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Harmonic measure

» Let Q ¢ R™!, »n > 1, connected and open.

Dirichlet problem:

u=f
Au=0in Q
D u=fon oS}
2 ©) ue C*(Q)NCo9N)
f € C.(09).
E

A:i=0yy+..-+ aX)H»]x)H»]

» Potential Theory: 3! a family of probability measures {w }xcq on
092 called harmonic measure of Q with a pole at X € Q such that
uX)= [ f(Q)dw(Q) solves (D).
o0
» Probability: Harmonic measure w§ (E) of E with a given pole X is
the probability that a Brownian motion starting at X will first hit 99 in
the set E.
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Examples of Harmonic Measure

» If @ C R? is a simply connected domain, 952 is Jordan curve then
by Carathéodory’s theorem
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» If Q = A(0,r,R) C R"*! is an annular region then the harmonic
measure of the inner shell S(0, r) is

log R—log |X| f _
P logR—logr if n = 1’
w(S8(0,r)) = . _
X2~ (D) _g2= (D)

e fn2>2.
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More examples of harmonic Measure

Assume Q) is at least C! and bounded. Let Kq (X, £) be the Poisson
kernel for Q and E C 99;

W(E) = / XE(©)Ka(X, €)M (€).

Example
Let @ =R3 and E = [T, T] x {0}, z = x + iy. Find w§(E). Since
P(x,y) = L+ 2. Then

e
1 y | y
S(E) = _ t)———————dt = -t
WQ( ) /BQX[ T7T]<)7T(X7l)2+y2 /_T’/T(X*l‘>2+y2
1 <x—|—T> 1 (x—T)
= — arctan — —arctan | ——
™ Yy ™ y

Notice that wg, (E) is a harmonic function and

wH(E) -1 asz— EC0Q,
whH(E) =0 asz— 0N\ E.
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Even more examples of Harmonic Measures

» If Q = B!, (n + 1)—dimensional unit ball, and X € Q. Then

1 1— X2

X
E) =
<) = 3@ Jp e

dH"(Y) forevery Borelset E C S".

» When the pole X = 0 and 2 = B"*! then

_ H(E)
- Hr (Sn)

W°(E) for every Borel set E C S".

» If O ¢ R*t! is bounded domain of class C!, then there is
K(X,Y): Q x 092 — R such that

WX(E) = /K(X, Y)dH"(Y) for every Borel set E C 0.
5

H" is the n—dimensional Hausdorff measure which will be defined soon.
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Harmonic Measure at Different Poles

» For every borel set E C 09,
X — w¥(E) is a non-negative
harmonic function in .

» Harmonic measure w* and
¥ at different poles are
mutually absolutely continus;
WN(E) =0 & B (E) =0.

» Drop the pole X to get the

Q .
harmonic meeasure w of (.

c'WX(E) < W (E) < e (E).

» Therefore, the sets of harmonic measure zero do not depend on
the pole.
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Detecting the exit point of a Brownian motion

Consider a random Brownian particle moving in a domain 2 C R?.

» Aim is to find the point where it first hits
the boundary 0€.

To do this we are allowed to place circular W@
detectors along the boundary which register
if the particle hits them.

If a detector of radius r costs us ¢(r) (for
some increasing ¢ on (0, c0)), can we de-
tect the exit point almost surely on a finite
budget?

» Note that to detect an exit at x, the point
must be contained in infinitely many detec-
tors whose radii tend to zero.
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Detecting the exit point of Brownian motion

» When © is the unit disk DD, and the Brownian particle starts at 0
then the hitting distribution on 952 is normalized Lebesgue measure.

» Thus to detect the exit point almost surely, we must cover almost
every point of 92 by arbitrarily small balls.

» If ¢(r) > r then we can not detect the exit
point on a finite budget.

» However, if ¢(r) = o(r) then we can cover 02
by about n; balls of size 1/n; and let n, oo so
fast that > mepp(1/ny) < 0.

» If 992 is the von Koch Snowflake then it takes roughly 4" balls of
size 3" to cover the whole boundary, which we can do on a finite bud-
get iff ¢(r) = o(1*), where av = log4/log3 > 1.

» However, not all parts of the snowflake are equally likely to be hit by
Brownian motion, and there is a small subset of 02 which still gets
hit with probability 1.
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Hausdorff measure and Hausdorff dimension

We estimate harmonic measure by comparing it to the more
geometrically defined Hausdorff measures:

Let ¢ be increasing function on [0, oo),

Hy(E) = %i_r}r%)inf {Z(;S(r,-); E C UB(xi,r,-), r < 5} .

i=1 i=1

» When ¢(z) = t* we then denote this by #*;

oo

@ =1 [ = lim 1 2o o < i
HY(E) %I_I)I(I)H(;(E) %E)r(l)lnf{Zrl,ECUB(x,,r,)J’,_(S}

i=1 i=1
» H? is multiple of Lebesgue area measure; H' is length...
H"_(E) is called the Hausdorff content of E and is defined as

oo

H" (E) = inf {Z(ri)”; EC UB(xi,r,-)} :

i=1 i=1

> HO(E) < HE(E) < H(E). But still HE (E) = 0 <= H*(E) = 0.
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The Hausdorff dimension of a set E is defined by
dimy (E) = inf{a; HY(E) = 0}.

The smaller « is, the more expensive it is to cover E; the dimension
marks the transition from positive to zero cost coverings.

The dimension of a measure p is the smallest dimension of a full
ji-measure set, i.e.,
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Main question and the first result

> n—1 < dimy(w) <n+1(infact H*"'(E) = 0 = w(E) = 0).

Question
Find sufficient conditions (geometric and/or analytic) on ) for which
we have w < H" on 0?7

Theorem (F. and M. Riesz(1916))

Let Q) be a simply connected domain in the plane with H!(9%2) < cc.
Letvy : D — Q be conformal.

Then ' € L'(OD). Moreover, for any Borel set E C 0D,
HW(E) = [ 1) db.
5
Hence, using wg,(K) = 1/2r arclength(y~'(K)), K C 09, one has

w(A)=0 <= H'(A)=0 wheneverA C 99 Borel.

ie. w<H <w ondN.



Thanks!
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Detecting the exit point of Brownian motion

How does our problem about the cost of detecting exit points fit into
this notation?

A collection C of balls is called a Vitali covering of a set E
if for each e > 0,

Cc ={D € C :diam(D) < ¢} is also a cover.

We can detect a.e. exit point of Brownian motion on a finite ¢-budget
iff there is a Vitali covering of a full w-measure set E by balls of radius
{r;j} such that )" ¢(r;) < oc.

This happens iff #,(E) = 0 which happens iff w L H.

» Conversely w < H,, holds iff any set E which we can afford to test
has zero w-measure.

Thus the detection question is really:
» For which ¢ we have w 1. H, and whenis w < Hg?
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Necessary and sufficient conditions for absolute continuity

Question
Find sufficient conditions for w < H" on 0Q7?

» F. and M. Riesz('16): If QO c C is domain bounded by Jordan curve of
finite length then w < H! < w on 99 (i.e., w ~ H!).

» Lavrentiev(’36): Quantitative version.

» McMillan(’69): Let ©2 C C be simply connected and E C 02 be cone
points of Q then w ~ H! on E.

» Makarov('85): If 2 is simply connected then dimy,(w) = 1,
i.e., w < Hy where ¢(r) = retV1os ; losloglog | for some A >> 1.

» Bishop and Jones(’90): Let 2 C C be simply connected. Then
w < H' on T' N 9Q whenever T is curve of finite length.

» Wu('86): w s« H* for some topological sphere in R3.

» Bishop and Jones('90): w <« H' for a connected domain in R2.
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Non-tangentially Accessible Domains(NTA)

» Openness ~~ Corkscrew condition.

» Path-connectedness ~~ Harnack chain condition.
o0

I No Harnack chain
‘ v No interior corkscrew

i @ Interior Corkscrew and Harnack Chain.
> Qis NTA =
@ Exterior Corkscrew.
» 012 is n—Ahlfors regular (AR) if

e <H"(0QN B(z,r)) < cr" whenever z € 9Q and r € (0, diam(01)).



Examples of such domains

Smooth Domains Lipschitz Domains NTA Domains

» NTA domains need not be graph domains or of finite perimeter.
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Rectifiability of a set

Let ¥ = f(R") be a Lipschitz image of R".

» E C R*"!is n—rectifiable if there exists a family {3;}; of Lipschitz
images of R”" such that

i.e. EC <U 2,-) UXy  with H*(Z0) = 0.

i=1

That is,
yr (E\ UZ’> =0,
i=1
» E C R"*! is n—purely unrectifiable if E contains NO n—rectifiable set F
with H"(F) > 0.

» [Besicovitch-Federer] E is n—purely unrectifiable if 0 < H"(E) < oo
and H"(r.(E)) = 0 for almost every n—dimensional plane L c R**!.

Here 7, denotes the orthogonal projection of R**! onto L.
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An example of a purely unrectifiable set

The usual example is 4-corner Cantor set.
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» There exists ¢ > 1 such that for each z € C, and r € (0,v/2)
¢ 'r <H'(Coo NB(z,1)) < cr

» For almost every line L in R2, H!((Cs)) = 0.
» Hence C.. is a purely 1-unrectifiable.

» Every rectifiable curve intersects C. in a set of zero H!-measure.
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Global results in higher dimension

» Dahlberg('77): If 92 is a union of Lipschitz graphs then w ~ #H" on o).

» Wu('86): Let 2 C R**! be a domain satisfying exterior corkscrew
condition and suppose that I is a n—AR set and divides R"*! into two
NTA domains. Then wg < H" on I" N of.

» David and Jerison('90); » Semmes('89):
If 2 is NTA and 912 is AR then w ~ H" on 95).

» Badger('12): If O ¢ R"*! is NTA with #"(92) < oo then w < H" on

{xG 0f); lim inf M < oo}

r—0 e

» Azzam, Mourgoglou, and Tolsa(’15): 3 NTA domain 2 with
H"(9Q) < oo such that w <« H"|sq (Using the deep result of Wolff which
was further developed by Lewis, Nystrém, Vogel).
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rotated) Lipschitz graphs (i.e., w|g is rectifiable).



Necessary conditions for Absolute Continuity

» Pommerenke('86): If QO c C is simply connected and w < #' on a set
E C 09 then w a.e. point E is a cone point for 2 and w—almost all of F
can be covered by a countable union of 1—dimensional (possibly
rotated) Lipschitz graphs (i.e., w|g is rectifiable).

Theorem (Azzam-Hofmann-Martell-Mayboroda-Mourgoglou-Tolsa-
Volberg, (’15))

@ [etQ) c R n> 1, open and connected.

@ LetF C 09 with H"(F) < co.

@ fu<H' on F — wlr is n—rectifiable.
Q@ fH" < wonF — F isn—rectifiable.

@ Portion of the boundary should be contained in a nice rectifiable
set(like a graph or curve)!
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Notion of Capacity - First Definition

Let E be a closed subset of R**!, n > 2. Then
Cap(E) = inf {/ |Vv)2dx, v € C(R™), v>10n E} .

If u is the minimizer of energy then u weakly satisfies

Au=0 inR*"I\E,

u=1 on E,

u—0 as |x] = oo.
Indeed, if u solves abode Dirichlet problem then

u(x) = 'yc,,|x|27(”+1) + 0(|x|17(”+1)) for x| = co.

Then,

— = lim ME)
Cap(E) =7 = lim — i

This definition is called the electrostatic capacity of E.
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Notion of Capacity - Second Definition

Potential of a given measure p is defined as

1
Up(x) = /Exﬂ(m)zdﬂ()’)
Then
Cap(E) = sup{p(E); Uy(x) <1, x € supp(p)}-
Then Cap(E) = v(E) for a measure v which is called equilibrium
measure and satisfying U, (x) < 1 for x € supp(v) and U,(x) > 1 up to a

set of measure zero capacity on E. Note that U, is a positive super
harmonic function in R**! and harmonic outside of E. Also

Cap(E) = [nf{K,. : p(E) = 1, u(E*) = 0}]~"

1
K, = — d .

which denotes the energy of 1. with respect to the kernel 1/|x|(*+1D =2,

where
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Counter example of Wu revisited.

In R?, there exists simply connected Jordan domain K satisfying

(1) KN{x:x; >0} C{x:|x[ <2}, KN{x:x <0} ={x:x <0,|x| <3}
(2) 0,K has Hausdorff dimension 1,

(3) Cap;(aK) > 0,

(4) Cap;(K.) - 0as e¢— 0where K. = {x € K : dist(x,:K) < €}.

Let K any set satisfying (1)-(4). Identify the set {(x,0); x € K} in R°.

Let Q = B(0,20) \ K in R3.
Then WQ(azK) > 0= 7—[2(82[{)

Key point here is that for 0 < 7 <,
Cap, (K. \ K;) < 155Cap; (9:K)
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Sufficient conditions for absolute continuity w < #”"

» Necessary condition for w < H": Portion of the boundary should be
contained in a nice rectifiable set(like a graph or curve).
Theorem (Wu (’86))

Let Q) c R**! be domain with exterior corkscrews and suppose T is
n—AR and divides R™! into two NTA domains. Then wq < H" on
oNT.

A set Q C R™*! has big boundary or n-thick if
H: (B(z,r)\ Q) > cr" forall z € 002 and r € (0,diam(012)).

» Simply connected planar domains, NTA domains, complements of
Ahlfors regular sets are such domains. Exterior corkscrew implies big
boundary.

Theorem (A., Azzam, Mourgoglou (’16))
Suppose Q) c R**! has big boundary and letT ¢ R**! isn—AR and
splits R+ into two NTA domains. Then wq < H" on 9QNT.
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Identifying exterior condition - Speculations

A closed set E ¢ R"*! is called uniformly 2-fat or said to satisfy
Capacity Density Condition CDC if
Cap(ENB(z,r))
Cap(B(z,r)
Big boundary implies CDC. But converse is not true. However,

= Cap(r "(ENB(z,r)) > ¢ forallwe Eandr>0.

Theorem (Lewis (’88))
IfE c Rt js CDC then there exists some 1 < g < 2 such that

H' T 4(B(w, 1)\ Q) > "1 forallw € E andr > 0

where Q = R"T'\E. n+1—g <n).
Can we replace the big boundary condition with CDC ?

Wel[A., Badger, Bortz, Engelstein] believe that Wu'’s counter example
does not satisfy CDC!
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» Enough to show wQ’mQ(E) > 0forsomei e {1,2} and X; € Q;. Then by
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Sketch of the Proof

Let 2 have big boundary and I" be ADR splits R"*! into two NTA
domains Q;, Q. Aim: E C T'N 99, show w (E) > 0 = H"(E) > 0.

» Enough to show wQ’mQ(E) > 0forsomei e {1,2} and X; € Q;. Then by
the maximum principle wq, (E) > wg o (E) > 0.

» By David and Jerison H"(E) > 0. This implies wg < H" on 952.
» For the sake of contradiction, suppose
wana(E) =0forall X; € Q;, i=1,2.

» Suffices to show that lerlp wE(E) <y < 1.

Then, by strong Markov property of Brownian motion, for X € O N,
() =hoa (B + [ BB difin, (@) <04y =y <1

Same holds for X € 2N, and hence

sup wy (E) < v < 1 which is NOT possible!
XeQ
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Sketch of the Proof cont’

Hence, we need to show

sup wh(E) <y <1,
XernQ

Let X € Q@ and r = dist(X, 092). As Q; are NTA, then there are balls
B = B(Y;,cr) C Q;NB(X,r) fori=1,2.
» Enough to show that
whne, (L' N Q) < n for some n € (0,1) and i € {1,2}.
If so, the Harnack chain, and wq, is probability measure imply that
WE(E) = 1 - wh(E%) < 1 - wl(E%)
= (1 —1) + twgj (E)

— —t)+t(wém,.(E>+/

wh(E) dwé"ﬁﬂl (Z))
90Q,NQ2

<(1-0+t0+n)=(1-0+m=vy<1.

So we focus on proving wy o, (I'N Q) < 7.
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Sketch of the Proof cont’

Proof of wgjq (T N Q) < 1.
Let My >> 1.
Case 1: Thereis Z € 9Q N B(X, Myr) N Q; so that dist(Z,T") > er

In this case, Brownian motion starting at Y! has a good chance of hitting
outside I" N Q2.
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Case 2: dist(Z,T') < erforall Z € 92 N B(X, Mor) N .

Q' @ Xo

wh, e ((T'NQ)°) is big here

If black parts are G then we can pick i so that H"(G) > H"(0€).
Then result of David and Jerison implies

1 S Wi (G) S weo (T NQ)) S wh, (TN Q)

This gives wg o (TN Q) < 1.



Thanks!



