of E. Also

Cap(E) = [inf{Kµ : µ(E) = 1, µ(Ec) = 0}]�1

where
Kµ =

ZZ

E⇥E

1
|x � y|(n+1)�2 dµ(x)dµ(y).

which denotes the energy of µ with respect to the kernel 1/|x|(n+1)�2.
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Counter example of Wu revisited.

In R2, there exists simply connected Jordan domain K satisfying
(1) K \ {x : x1 > 0} ⇢ {x : |x| < 2}, K \ {x : x1 < 0} = {x : x1 < 0, |x| < 3}
(2) @2K has Hausdorff dimension 1,
(3) Cap3(@2K) > 0,
(4) Cap3(K✏) ! 0 as ✏ ! 0 where K✏ = {x 2 K : dist(x, @2K) < ✏}.

Let K any set satisfying (1)-(4). Identify the set {(x, 0); x 2 K} in R3.

K

Let ⌦ = B(0, 20) \ K̄ in R3.
Then !

⌦

(@2K) > 0 = H2(@2K).

Key point here is that for 0 < ⌘ < ✏,
Cap3(K✏ \ K̄⌘) <

1
100 Cap3(@2K)
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Sufficient conditions for absolute continuity ! ⌧ Hn

I Necessary condition for ! ⌧ Hn: Portion of the boundary should be
contained in a nice rectifiable set(like a graph or curve).

Theorem (Wu (’86))
Let ⌦ ⇢ Rn+1

be domain with exterior corkscrews and suppose � is

n�AR and divides Rn+1
into two NTA domains. Then !

⌦

⌧ Hn

on

@⌦ \ �.

A set ⌦ ⇢ Rn+1 has big boundary or n-thick if

Hn

1(B(z, r) \ ⌦) � cr

n for all z 2 @⌦ and r 2 (0, diam(@⌦)).

I Simply connected planar domains, NTA domains, complements of
Ahlfors regular sets are such domains. Exterior corkscrew implies big
boundary.

Theorem (A., Azzam, Mourgoglou (’16))
Suppose ⌦ ⇢ Rn+1

has big boundary and let � ⇢ Rn+1
is n�AR and

splits Rn+1
into two NTA domains. Then !

⌦

⌧ Hn

on @⌦ \ �.
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Identifying exterior condition - Speculations

A closed set E ⇢ Rn+1 is called uniformly 2-fat or said to satisfy
Capacity Density Condition CDC if

Cap(E \ B̄(z, r))

Cap(B̄(z, r)
= Cap(r�1(E \ B̄(z, r)) � c for all w 2 E and r > 0.

Big boundary implies CDC. But converse is not true. However,

Theorem (Lewis (’88))
If E ⇢ Rn+1

is CDC then there exists some 1 < q < 2 such that

Hn+1�q

1 (B(w, r) \ ⌦) � cr

n+1�q

for all w 2 E and r > 0

where ⌦ = Rn+1 \ E. (n + 1 � q < n).

Can we replace the big boundary condition with CDC ?

We[A., Badger, Bortz, Engelstein] believe that Wu’s counter example
does not satisfy CDC!
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Sketch of the Proof

Let ⌦ have big boundary and � be ADR splits Rn+1 into two NTA
domains ⌦1,⌦2. Aim: E ⇢ � \ @⌦, show !X0

⌦

(E) > 0 ) Hn(E) > 0.

I Enough to show !X

i

⌦

i

\⌦

(E) > 0 for some i 2 {1, 2} and X

i

2 ⌦
i

. Then by
the maximum principle !

⌦

i

(E) � !X

i

⌦

i

\⌦

(E) > 0.

I By David and Jerison Hn(E) > 0. This implies !
⌦

⌧ Hn on @⌦.

I For the sake of contradiction, suppose

!X

i

⌦

i

\⌦

(E) = 0 for all X

i

2 ⌦
i

, i = 1, 2.

I Suffices to show that sup
X2�\⌦

!X

⌦

(E)  � < 1.

Then, by strong Markov property of Brownian motion, for X 2 ⌦ \ ⌦1

!X

⌦

(E) = !X

⌦\⌦1
(E) +

Z

@⌦1\⌦

!Z

⌦

(E) d!X

⌦\⌦1
(Z) < 0 + � = � < 1.

Same holds for X 2 ⌦ \ ⌦2 and hence

sup
X2⌦

!X

⌦

(E)  � < 1 which is NOT possible!



Sketch of the Proof

Let ⌦ have big boundary and � be ADR splits Rn+1 into two NTA
domains ⌦1,⌦2. Aim: E ⇢ � \ @⌦, show !X0

⌦

(E) > 0 ) Hn(E) > 0.

I Enough to show !X

i

⌦

i

\⌦

(E) > 0 for some i 2 {1, 2} and X

i

2 ⌦
i

. Then by
the maximum principle !

⌦

i

(E) � !X

i

⌦

i

\⌦

(E) > 0.

I By David and Jerison Hn(E) > 0. This implies !
⌦

⌧ Hn on @⌦.

I For the sake of contradiction, suppose

!X

i

⌦

i

\⌦

(E) = 0 for all X

i

2 ⌦
i

, i = 1, 2.

I Suffices to show that sup
X2�\⌦

!X

⌦

(E)  � < 1.

Then, by strong Markov property of Brownian motion, for X 2 ⌦ \ ⌦1

!X

⌦

(E) = !X

⌦\⌦1
(E) +

Z

@⌦1\⌦

!Z

⌦

(E) d!X

⌦\⌦1
(Z) < 0 + � = � < 1.

Same holds for X 2 ⌦ \ ⌦2 and hence

sup
X2⌦

!X

⌦

(E)  � < 1 which is NOT possible!



Sketch of the Proof

Let ⌦ have big boundary and � be ADR splits Rn+1 into two NTA
domains ⌦1,⌦2. Aim: E ⇢ � \ @⌦, show !X0

⌦

(E) > 0 ) Hn(E) > 0.

I Enough to show !X

i

⌦

i

\⌦

(E) > 0 for some i 2 {1, 2} and X

i

2 ⌦
i

. Then by
the maximum principle !

⌦

i

(E) � !X

i

⌦

i

\⌦

(E) > 0.

I By David and Jerison Hn(E) > 0. This implies !
⌦

⌧ Hn on @⌦.

I For the sake of contradiction, suppose

!X

i

⌦

i

\⌦

(E) = 0 for all X

i

2 ⌦
i

, i = 1, 2.

I Suffices to show that sup
X2�\⌦

!X

⌦

(E)  � < 1.

Then, by strong Markov property of Brownian motion, for X 2 ⌦ \ ⌦1

!X

⌦

(E) = !X

⌦\⌦1
(E) +

Z

@⌦1\⌦

!Z

⌦

(E) d!X

⌦\⌦1
(Z) < 0 + � = � < 1.

Same holds for X 2 ⌦ \ ⌦2 and hence

sup
X2⌦

!X

⌦

(E)  � < 1 which is NOT possible!



Sketch of the Proof

Let ⌦ have big boundary and � be ADR splits Rn+1 into two NTA
domains ⌦1,⌦2. Aim: E ⇢ � \ @⌦, show !X0

⌦

(E) > 0 ) Hn(E) > 0.

I Enough to show !X

i

⌦

i

\⌦

(E) > 0 for some i 2 {1, 2} and X

i

2 ⌦
i

. Then by
the maximum principle !

⌦

i

(E) � !X

i

⌦

i

\⌦

(E) > 0.

I By David and Jerison Hn(E) > 0. This implies !
⌦

⌧ Hn on @⌦.

I For the sake of contradiction, suppose

!X

i

⌦

i

\⌦

(E) = 0 for all X

i

2 ⌦
i

, i = 1, 2.

I Suffices to show that sup
X2�\⌦

!X

⌦

(E)  � < 1.

Then, by strong Markov property of Brownian motion, for X 2 ⌦ \ ⌦1

!X

⌦

(E) = !X

⌦\⌦1
(E) +

Z

@⌦1\⌦

!Z

⌦

(E) d!X

⌦\⌦1
(Z) < 0 + � = � < 1.

Same holds for X 2 ⌦ \ ⌦2 and hence

sup
X2⌦

!X

⌦

(E)  � < 1 which is NOT possible!



Sketch of the Proof

Let ⌦ have big boundary and � be ADR splits Rn+1 into two NTA
domains ⌦1,⌦2. Aim: E ⇢ � \ @⌦, show !X0

⌦

(E) > 0 ) Hn(E) > 0.

I Enough to show !X

i

⌦

i

\⌦

(E) > 0 for some i 2 {1, 2} and X

i

2 ⌦
i

. Then by
the maximum principle !

⌦

i

(E) � !X

i

⌦

i

\⌦

(E) > 0.

I By David and Jerison Hn(E) > 0. This implies !
⌦

⌧ Hn on @⌦.

I For the sake of contradiction, suppose

!X

i

⌦

i

\⌦

(E) = 0 for all X

i

2 ⌦
i

, i = 1, 2.

I Suffices to show that sup
X2�\⌦

!X

⌦

(E)  � < 1.

Then, by strong Markov property of Brownian motion, for X 2 ⌦ \ ⌦1

!X

⌦

(E) = !X

⌦\⌦1
(E) +

Z

@⌦1\⌦

!Z

⌦

(E) d!X

⌦\⌦1
(Z) < 0 + � = � < 1.

Same holds for X 2 ⌦ \ ⌦2 and hence

sup
X2⌦

!X

⌦

(E)  � < 1 which is NOT possible!



Sketch of the Proof

Let ⌦ have big boundary and � be ADR splits Rn+1 into two NTA
domains ⌦1,⌦2. Aim: E ⇢ � \ @⌦, show !X0

⌦

(E) > 0 ) Hn(E) > 0.

I Enough to show !X

i

⌦

i

\⌦

(E) > 0 for some i 2 {1, 2} and X

i

2 ⌦
i

. Then by
the maximum principle !

⌦

i

(E) � !X

i

⌦

i

\⌦

(E) > 0.

I By David and Jerison Hn(E) > 0. This implies !
⌦

⌧ Hn on @⌦.

I For the sake of contradiction, suppose

!X

i

⌦

i

\⌦

(E) = 0 for all X

i

2 ⌦
i

, i = 1, 2.

I Suffices to show that sup
X2�\⌦

!X

⌦

(E)  � < 1.

Then, by strong Markov property of Brownian motion, for X 2 ⌦ \ ⌦1

!X

⌦

(E) = !X

⌦\⌦1
(E) +

Z

@⌦1\⌦

!Z

⌦

(E) d!X

⌦\⌦1
(Z) < 0 + � = � < 1.

Same holds for X 2 ⌦ \ ⌦2 and hence

sup
X2⌦

!X

⌦

(E)  � < 1 which is NOT possible!



Sketch of the Proof

Let ⌦ have big boundary and � be ADR splits Rn+1 into two NTA
domains ⌦1,⌦2. Aim: E ⇢ � \ @⌦, show !X0

⌦

(E) > 0 ) Hn(E) > 0.

I Enough to show !X

i

⌦

i

\⌦

(E) > 0 for some i 2 {1, 2} and X

i

2 ⌦
i

. Then by
the maximum principle !

⌦

i

(E) � !X

i

⌦

i

\⌦

(E) > 0.

I By David and Jerison Hn(E) > 0. This implies !
⌦

⌧ Hn on @⌦.

I For the sake of contradiction, suppose

!X

i

⌦

i

\⌦

(E) = 0 for all X

i

2 ⌦
i

, i = 1, 2.

I Suffices to show that sup
X2�\⌦

!X

⌦

(E)  � < 1.

Then, by strong Markov property of Brownian motion, for X 2 ⌦ \ ⌦1

!X

⌦

(E) = !X

⌦\⌦1
(E) +

Z

@⌦1\⌦

!Z

⌦

(E) d!X

⌦\⌦1
(Z) < 0 + � = � < 1.

Same holds for X 2 ⌦ \ ⌦2 and hence

sup
X2⌦

!X

⌦

(E)  � < 1 which is NOT possible!



Sketch of the Proof cont’
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So we focus on proving !Y
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(� \ ⌦) < ⌘.
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