Absolute continuity of harmonic measure on rough domains

Murat Akman MSRI/University of Connecticut May 9

Rainwater Seminar - University of Washington

Part I

Detecting the exit point of Brownian motion

▶ Let $\Omega \subset \mathbb{R}^{n+1}$, $n \ge 1$, connected and open.

▶ Let $\Omega \subset \mathbb{R}^{n+1}$, $n \ge 1$, connected and open.

Dirichlet problem:

$$\mathsf{D}) \begin{cases} \Delta u = 0 \text{ in } \Omega \\ u = f \text{ on } \partial \Omega \\ u \in C^2(\Omega) \cap C(\partial \Omega) \\ f \in C_c(\partial \Omega). \end{cases}$$

$$\Delta := \partial_{x_1 x_1} + \ldots + \partial_{x_{n+1} x_{n+1}}$$

▶ Let $\Omega \subset \mathbb{R}^{n+1}$, $n \ge 1$, connected and open.

Dirichlet problem:

$$\mathsf{D}) \begin{cases} \Delta u = 0 \text{ in } \Omega \\ u = f \text{ on } \partial \Omega \\ u \in C^2(\Omega) \cap C(\partial \Omega) \\ f \in C_c(\partial \Omega). \end{cases}$$

$$\Delta := \partial_{x_1 x_1} + \ldots + \partial_{x_{n+1} x_{n+1}}$$

► **Potential Theory:** \exists ! a family of probability measures $\{\omega_{\Omega}^X\}_{X\in\Omega}$ on $\partial\Omega$ called harmonic measure of Ω with a pole at $X \in \Omega$ such that

$$u(X) = \int_{\partial\Omega} f(Q) \, d\omega_{\Omega}^X(Q) \quad \text{solves} \quad (D).$$

▶ Let $\Omega \subset \mathbb{R}^{n+1}$, $n \ge 1$, connected and open.

Dirichlet problem:

$$\mathsf{D}) \begin{cases} \Delta u = 0 \text{ in } \Omega \\ u = f \text{ on } \partial \Omega \\ u \in C^2(\Omega) \cap C(\partial \Omega) \\ f \in C_c(\partial \Omega). \end{cases}$$

$$\Delta := \partial_{x_1 x_1} + \ldots + \partial_{x_{n+1} x_{n+1}}$$

▶ **Potential Theory:** \exists ! a family of probability measures $\{\omega_{\Omega}^X\}_{X \in \Omega}$ on $\partial\Omega$ called harmonic measure of Ω with a pole at $X \in \Omega$ such that

$$u(X) = \int_{\partial\Omega} f(Q) \, d\omega_{\Omega}^X(Q) \quad \text{solves} \quad (D).$$

► **Probability:** Harmonic measure $\omega_{\Omega}^{X}(E)$ of *E* with a given pole *X* is the probability that a Brownian motion starting at *X* will first hit $\partial\Omega$ in the set *E*.

Examples of Harmonic Measure

 \blacktriangleright If $\Omega \subset \mathbb{R}^2$ is a simply connected domain, $\partial \Omega$ is Jordan curve

Examples of Harmonic Measure

▶ If $\Omega \subset \mathbb{R}^2$ is a simply connected domain, $\partial \Omega$ is Jordan curve then by Carathéodory's theorem

Examples of Harmonic Measure

▶ If $\Omega \subset \mathbb{R}^2$ is a simply connected domain, $\partial \Omega$ is Jordan curve then by Carathéodory's theorem

▶ If $\Omega = A(0, r, R) \subset \mathbb{R}^{n+1}$ is an annular region then the harmonic measure of the inner shell *S*(0, *r*) is

$$\omega_{\Omega}^{X}(S(0,r)) = \begin{cases} \frac{\log R - \log |X|}{\log R - \log r} & \text{if } n = 1, \\ \frac{|X|^{2 - (n+1)} - R^{2 - (n+1)}}{r^{2 - (n+1)} - R^{2 - (n+1)}} & \text{if } n \ge 2. \end{cases}$$

Assume Ω is at least C^1 and bounded. Let $K_{\Omega}(X, \xi)$ be the Poisson kernel for Ω and $E \subset \partial \Omega$;

$$\omega^X_\Omega(E) = \int \chi_E(\xi) K_\Omega(X,\xi) d\mathcal{H}^n(\xi).$$

Assume Ω is at least C^1 and bounded. Let $K_{\Omega}(X, \xi)$ be the Poisson kernel for Ω and $E \subset \partial \Omega$;

$$\omega^X_\Omega(E) = \int \chi_E(\xi) K_\Omega(X,\xi) d\mathcal{H}^n(\xi).$$

Example

Let $\Omega = \mathbb{R}^2_+$ and $E = [-T, T] \times \{0\}$, z = x + iy. Find $\omega_{\Omega}^z(E)$.

Assume Ω is at least C^1 and bounded. Let $K_{\Omega}(X, \xi)$ be the Poisson kernel for Ω and $E \subset \partial \Omega$;

$$\omega^X_\Omega(E) = \int \chi_E(\xi) K_\Omega(X,\xi) d\mathcal{H}^n(\xi).$$

Example

Let $\Omega = \mathbb{R}^2_+$ and $E = [-T, T] \times \{0\}$, $z = x + \mathbf{i}y$. Find $\omega_{\Omega}^z(E)$. Since $P(x, y) = \frac{1}{\pi} \frac{y}{x^2 + y^2}$.

Assume Ω is at least C^1 and bounded. Let $K_{\Omega}(X, \xi)$ be the Poisson kernel for Ω and $E \subset \partial \Omega$;

$$\omega^X_\Omega(E) = \int \chi_E(\xi) K_\Omega(X,\xi) d\mathcal{H}^n(\xi).$$

Example

Let $\Omega = \mathbb{R}^2_+$ and $E = [-T, T] \times \{0\}$, $z = x + \mathbf{i}y$. Find $\omega_{\Omega}^z(E)$. Since $P(x, y) = \frac{1}{\pi} \frac{y}{x^2 + y^2}$. Then

$$\omega_{\Omega}^{z}(E) = \int_{\partial\Omega} \chi_{[-T,T]}(t) \frac{1}{\pi} \frac{y}{(x-t)^{2} + y^{2}} dt = \int_{-T}^{T} \frac{1}{\pi} \frac{y}{(x-t)^{2} + y^{2}} dt$$
$$= \frac{1}{\pi} \arctan\left(\frac{x+T}{y}\right) - \frac{1}{\pi} \arctan\left(\frac{x-T}{y}\right)$$

Assume Ω is at least C^1 and bounded. Let $K_{\Omega}(X, \xi)$ be the Poisson kernel for Ω and $E \subset \partial \Omega$;

$$\omega_{\Omega}^{X}(E) = \int \chi_{E}(\xi) K_{\Omega}(X,\xi) d\mathcal{H}^{n}(\xi).$$

Example

Let $\Omega = \mathbb{R}^2_+$ and $E = [-T, T] \times \{0\}$, $z = x + \mathbf{i}y$. Find $\omega_{\Omega}^z(E)$. Since $P(x, y) = \frac{1}{\pi} \frac{y}{x^2 + y^2}$. Then

$$\omega_{\Omega}^{z}(E) = \int_{\partial\Omega} \chi_{[-T,T]}(t) \frac{1}{\pi} \frac{y}{(x-t)^{2} + y^{2}} dt = \int_{-T}^{T} \frac{1}{\pi} \frac{y}{(x-t)^{2} + y^{2}} dt$$
$$= \frac{1}{\pi} \arctan\left(\frac{x+T}{y}\right) - \frac{1}{\pi} \arctan\left(\frac{x-T}{y}\right)$$

Notice that $\omega_{\Omega}^{z}(E)$ is a harmonic function and

$$\begin{cases} \omega_{\Omega}^{z}(E) \to 1 & \text{as } z \to E \subset \partial\Omega, \\ \omega_{\Omega}^{z}(E) \to 0 & \text{as } z \to \partial\Omega \setminus E. \end{cases}$$

Even more examples of Harmonic Measures

▶ If $\Omega = \mathbb{B}^{n+1}$, (n+1)-dimensional unit ball, and $X \in \Omega$. Then

$$\omega^X(E) = \frac{1}{\mathcal{H}^n(\mathbb{S}^n)} \int_E \frac{1 - |X|^2}{|X - Y|^{n+1}} \, d\mathcal{H}^n(Y) \quad \text{for every Borel set } E \subset \mathbb{S}^n.$$

 $[\]mathcal{H}^n$ is the *n*-dimensional Hausdorff measure which will be defined soon.

Even more examples of Harmonic Measures

▶ If $\Omega = \mathbb{B}^{n+1}$, (n+1)-dimensional unit ball, and $X \in \Omega$. Then

$$\omega^X(E) = \frac{1}{\mathcal{H}^n(\mathbb{S}^n)} \int_E \frac{1 - |X|^2}{|X - Y|^{n+1}} \, d\mathcal{H}^n(Y) \quad \text{for every Borel set } E \subset \mathbb{S}^n.$$

▶ When the pole X = 0 and $\Omega = \mathbb{B}^{n+1}$ then

$$\omega^0(E) = rac{\mathcal{H}^n(E)}{\mathcal{H}^n(\mathbb{S}^n)} \quad ext{for every Borel set } E \subset \mathbb{S}^n.$$

 $[\]mathcal{H}^n$ is the *n*-dimensional Hausdorff measure which will be defined soon.

Even more examples of Harmonic Measures

▶ If $\Omega = \mathbb{B}^{n+1}$, (n+1)-dimensional unit ball, and $X \in \Omega$. Then

 $\omega^X(E) = \frac{1}{\mathcal{H}^n(\mathbb{S}^n)} \int_E \frac{1 - |X|^2}{|X - Y|^{n+1}} \, d\mathcal{H}^n(Y) \quad \text{for every Borel set } E \subset \mathbb{S}^n.$

• When the pole X = 0 and $\Omega = \mathbb{B}^{n+1}$ then

$$\omega^0(E) = rac{\mathcal{H}^n(E)}{\mathcal{H}^n(\mathbb{S}^n)}$$
 for every Borel set $E \subset \mathbb{S}^n$.

▶ If $\Omega \subset \mathbb{R}^{n+1}$ is bounded domain of class C^1 , then there is $K(X, Y) : \Omega \times \partial\Omega \to \mathbb{R}$ such that

$$\omega^X(E) = \int_E K(X,Y) \, d\mathcal{H}^n(Y) \quad \text{for every Borel set } E \subset \partial\Omega.$$

 $[\]mathcal{H}^n$ is the *n*-dimensional Hausdorff measure which will be defined soon.

► For every borel set $E \subset \partial \Omega$, $X \to \omega^X(E)$ is a non-negative harmonic function in Ω .

 $c^{-1}\omega^{X_1}(E) \le \omega^{X_2}(E) \le c\omega^{X_1}(E).$

► For every borel set $E \subset \partial \Omega$, $X \to \omega^X(E)$ is a non-negative harmonic function in Ω .

► Harmonic measure ω^{X_1} and ω^{X_2} at different poles are mutually absolutely continus; $\omega^{X_1}(E) = 0 \Leftrightarrow \omega^{X_2}(E) = 0.$

 $c^{-1}\omega^{X_1}(E) \le \omega^{X_2}(E) \le c\omega^{X_1}(E).$

► For every borel set $E \subset \partial \Omega$, $X \to \omega^X(E)$ is a non-negative harmonic function in Ω .

► Harmonic measure ω^{X_1} and ω^{X_2} at different poles are mutually absolutely continus; $\omega^{X_1}(E) = 0 \Leftrightarrow \omega^{X_2}(E) = 0.$

Drop the pole *X* to get the harmonic meeasure ω of Ω .

 $c^{-1}\omega^{X_1}(E) \leq \omega^{X_2}(E) \leq c\omega^{X_1}(E).$

► For every borel set $E \subset \partial \Omega$, $X \to \omega^X(E)$ is a non-negative harmonic function in Ω .

► Harmonic measure ω^{X_1} and ω^{X_2} at different poles are mutually absolutely continus; $\omega^{X_1}(E) = 0 \Leftrightarrow \omega^{X_2}(E) = 0.$

Drop the pole *X* to get the **harmonic meeasure** ω of Ω .

► Therefore, the sets of harmonic measure zero do not depend on the pole.

Consider a random Brownian particle moving in a domain $\Omega \subset \mathbb{R}^2$.

► Aim is to find the point where it first hits the boundary $\partial \Omega$.

Consider a random Brownian particle moving in a domain $\Omega \subset \mathbb{R}^2$.

► Aim is to find the point where it first hits the boundary $\partial \Omega$.

To do this we are allowed to place circular detectors along the boundary which register if the particle hits them.

Consider a random Brownian particle moving in a domain $\Omega \subset \mathbb{R}^2$.

► Aim is to find the point where it first hits the boundary $\partial \Omega$.

To do this we are allowed to place circular detectors along the boundary which register if the particle hits them.

If a detector of radius r costs us $\phi(r)$ (for some increasing ϕ on $(0, \infty)$), can we detect the exit point almost surely on a finite budget?

Consider a random Brownian particle moving in a domain $\Omega \subset \mathbb{R}^2$.

► Aim is to find the point where it first hits the boundary $\partial \Omega$.

To do this we are allowed to place circular detectors along the boundary which register if the particle hits them.

If a detector of radius r costs us $\phi(r)$ (for some increasing ϕ on $(0, \infty)$), can we detect the exit point almost surely on a finite budget?

▶ Note that to detect an exit at x, the point must be contained in infinitely many detectors whose radii tend to zero.

▶ When Ω is the unit disk \mathbb{D} , and the Brownian particle starts at 0 then the hitting distribution on $\partial \Omega$ is normalized Lebesgue measure.

► Thus to detect the exit point almost surely, we must cover almost every point of $\partial \Omega$ by arbitrarily small balls.

▶ When Ω is the unit disk \mathbb{D} , and the Brownian particle starts at 0 then the hitting distribution on $\partial\Omega$ is normalized Lebesgue measure.

► Thus to detect the exit point almost surely, we must cover almost every point of $\partial \Omega$ by arbitrarily small balls.

▶ If $\phi(r) \ge r$ then we can not detect the exit point on a finite budget.

► However, if $\phi(r) = o(r)$ then we can cover $\partial\Omega$ by about n_k balls of size $1/n_k$ and let $n_k \nearrow \infty$ so fast that $\sum n_k \phi(1/n_k) < \infty$.

▶ When Ω is the unit disk \mathbb{D} , and the Brownian particle starts at 0 then the hitting distribution on $\partial \Omega$ is normalized Lebesgue measure.

► Thus to detect the exit point almost surely, we must cover almost every point of $\partial\Omega$ by arbitrarily small balls.

▶ If $\phi(r) \ge r$ then we can not detect the exit point on a finite budget.

► However, if $\phi(r) = o(r)$ then we can cover $\partial\Omega$ by about n_k balls of size $1/n_k$ and let $n_k \nearrow \infty$ so fast that $\sum n_k \phi(1/n_k) < \infty$.

▶ If $\partial\Omega$ is the von Koch Snowflake then it takes roughly 4^n balls of size 3^n to cover the whole boundary, which we can do on a finite budget iff $\phi(t) = o(t^{\alpha})$, where $\alpha = \log 4/\log 3 > 1$.

▶ When Ω is the unit disk \mathbb{D} , and the Brownian particle starts at 0 then the hitting distribution on $\partial \Omega$ is normalized Lebesgue measure.

► Thus to detect the exit point almost surely, we must cover almost every point of $\partial \Omega$ by arbitrarily small balls.

▶ If $\phi(r) \ge r$ then we can not detect the exit point on a finite budget.

► However, if $\phi(r) = o(r)$ then we can cover $\partial\Omega$ by about n_k balls of size $1/n_k$ and let $n_k \nearrow \infty$ so fast that $\sum n_k \phi(1/n_k) < \infty$.

▶ If $\partial\Omega$ is the von Koch Snowflake then it takes roughly 4^n balls of size 3^n to cover the whole boundary, which we can do on a finite budget iff $\phi(t) = o(t^{\alpha})$, where $\alpha = \log 4/\log 3 > 1$.

► However, not all parts of the snowflake are equally likely to be hit by Brownian motion, and there is a small subset of $\partial \Omega$ which still gets hit with probability 1.

We estimate harmonic measure by comparing it to the more geometrically defined Hausdorff measures:

We estimate harmonic measure by comparing it to the more geometrically defined Hausdorff measures:

Let ϕ be increasing function on $[0,\infty)$,

$$\mathcal{H}_{\phi}(E) := \lim_{\delta \to 0} \inf \left\{ \sum_{i=1}^{\infty} \phi(r_i); \ E \subset \bigcup_{i=1}^{\infty} B(x_i, r_i), \ r_i \leq \delta \right\}.$$

We estimate harmonic measure by comparing it to the more geometrically defined Hausdorff measures:

Let ϕ be increasing function on $[0,\infty)$,

$$\mathcal{H}_{\phi}(E) := \liminf_{\delta \to 0} \left\{ \sum_{i=1}^{\infty} \phi(r_i); \ E \subset \bigcup_{i=1}^{\infty} B(x_i, r_i), \ r_i \leq \delta \right\}.$$

• When $\phi(t) = t^{\alpha}$ we then denote this by \mathcal{H}^{α} ;

$$\mathcal{H}^{\alpha}(E) = \lim_{\delta \to 0} \mathcal{H}^{\alpha}_{\delta}(E) = \liminf_{\delta \to 0} \left\{ \sum_{i=1}^{\infty} r_i^{\alpha}; \ E \subset \bigcup_{i=1}^{\infty} B(x_i, r_i), \ r_i \leq \delta \right\}.$$

▶ \mathcal{H}^2 is multiple of Lebesgue area measure; \mathcal{H}^1 is length...

We estimate harmonic measure by comparing it to the more geometrically defined Hausdorff measures:

Let ϕ be increasing function on $[0,\infty)$,

$$\mathcal{H}_{\phi}(E) := \lim_{\delta \to 0} \inf \left\{ \sum_{i=1}^{\infty} \phi(r_i); \ E \subset \bigcup_{i=1}^{\infty} B(x_i, r_i), \ r_i \leq \delta \right\}.$$

• When $\phi(t) = t^{\alpha}$ we then denote this by \mathcal{H}^{α} ;

$$\mathcal{H}^{\alpha}(E) = \lim_{\delta \to 0} \mathcal{H}^{\alpha}_{\delta}(E) = \liminf_{\delta \to 0} \left\{ \sum_{i=1}^{\infty} r_i^{\alpha}; \ E \subset \bigcup_{i=1}^{\infty} B(x_i, r_i), \ r_i \leq \delta \right\}.$$

→ H² is multiple of Lebesgue area measure; H¹ is length...
Hⁿ_∞(E) is called the Hausdorff content of E and is defined as

$$\mathcal{H}_{\infty}^{n}(E) = \inf \left\{ \sum_{i=1}^{\infty} (r_{i})^{n}; \ E \subset \bigcup_{i=1}^{\infty} B(x_{i}, r_{i}) \right\}.$$

 $\blacktriangleright \ \mathcal{H}^{\alpha}_{\infty}(E) \leq \mathcal{H}^{\alpha}_{\delta}(E) \leq \mathcal{H}^{\alpha}(E). \ \text{But still} \ \mathcal{H}^{\alpha}_{\infty}(E) = 0 \iff \mathcal{H}^{\alpha}(E) = 0.$

Being singular \perp – absolutely continuous \ll

The Hausdorff dimension of a set *E* is defined by

 $\dim_{\mathcal{H}}(E) = \inf\{\alpha; \ \mathcal{H}^{\alpha}(E) = 0\}.$

The smaller α is, the more expensive it is to cover *E*; the dimension marks the transition from positive to zero cost coverings.

Being singular \perp – absolutely continuous \ll

The Hausdorff dimension of a set *E* is defined by

 $\dim_{\mathcal{H}}(E) = \inf\{\alpha; \ \mathcal{H}^{\alpha}(E) = 0\}.$

The smaller α is, the more expensive it is to cover *E*; the dimension marks the transition from positive to zero cost coverings.

The dimension of a measure μ is the smallest dimension of a full $\mu\text{-measure set, i.e.,}$

 $\dim_{\mathcal{H}}(\mu) = \inf \{\dim_{\mathcal{H}}(E): \ \mu(E^{c}) = 0\} = \inf \{\alpha: \ \mu \perp \mathcal{H}^{\alpha}\}$

▶ $\mu \perp \nu$ if there is a set *E* such that $\mu(E) = \nu(E^{c}) = 0$

 $\blacktriangleright \mu \ll \nu \text{ if } \nu(E) = 0 \Rightarrow \mu(E) = 0.$

 $\blacktriangleright \mu \sim \nu \text{ if } \nu \ll \mu \ll \nu.$

Being singular \perp – absolutely continuous \ll

The Hausdorff dimension of a set *E* is defined by

 $\dim_{\mathcal{H}}(E) = \inf\{\alpha; \ \mathcal{H}^{\alpha}(E) = 0\}.$

The smaller α is, the more expensive it is to cover *E*; the dimension marks the transition from positive to zero cost coverings.

The dimension of a measure μ is the smallest dimension of a full $\mu\text{-measure set, i.e.,}$

 $\dim_{\mathcal{H}}(\mu) = \inf \{\dim_{\mathcal{H}}(E): \ \mu(E^{c}) = 0\} = \inf \{\alpha: \ \mu \perp \mathcal{H}^{\alpha}\}$

▶ $\mu \perp \nu$ if there is a set *E* such that $\mu(E) = \nu(E^{c}) = 0$

$$\blacktriangleright \mu \ll \nu \text{ if } \nu(E) = 0 \Rightarrow \mu(E) = 0.$$

 $\blacktriangleright \mu \sim \nu \text{ if } \nu \ll \mu \ll \nu.$

It is always true that $\dim_{\mathcal{H}}(\mu) \leq \dim_{\mathcal{H}}(\operatorname{supp}(\mu))$.
Being singular \perp – absolutely continuous \ll

The Hausdorff dimension of a set *E* is defined by

 $\dim_{\mathcal{H}}(E) = \inf\{\alpha; \ \mathcal{H}^{\alpha}(E) = 0\}.$

The smaller α is, the more expensive it is to cover *E*; the dimension marks the transition from positive to zero cost coverings.

The dimension of a measure μ is the smallest dimension of a full $\mu\text{-measure set, i.e.,}$

 $\dim_{\mathcal{H}}(\mu) = \inf \{\dim_{\mathcal{H}}(E): \ \mu(E^{c}) = 0\} = \inf \{\alpha: \ \mu \perp \mathcal{H}^{\alpha}\}$

▶ $\mu \perp \nu$ if there is a set *E* such that $\mu(E) = \nu(E^{c}) = 0$

$$\blacktriangleright \mu \ll \nu \text{ if } \nu(E) = 0 \Rightarrow \mu(E) = 0.$$

 $\blacktriangleright \mu \sim \nu \text{ if } \nu \ll \mu \ll \nu.$

It is always true that $\dim_{\mathcal{H}}(\mu) \leq \dim_{\mathcal{H}}(\operatorname{supp}(\mu))$.

Thus the detection question is really:

▶ For which ϕ we have $\omega \perp \mathcal{H}_{\phi}$ and when is $\omega \ll \mathcal{H}_{\phi}$?

Main question and the first result

▶ $n-1 \leq \dim_{\mathcal{H}}(\omega) < n+1$ (in fact $\mathcal{H}^{n-1}(E) = 0 \Rightarrow \omega(E) = 0$).

▶ $n-1 \leq \dim_{\mathcal{H}}(\omega) < n+1$ (in fact $\mathcal{H}^{n-1}(E) = 0 \Rightarrow \omega(E) = 0$).

Question

Find sufficient conditions (geometric and/or analytic) on Ω for which we have $\omega \ll \mathcal{H}^n$ on $\partial \Omega$?

►
$$n-1 \leq \dim_{\mathcal{H}}(\omega) < n+1$$
 (in fact $\mathcal{H}^{n-1}(E) = 0 \Rightarrow \omega(E) = 0$).

Find sufficient conditions (geometric and/or analytic) on Ω for which we have $\omega \ll \mathcal{H}^n$ on $\partial \Omega$?

Theorem (F. and M. Riesz(1916))

Let Ω be a simply connected domain in the plane with $\mathcal{H}^1(\partial\Omega) < \infty$. Let $\psi : \mathbb{D} \to \Omega$ be conformal.

Then $\psi' \in L^1(\partial \mathbb{D})$. Moreover, for any Borel set $E \subset \partial \mathbb{D}$,

$$\mathcal{H}^1(\psi(E)) = \int_E |\psi'(e^{\mathbf{i}\theta})| \, d\theta.$$

Hence, using $\omega_{\Omega}^{z}(K) = 1/2\pi \operatorname{arclength}(\psi^{-1}(K)), K \subset \partial\Omega$, one has

 $\omega(A) = 0 \quad \iff \quad \mathcal{H}^1(A) = 0 \quad \text{whenever } A \subset \partial \Omega \text{ Borel.}$

i.e. $\omega \ll \mathcal{H}^1 \ll \omega$ on $\partial \Omega$.

How does our problem about the cost of detecting exit points fit into this notation?

How does our problem about the cost of detecting exit points fit into this notation?

A collection ${\mathcal C}$ of balls is called a Vitali covering of a set E if for each $\epsilon>0,$

 $C_{\epsilon} = \{D \in C : \operatorname{diam}(D) < \epsilon\}$ is also a cover.

We can detect a.e. exit point of Brownian motion on a finite ϕ -budget iff there is a Vitali covering of a full ω -measure set *E* by balls of radius $\{r_j\}$ such that $\sum \phi(r_j) < \infty$.

How does our problem about the cost of detecting exit points fit into this notation?

A collection C of balls is called a Vitali covering of a set E if for each $\epsilon > 0$,

 $C_{\epsilon} = \{D \in C : \operatorname{diam}(D) < \epsilon\}$ is also a cover.

We can detect a.e. exit point of Brownian motion on a finite ϕ -budget iff there is a Vitali covering of a full ω -measure set *E* by balls of radius $\{r_j\}$ such that $\sum \phi(r_j) < \infty$.

This happens iff $\mathcal{H}_{\phi}(E) = 0$ which happens iff $\omega \perp \mathcal{H}_{\phi}$.

How does our problem about the cost of detecting exit points fit into this notation?

A collection C of balls is called a Vitali covering of a set E if for each $\epsilon > 0$,

 $C_{\epsilon} = \{D \in C : \operatorname{diam}(D) < \epsilon\}$ is also a cover.

We can detect a.e. exit point of Brownian motion on a finite ϕ -budget iff there is a Vitali covering of a full ω -measure set *E* by balls of radius $\{r_j\}$ such that $\sum \phi(r_j) < \infty$.

This happens iff $\mathcal{H}_{\phi}(E) = 0$ which happens iff $\omega \perp \mathcal{H}_{\phi}$.

► Conversely $\omega \ll \mathcal{H}_{\phi}$ holds iff any set *E* which we can afford to test has zero ω -measure.

How does our problem about the cost of detecting exit points fit into this notation?

A collection ${\mathcal C}$ of balls is called a Vitali covering of a set E if for each $\epsilon>0,$

 $C_{\epsilon} = \{D \in C : \operatorname{diam}(D) < \epsilon\}$ is also a cover.

We can detect a.e. exit point of Brownian motion on a finite ϕ -budget iff there is a Vitali covering of a full ω -measure set *E* by balls of radius $\{r_j\}$ such that $\sum \phi(r_j) < \infty$.

This happens iff $\mathcal{H}_{\phi}(E) = 0$ which happens iff $\omega \perp \mathcal{H}_{\phi}$.

► Conversely $\omega \ll \mathcal{H}_{\phi}$ holds iff any set *E* which we can afford to test has zero ω -measure.

Thus the detection question is really:

▶ For which ϕ we have $\omega \perp \mathcal{H}_{\phi}$ and when is $\omega \ll \mathcal{H}_{\phi}$?

Part II

Absolute continuity of harmonic measure on rough domains

Necessary and sufficient conditions for absolute continuity

Question

Find sufficient conditions for $\omega \ll \mathcal{H}^n$ on $\partial \Omega$?

Find sufficient conditions for $\omega \ll \mathcal{H}^n$ on $\partial \Omega$?

► F. and M. Riesz('16): If $\Omega \subset \mathbb{C}$ is domain bounded by Jordan curve of finite length then $\omega \ll \mathcal{H}^1 \ll \omega$ on $\partial \Omega$ (i.e., $\omega \sim \mathcal{H}^1$).

Find sufficient conditions for $\omega \ll \mathcal{H}^n$ on $\partial \Omega$?

▶ **F. and M. Riesz**('16): If $\Omega \subset \mathbb{C}$ is domain bounded by Jordan curve of finite length then $\omega \ll \mathcal{H}^1 \ll \omega$ on $\partial \Omega$ (i.e., $\omega \sim \mathcal{H}^1$).

► Lavrentiev('36): Quantitative version.

Find sufficient conditions for $\omega \ll \mathcal{H}^n$ on $\partial \Omega$?

► **F. and M. Riesz**('16): If $\Omega \subset \mathbb{C}$ is domain bounded by Jordan curve of finite length then $\omega \ll \mathcal{H}^1 \ll \omega$ on $\partial \Omega$ (i.e., $\omega \sim \mathcal{H}^1$).

- ► Lavrentiev('36): Quantitative version.
- ▶ McMillan('69): Let $\Omega \subset \mathbb{C}$ be simply connected and $E \subset \partial \Omega$ be cone points of Ω then $\omega \sim \mathcal{H}^1$ on *E*.

Find sufficient conditions for $\omega \ll \mathcal{H}^n$ on $\partial \Omega$?

► **F. and M. Riesz**('16): If $\Omega \subset \mathbb{C}$ is domain bounded by Jordan curve of finite length then $\omega \ll \mathcal{H}^1 \ll \omega$ on $\partial \Omega$ (i.e., $\omega \sim \mathcal{H}^1$).

► Lavrentiev('36): Quantitative version.

▶ McMillan('69): Let $\Omega \subset \mathbb{C}$ be simply connected and $E \subset \partial \Omega$ be cone points of Ω then $\omega \sim \mathcal{H}^1$ on *E*.

► Makarov('85): If Ω is simply connected then dim_{\mathcal{H}}(ω) = 1, i.e., $\omega \ll \mathcal{H}_{\phi}$ where $\phi(r) = r e^{A\sqrt{\log \frac{1}{r} \log \log \log \frac{1}{r}}}$ for some A >> 1.

Find sufficient conditions for $\omega \ll \mathcal{H}^n$ on $\partial \Omega$?

► **F. and M. Riesz**('16): If $\Omega \subset \mathbb{C}$ is domain bounded by Jordan curve of finite length then $\omega \ll \mathcal{H}^1 \ll \omega$ on $\partial \Omega$ (i.e., $\omega \sim \mathcal{H}^1$).

► Lavrentiev('36): Quantitative version.

▶ McMillan('69): Let $\Omega \subset \mathbb{C}$ be simply connected and $E \subset \partial \Omega$ be cone points of Ω then $\omega \sim \mathcal{H}^1$ on *E*.

► Makarov('85): If Ω is simply connected then dim_{\mathcal{H}}(ω) = 1, i.e., $\omega \ll \mathcal{H}_{\phi}$ where $\phi(r) = r e^{A\sqrt{\log \frac{1}{r} \log \log \log \frac{1}{r}}}$ for some A >> 1.

▶ **Bishop and Jones**('90): Let $\Omega \subset \mathbb{C}$ be simply connected. Then $\omega \ll \mathcal{H}^1$ on $\Gamma \cap \partial \Omega$ whenever Γ is curve of finite length.

Find sufficient conditions for $\omega \ll \mathcal{H}^n$ on $\partial \Omega$?

► **F. and M. Riesz**('16): If $\Omega \subset \mathbb{C}$ is domain bounded by Jordan curve of finite length then $\omega \ll \mathcal{H}^1 \ll \omega$ on $\partial \Omega$ (i.e., $\omega \sim \mathcal{H}^1$).

► Lavrentiev('36): Quantitative version.

▶ McMillan('69): Let $\Omega \subset \mathbb{C}$ be simply connected and $E \subset \partial \Omega$ be cone points of Ω then $\omega \sim \mathcal{H}^1$ on *E*.

► Makarov('85): If Ω is simply connected then dim_{\mathcal{H}}(ω) = 1, i.e., $\omega \ll \mathcal{H}_{\phi}$ where $\phi(r) = r e^{A\sqrt{\log \frac{1}{r} \log \log \log \frac{1}{r}}}$ for some A >> 1.

▶ **Bishop and Jones**('90): Let $\Omega \subset \mathbb{C}$ be simply connected. Then $\omega \ll \mathcal{H}^1$ on $\Gamma \cap \partial \Omega$ whenever Γ is curve of finite length.

▶ **Wu**('86): $\omega \not\ll \mathcal{H}^2$ for some topological sphere in \mathbb{R}^3 .

Find sufficient conditions for $\omega \ll \mathcal{H}^n$ on $\partial \Omega$?

► **F. and M. Riesz**('16): If $\Omega \subset \mathbb{C}$ is domain bounded by Jordan curve of finite length then $\omega \ll \mathcal{H}^1 \ll \omega$ on $\partial \Omega$ (i.e., $\omega \sim \mathcal{H}^1$).

► Lavrentiev('36): Quantitative version.

▶ McMillan('69): Let $\Omega \subset \mathbb{C}$ be simply connected and $E \subset \partial \Omega$ be cone points of Ω then $\omega \sim \mathcal{H}^1$ on *E*.

► Makarov('85): If Ω is simply connected then $\dim_{\mathcal{H}}(\omega) = 1$, i.e., $\omega \ll \mathcal{H}_{\phi}$ where $\phi(r) = r e^{A\sqrt{\log \frac{1}{r} \log \log \log \frac{1}{r}}}$ for some A >> 1.

▶ **Bishop and Jones**('90): Let $\Omega \subset \mathbb{C}$ be simply connected. Then $\omega \ll \mathcal{H}^1$ on $\Gamma \cap \partial \Omega$ whenever Γ is curve of finite length.

▶ **Wu**('86): $\omega \not\ll \mathcal{H}^2$ for some topological sphere in \mathbb{R}^3 .

Bishop and Jones('90): $\omega \ll \mathcal{H}^1$ for a connected domain in \mathbb{R}^2 .

► Openness

► Openness → Corkscrew condition.

Path-connectedness

\blacktriangleright Path-connectedness \leadsto Harnack chain condition.

- ► Openness → Corkscrew condition.
- \blacktriangleright Path-connectedness \leadsto Harnack chain condition.

► Openness → Corkscrew condition.

 \blacktriangleright Path-connectedness \leadsto Harnack chain condition.

▶ Openness → Corkscrew condition.

 \blacktriangleright Path-connectedness \rightsquigarrow Harnack chain condition.

- $\mathbf{P} \ \Omega \text{ is NTA} \ \equiv \ \begin{cases} \ \bullet \ \text{Interior} \ \text{Corkscrew and Harnack Chain.} \\ \ \bullet \ \text{Exterior} \ \text{Corkscrew.} \end{cases}$
- ► $\partial \Omega$ is *n*-Ahlfors regular (AR) if

 $cr^n \leq \mathcal{H}^n(\partial \Omega \cap B(z,r)) \leq cr^n$ whenever $z \in \partial \Omega$ and $r \in (0, \operatorname{diam}(\partial \Omega))$.

Examples of such domains

▶ NTA domains need not be graph domains or of finite perimeter.

Let $\Sigma = f(\mathbb{R}^n)$ be a Lipschitz image of \mathbb{R}^n .

Let $\Sigma = f(\mathbb{R}^n)$ be a Lipschitz image of \mathbb{R}^n .

► $E \subset \mathbb{R}^{n+1}$ is *n*-rectifiable if there exists a family $\{\Sigma_i\}_i$ of Lipschitz images of \mathbb{R}^n such that

i.e.
$$E \subset \left(\bigcup_{i=1}^{\infty} \Sigma_i\right) \cup \Sigma_0$$
 with $\mathcal{H}^n(\Sigma_0) = 0$.

That is,

$$\mathcal{H}^n\left(E\setminus\bigcup_{i=1}^\infty\Sigma_i\right)=0,$$

Let $\Sigma = f(\mathbb{R}^n)$ be a Lipschitz image of \mathbb{R}^n .

► $E \subset \mathbb{R}^{n+1}$ is *n*-rectifiable if there exists a family $\{\Sigma_i\}_i$ of Lipschitz images of \mathbb{R}^n such that

i.e.
$$E \subset \left(\bigcup_{i=1}^{\infty} \Sigma_i\right) \cup \Sigma_0$$
 with $\mathcal{H}^n(\Sigma_0) = 0$.

That is,

$$\mathcal{H}^n\left(E\setminus\bigcup_{i=1}^\infty\Sigma_i\right)=0,$$

► $E \subset \mathbb{R}^{n+1}$ is *n*-purely unrectifiable if *E* contains NO *n*-rectifiable set *F* with $\mathcal{H}^n(F) > 0$.

Let $\Sigma = f(\mathbb{R}^n)$ be a Lipschitz image of \mathbb{R}^n .

► $E \subset \mathbb{R}^{n+1}$ is *n*-rectifiable if there exists a family $\{\Sigma_i\}_i$ of Lipschitz images of \mathbb{R}^n such that

i.e.
$$E \subset \left(\bigcup_{i=1}^{\infty} \Sigma_i\right) \cup \Sigma_0$$
 with $\mathcal{H}^n(\Sigma_0) = 0$.

That is,

$$\mathcal{H}^n\left(E\setminus\bigcup_{i=1}^\infty\Sigma_i\right)=0,$$

► $E \subset \mathbb{R}^{n+1}$ is *n*-purely unrectifiable if *E* contains NO *n*-rectifiable set *F* with $\mathcal{H}^n(F) > 0$.

▶ [Besicovitch-Federer] *E* is *n*-purely unrectifiable if $0 < \mathcal{H}^n(E) < \infty$ and $\mathcal{H}^n(\pi_L(E)) = 0$ for almost every *n*-dimensional plane $L \subset \mathbb{R}^{n+1}$.

Here π_L denotes the orthogonal projection of \mathbb{R}^{n+1} onto *L*.

An example of a purely unrectifiable set

The usual example is 4-corner Cantor set.

▶ There exists c > 1 such that for each $z \in C_{\infty}$ and $r \in (0, \sqrt{2})$

$$c^{-1}r \leq \mathcal{H}^1(\mathcal{C}_\infty \cap B(z,r)) \leq cr$$

An example of a purely unrectifiable set

The usual example is 4-corner Cantor set.

▶ There exists c > 1 such that for each $z \in C_{\infty}$ and $r \in (0, \sqrt{2})$

$$c^{-1}r \leq \mathcal{H}^1(\mathcal{C}_\infty \cap B(z,r)) \leq cr$$

For almost every line *L* in \mathbb{R}^2 , $\mathcal{H}^1(\pi_L(\mathcal{C}_\infty)) = 0$.

▶ Hence C_{∞} is a purely 1-unrectifiable.

▶ Every rectifiable curve intersects C_{∞} in a set of zero \mathcal{H}^1 -measure.

Global results in higher dimension

Dahlberg('77): If $\partial\Omega$ is a union of Lipschitz graphs then $\omega \sim \mathcal{H}^n$ on $\partial\Omega$.

Dahlberg('77): If $\partial\Omega$ is a union of Lipschitz graphs then $\omega \sim \mathcal{H}^n$ on $\partial\Omega$.

▶ Wu('86): Let $\Omega \subset \mathbb{R}^{n+1}$ be a domain satisfying exterior corkscrew condition and suppose that Γ is a *n*−AR set and divides \mathbb{R}^{n+1} into two NTA domains. Then $\omega_{\Omega} \ll \mathcal{H}^n$ on $\Gamma \cap \partial \Omega$.

Dahlberg('77): If $\partial\Omega$ is a union of Lipschitz graphs then $\omega \sim \mathcal{H}^n$ on $\partial\Omega$.

▶ Wu('86): Let $\Omega \subset \mathbb{R}^{n+1}$ be a domain satisfying exterior corkscrew condition and suppose that Γ is a *n*−AR set and divides \mathbb{R}^{n+1} into two NTA domains. Then $\omega_{\Omega} \ll \mathcal{H}^n$ on $\Gamma \cap \partial \Omega$.

David and Jerison('90);

► **Semmes**('89):

If Ω is NTA and $\partial \Omega$ is AR then $\omega \sim \mathcal{H}^n$ on $\partial \Omega$.

Dahlberg('77): If $\partial \Omega$ is a union of Lipschitz graphs then $\omega \sim \mathcal{H}^n$ on $\partial \Omega$.

▶ Wu('86): Let $\Omega \subset \mathbb{R}^{n+1}$ be a domain satisfying exterior corkscrew condition and suppose that Γ is a *n*-AR set and divides \mathbb{R}^{n+1} into two NTA domains. Then $\omega_{\Omega} \ll \mathcal{H}^n$ on $\Gamma \cap \partial \Omega$.

David and Jerison('90);

► **Semmes**('89):

If Ω is NTA and $\partial \Omega$ is AR then $\omega \sim \mathcal{H}^n$ on $\partial \Omega$.

▶ Badger('12): If $\Omega \subset \mathbb{R}^{n+1}$ is NTA with $\mathcal{H}^n(\partial \Omega) < \infty$ then $\omega \ll \mathcal{H}^n$ on

$$\left\{x\in\partial\Omega;\ \liminf_{r\to 0}\frac{\mathcal{H}^n(\partial\Omega\cap B(x,r))}{r^n}<\infty\right\}.$$

Dahlberg('77): If $\partial \Omega$ is a union of Lipschitz graphs then $\omega \sim \mathcal{H}^n$ on $\partial \Omega$.

▶ Wu('86): Let $\Omega \subset \mathbb{R}^{n+1}$ be a domain satisfying exterior corkscrew condition and suppose that Γ is a *n*-AR set and divides \mathbb{R}^{n+1} into two NTA domains. Then $\omega_{\Omega} \ll \mathcal{H}^n$ on $\Gamma \cap \partial \Omega$.

David and Jerison('90);

► **Semmes**('89):

If Ω is NTA and $\partial \Omega$ is AR then $\omega \sim \mathcal{H}^n$ on $\partial \Omega$.

▶ Badger('12): If $\Omega \subset \mathbb{R}^{n+1}$ is NTA with $\mathcal{H}^n(\partial \Omega) < \infty$ then $\omega \ll \mathcal{H}^n$ on

$$\left\{x\in\partial\Omega;\ \liminf_{r\to 0}\frac{\mathcal{H}^n(\partial\Omega\cap B(x,r))}{r^n}<\infty\right\}.$$

► Azzam, Mourgoglou, and Tolsa('15): \exists NTA domain Ω with $\mathcal{H}^n(\partial\Omega) < \infty$ such that $\omega \not\ll \mathcal{H}^n|_{\partial\Omega}$ (Using the deep result of Wolff which was further developed by Lewis, Nyström, Vogel).

▶ **Pommerenke**('86): If $\Omega \subset \mathbb{C}$ is simply connected and $\omega \ll \mathcal{H}^1$ on a set $E \subset \partial \Omega$ then ω a.e. point *E* is a cone point for Ω and ω -almost all of *F* can be covered by a countable union of 1-dimensional (possibly rotated) Lipschitz graphs (i.e., $\omega|_E$ is rectifiable).

▶ **Pommerenke**('86): If $\Omega \subset \mathbb{C}$ is simply connected and $\omega \ll \mathcal{H}^1$ on a set $E \subset \partial \Omega$ then ω a.e. point *E* is a cone point for Ω and ω -almost all of *F* can be covered by a countable union of 1-dimensional (possibly rotated) Lipschitz graphs (i.e., $\omega|_E$ is rectifiable).

Theorem (Azzam-Hofmann-Martell-Mayboroda-Mourgoglou-Tolsa-Volberg, ('15))

- Let $\Omega \subset \mathbb{R}^{n+1}$, $n \ge 1$, open and connected.
- Let $F \subset \partial \Omega$ with $\mathcal{H}^n(F) < \infty$.

If \$\omega \leftarrow H^n\$ on \$F\$ \$\Rightarrow \omega|_F\$ is \$n\$-rectifiable.
If \$H^n \leftarrow \omega\$ on \$F\$ \$\Rightarrow F\$ is \$n\$-rectifiable.

Portion of the boundary should be contained in a nice rectifiable set(like a graph or curve)!

Let *E* be a closed subset of \mathbb{R}^{n+1} , $n \geq 2$. Then

$$\mathsf{Cap}(E) = \inf \left\{ \int |\nabla v|^2 dx, \ v \in C_0^{\infty}(\mathbb{R}^{n+1}), \ v \ge 1 \text{ on } E \right\}.$$

Let *E* be a closed subset of \mathbb{R}^{n+1} , $n \geq 2$. Then

$$\mathsf{Cap}(E) = \inf \left\{ \int |\nabla v|^2 dx, \ v \in C_0^{\infty}(\mathbb{R}^{n+1}), \ v \ge 1 \text{ on } E \right\}.$$

If *u* is the minimizer of energy then *u* weakly satisfies

$$\begin{cases} \Delta u = 0 & \text{in } \mathbb{R}^{n+1} \setminus E, \\ u = 1 & \text{on } \mathsf{E}, \\ u \to 0 & \text{as } |x| \to \infty. \end{cases}$$

Let *E* be a closed subset of \mathbb{R}^{n+1} , $n \geq 2$. Then

$$\mathsf{Cap}(E) = \inf \left\{ \int |\nabla v|^2 dx, \ v \in C_0^{\infty}(\mathbb{R}^{n+1}), \ v \ge 1 \text{ on } E \right\}.$$

If *u* is the minimizer of energy then *u* weakly satisfies

$$\begin{cases} \Delta u = 0 & \text{in } \mathbb{R}^{n+1} \setminus E, \\ u = 1 & \text{on } \mathsf{E}, \\ u \to 0 & \text{as } |x| \to \infty. \end{cases}$$

Indeed, if *u* solves abode Dirichlet problem then

$$u(x) = \gamma c_n |x|^{2-(n+1)} + o(|x|^{1-(n+1)})$$
 for $|x| \to \infty$.

Let *E* be a closed subset of \mathbb{R}^{n+1} , $n \ge 2$. Then

$$\mathsf{Cap}(E) = \inf \left\{ \int |\nabla v|^2 dx, \ v \in C_0^{\infty}(\mathbb{R}^{n+1}), \ v \ge 1 \text{ on } E \right\}.$$

If *u* is the minimizer of energy then *u* weakly satisfies

$$\begin{cases} \Delta u = 0 & \text{in } \mathbb{R}^{n+1} \setminus E, \\ u = 1 & \text{on } \mathsf{E}, \\ u \to 0 & \text{as } |x| \to \infty. \end{cases}$$

Indeed, if *u* solves abode Dirichlet problem then

$$u(x) = \gamma c_n |x|^{2-(n+1)} + o(|x|^{1-(n+1)})$$
 for $|x| \to \infty$.

Then,

$$\mathsf{Cap}(E) = \gamma = \lim_{|x| \to \infty} \frac{u(x)}{|x|^{(n+1)-2}}.$$

This definition is called the electrostatic capacity of *E*.

Potential of a given measure μ is defined as

$$U_{\mu}(x) = \int_{E} \frac{1}{|x - y|^{(n+1)-2}} d\mu(y)$$

Potential of a given measure $\boldsymbol{\mu}$ is defined as

$$U_{\mu}(x) = \int_{E} \frac{1}{|x-y|^{(n+1)-2}} d\mu(y)$$

Then

$$\mathsf{Cap}(E) = \sup\{\mu(E); \ U_{\mu}(x) \le 1, \ x \in \mathsf{supp}(\mu)\}.$$

Potential of a given measure μ is defined as

$$U_{\mu}(x) = \int_{E} \frac{1}{|x - y|^{(n+1)-2}} d\mu(y)$$

Then

$$\mathsf{Cap}(E) = \sup\{\mu(E); \ U_{\mu}(x) \le 1, \ x \in \mathsf{supp}(\mu)\}.$$

Then $\operatorname{Cap}(E) = \nu(E)$ for a measure ν which is called equilibrium measure and satisfying $U_{\nu}(x) \leq 1$ for $x \in \operatorname{supp}(\nu)$ and $U_{\nu}(x) \geq 1$ up to a set of measure zero capacity on *E*. Note that U_{ν} is a positive super harmonic function in \mathbb{R}^{n+1} and harmonic outside of *E*.

Potential of a given measure μ is defined as

$$U_{\mu}(x) = \int_{E} \frac{1}{|x - y|^{(n+1)-2}} d\mu(y)$$

Then

$$\mathsf{Cap}(E) = \sup\{\mu(E); \ U_{\mu}(x) \le 1, \ x \in \mathsf{supp}(\mu)\}.$$

Then $\operatorname{Cap}(E) = \nu(E)$ for a measure ν which is called equilibrium measure and satisfying $U_{\nu}(x) \leq 1$ for $x \in \operatorname{supp}(\nu)$ and $U_{\nu}(x) \geq 1$ up to a set of measure zero capacity on *E*. Note that U_{ν} is a positive super harmonic function in \mathbb{R}^{n+1} and harmonic outside of *E*. Also

$$Cap(E) = [inf{K_{\mu}: \mu(E) = 1, \mu(E^{c}) = 0}]^{-1}$$

where

$$\mathcal{K}_{\mu} = \iint_{E \times E} \frac{1}{|x - y|^{(n+1)-2}} d\mu(x) d\mu(y).$$

which denotes the energy of μ with respect to the kernel $1/|x|^{(n+1)-2}$.

In \mathbb{R}^2 , there exists simply connected Jordan domain K satisfying

(1) $K \cap \{x : x_1 > 0\} \subset \{x : |x| < 2\}, K \cap \{x : x_1 < 0\} = \{x : x_1 < 0, |x| < 3\}$

- (2) $\partial_2 K$ has Hausdorff dimension 1,
- (3) $Cap_3(\partial_2 K) > 0$,

(4) $\operatorname{Cap}_3(K_{\epsilon}) \to 0 \text{ as } \epsilon \to 0 \text{ where } K_{\epsilon} = \{x \in K : \operatorname{dist}(x, \partial_2 K) < \epsilon\}.$

In \mathbb{R}^2 , there exists simply connected Jordan domain K satisfying

(1) $K \cap \{x : x_1 > 0\} \subset \{x : |x| < 2\}, K \cap \{x : x_1 < 0\} = \{x : x_1 < 0, |x| < 3\}$

- (2) $\partial_2 K$ has Hausdorff dimension 1,
- (3) $Cap_3(\partial_2 K) > 0$,

(4) $\operatorname{Cap}_3(K_{\epsilon}) \to 0 \text{ as } \epsilon \to 0 \text{ where } K_{\epsilon} = \{x \in K : \operatorname{dist}(x, \partial_2 K) < \epsilon\}.$

In \mathbb{R}^2 , there exists simply connected Jordan domain K satisfying

(1) $K \cap \{x : x_1 > 0\} \subset \{x : |x| < 2\}, K \cap \{x : x_1 < 0\} = \{x : x_1 < 0, |x| < 3\}$

- (2) $\partial_2 K$ has Hausdorff dimension 1,
- (3) $Cap_3(\partial_2 K) > 0$,
- (4) $\operatorname{Cap}_3(K_{\epsilon}) \to 0 \text{ as } \epsilon \to 0 \text{ where } K_{\epsilon} = \{x \in K : \operatorname{dist}(x, \partial_2 K) < \epsilon\}.$

In \mathbb{R}^2 , there exists simply connected Jordan domain K satisfying

- (1) $K \cap \{x : x_1 > 0\} \subset \{x : |x| < 2\}, K \cap \{x : x_1 < 0\} = \{x : x_1 < 0, |x| < 3\}$
- (2) $\partial_2 K$ has Hausdorff dimension 1,
- (3) $Cap_3(\partial_2 K) > 0$,
- (4) $\operatorname{Cap}_3(K_{\epsilon}) \to 0 \text{ as } \epsilon \to 0 \text{ where } K_{\epsilon} = \{x \in K : \operatorname{dist}(x, \partial_2 K) < \epsilon\}.$

In \mathbb{R}^2 , there exists simply connected Jordan domain *K* satisfying

- (1) $K \cap \{x : x_1 > 0\} \subset \{x : |x| < 2\}, K \cap \{x : x_1 < 0\} = \{x : x_1 < 0, |x| < 3\}$
- (2) $\partial_2 K$ has Hausdorff dimension 1,
- (3) $Cap_3(\partial_2 K) > 0$,
- (4) $\operatorname{Cap}_3(K_{\epsilon}) \to 0 \text{ as } \epsilon \to 0 \text{ where } K_{\epsilon} = \{x \in K : \operatorname{dist}(x, \partial_2 K) < \epsilon\}.$

In \mathbb{R}^2 , there exists simply connected Jordan domain K satisfying

- (1) $K \cap \{x : x_1 > 0\} \subset \{x : |x| < 2\}, K \cap \{x : x_1 < 0\} = \{x : x_1 < 0, |x| < 3\}$
- (2) $\partial_2 K$ has Hausdorff dimension 1,
- (3) $Cap_3(\partial_2 K) > 0$,
- (4) $\operatorname{Cap}_3(K_{\epsilon}) \to 0 \text{ as } \epsilon \to 0 \text{ where } K_{\epsilon} = \{x \in K : \operatorname{dist}(x, \partial_2 K) < \epsilon\}.$

In \mathbb{R}^2 , there exists simply connected Jordan domain K satisfying

- (1) $K \cap \{x : x_1 > 0\} \subset \{x : |x| < 2\}, K \cap \{x : x_1 < 0\} = \{x : x_1 < 0, |x| < 3\}$
- (2) $\partial_2 K$ has Hausdorff dimension 1,
- (3) $Cap_3(\partial_2 K) > 0$,
- (4) $\operatorname{Cap}_3(K_{\epsilon}) \to 0 \text{ as } \epsilon \to 0 \text{ where } K_{\epsilon} = \{x \in K : \operatorname{dist}(x, \partial_2 K) < \epsilon\}.$

Let *K* any set satisfying (1)-(4). Identify the set $\{(x, 0); x \in K\}$ in \mathbb{R}^3 .

Let $\Omega = B(0, 20) \setminus \overline{K}$ in \mathbb{R}^3 . Then $\omega_{\Omega}(\partial_2 K) > 0 = \mathcal{H}^2(\partial_2 K)$.

In \mathbb{R}^2 , there exists simply connected Jordan domain K satisfying

- (1) $K \cap \{x : x_1 > 0\} \subset \{x : |x| < 2\}, K \cap \{x : x_1 < 0\} = \{x : x_1 < 0, |x| < 3\}$
- (2) $\partial_2 K$ has Hausdorff dimension 1,
- (3) $Cap_3(\partial_2 K) > 0$,
- (4) $\operatorname{Cap}_3(K_{\epsilon}) \to 0 \text{ as } \epsilon \to 0 \text{ where } K_{\epsilon} = \{x \in K : \operatorname{dist}(x, \partial_2 K) < \epsilon\}.$

Let *K* any set satisfying (1)-(4). Identify the set $\{(x, 0); x \in K\}$ in \mathbb{R}^3 .

Let $\Omega = B(0, 20) \setminus \overline{K}$ in \mathbb{R}^3 . Then $\omega_{\Omega}(\partial_2 K) > 0 = \mathcal{H}^2(\partial_2 K)$.

Key point here is that for $0 < \eta < \epsilon$, $Cap_3(K_{\epsilon} \setminus \bar{K}_{\eta}) < \frac{1}{100}Cap_3(\partial_2 K)$

Sufficient conditions for absolute continuity $\omega \ll \mathcal{H}^n$

▶ Necessary condition for $\omega \ll \mathcal{H}^n$: Portion of the boundary should be contained in a nice rectifiable set(like a graph or curve).

Sufficient conditions for absolute continuity $\omega \ll \mathcal{H}^n$

▶ Necessary condition for $\omega \ll \mathcal{H}^n$: Portion of the boundary should be contained in a nice rectifiable set(like a graph or curve).

Theorem (Wu ('86))

Let $\Omega \subset \mathbb{R}^{n+1}$ be domain with exterior corkscrews and suppose Γ is n-AR and divides \mathbb{R}^{n+1} into two NTA domains. Then $\omega_{\Omega} \ll \mathcal{H}^n$ on $\partial \Omega \cap \Gamma$.

▶ Necessary condition for $\omega \ll \mathcal{H}^n$: Portion of the boundary should be contained in a nice rectifiable set(like a graph or curve).

Theorem (Wu ('86))

Let $\Omega \subset \mathbb{R}^{n+1}$ be domain with exterior corkscrews and suppose Γ is n-AR and divides \mathbb{R}^{n+1} into two NTA domains. Then $\omega_{\Omega} \ll \mathcal{H}^n$ on $\partial \Omega \cap \Gamma$.

A set $\Omega \subset \mathbb{R}^{n+1}$ has **big boundary** or **n-thick** if

 $\mathcal{H}^n_\infty(B(z,r)\setminus\Omega)\geq cr^n\quad\text{for all }z\in\partial\Omega\text{ and }r\in(0,\text{diam}(\partial\Omega)).$

Simply connected planar domains, NTA domains, complements of Ahlfors regular sets are such domains. Exterior corkscrew implies big boundary. ▶ Necessary condition for $\omega \ll \mathcal{H}^n$: Portion of the boundary should be contained in a nice rectifiable set(like a graph or curve).

Theorem (Wu ('86))

Let $\Omega \subset \mathbb{R}^{n+1}$ be domain with exterior corkscrews and suppose Γ is n-AR and divides \mathbb{R}^{n+1} into two NTA domains. Then $\omega_{\Omega} \ll \mathcal{H}^n$ on $\partial \Omega \cap \Gamma$.

A set $\Omega \subset \mathbb{R}^{n+1}$ has **big boundary** or **n-thick** if

 $\mathcal{H}^n_{\infty}(B(z,r)\setminus\Omega)\geq cr^n$ for all $z\in\partial\Omega$ and $r\in(0,\operatorname{diam}(\partial\Omega)).$

► Simply connected planar domains, NTA domains, complements of Ahlfors regular sets are such domains. Exterior corkscrew implies big boundary.

Theorem (A., Azzam, Mourgoglou ('16))

Suppose $\Omega \subset \mathbb{R}^{n+1}$ has big boundary and let $\Gamma \subset \mathbb{R}^{n+1}$ is n-AR and splits \mathbb{R}^{n+1} into two NTA domains. Then $\omega_{\Omega} \ll \mathcal{H}^n$ on $\partial \Omega \cap \Gamma$.

A closed set $E \subset \mathbb{R}^{n+1}$ is called **uniformly 2-fat** or said to satisfy Capacity Density Condition **CDC** if

 $\frac{\operatorname{Cap}(E\cap \bar{B}(z,r))}{\operatorname{Cap}(\bar{B}(z,r))}=\operatorname{Cap}(r^{-1}(E\cap \bar{B}(z,r))\geq c\quad\text{for all }w\in E\text{ and }r>0.$

A closed set $E \subset \mathbb{R}^{n+1}$ is called **uniformly 2-fat** or said to satisfy Capacity Density Condition **CDC** if

 $\frac{\operatorname{Cap}(E\cap\bar{B}(z,r))}{\operatorname{Cap}(\bar{B}(z,r))} = \operatorname{Cap}(r^{-1}(E\cap\bar{B}(z,r)) \ge c \quad \text{for all } w \in E \text{ and } r > 0.$

Big boundary implies CDC. But converse is not true. However,

A closed set $E \subset \mathbb{R}^{n+1}$ is called **uniformly 2-fat** or said to satisfy Capacity Density Condition **CDC** if

 $\frac{\operatorname{Cap}(E\cap \bar{B}(z,r))}{\operatorname{Cap}(\bar{B}(z,r))} = \operatorname{Cap}(r^{-1}(E\cap \bar{B}(z,r)) \geq c \quad \text{for all } w \in E \text{ and } r > 0.$

Big boundary implies CDC. But converse is not true. However,

Theorem (Lewis ('88))

If $E \subset \mathbb{R}^{n+1}$ is CDC then there exists some 1 < q < 2 such that

 $\mathcal{H}^{n+1-q}_{\infty}(B(w,r)\setminus\Omega) \ge cr^{n+1-q}$ for all $w \in E$ and r > 0

where $\Omega = \mathbb{R}^{n+1} \setminus E$. (n + 1 - q < n).

A closed set $E \subset \mathbb{R}^{n+1}$ is called **uniformly 2-fat** or said to satisfy Capacity Density Condition **CDC** if

 $\frac{\operatorname{Cap}(E\cap \bar{B}(z,r))}{\operatorname{Cap}(\bar{B}(z,r))} = \operatorname{Cap}(r^{-1}(E\cap \bar{B}(z,r)) \geq c \quad \text{for all } w \in E \text{ and } r > 0.$

Big boundary implies CDC. But converse is not true. However,

Theorem (Lewis ('88))

If $E \subset \mathbb{R}^{n+1}$ is CDC then there exists some 1 < q < 2 such that

 $\mathcal{H}^{n+1-q}_{\infty}(B(w,r)\setminus\Omega) \ge cr^{n+1-q}$ for all $w \in E$ and r > 0

where $\Omega = \mathbb{R}^{n+1} \setminus E$. (n + 1 - q < n).

Can we replace the big boundary condition with CDC ?

A closed set $E \subset \mathbb{R}^{n+1}$ is called **uniformly 2-fat** or said to satisfy Capacity Density Condition **CDC** if

 $\frac{\operatorname{Cap}(E\cap \bar{B}(z,r))}{\operatorname{Cap}(\bar{B}(z,r))} = \operatorname{Cap}(r^{-1}(E\cap \bar{B}(z,r)) \geq c \quad \text{for all } w \in E \text{ and } r > 0.$

Big boundary implies CDC. But converse is not true. However,

Theorem (Lewis ('88))

If $E \subset \mathbb{R}^{n+1}$ is CDC then there exists some 1 < q < 2 such that

 $\mathcal{H}^{n+1-q}_{\infty}(B(w,r)\setminus\Omega) \ge cr^{n+1-q}$ for all $w \in E$ and r > 0

where $\Omega = \mathbb{R}^{n+1} \setminus E$. (n + 1 - q < n).

Can we replace the big boundary condition with CDC ?

We[A., Badger, Bortz, Engelstein] believe that Wu's counter example does not satisfy CDC!

Sketch of the Proof

Let Ω have big boundary and Γ be ADR splits \mathbb{R}^{n+1} into two NTA domains Ω_1, Ω_2 . Aim: $E \subset \Gamma \cap \partial \Omega$, show $\omega_{\Omega}^{X_0}(E) > 0 \Rightarrow \mathcal{H}^n(E) > 0$.

Sketch of the Proof

Let Ω have big boundary and Γ be ADR splits \mathbb{R}^{n+1} into two NTA domains Ω_1, Ω_2 . Aim: $E \subset \Gamma \cap \partial \Omega$, show $\omega_{\Omega}^{X_0}(E) > 0 \Rightarrow \mathcal{H}^n(E) > 0$.

► Enough to show $\omega_{\Omega_i \cap \Omega}^{X_i}(E) > 0$ for some $i \in \{1, 2\}$ and $X_i \in \Omega_i$. Then by the maximum principle $\omega_{\Omega_i}(E) \ge \omega_{\Omega_i \cap \Omega}^{X_i}(E) > 0$.
Let Ω have big boundary and Γ be ADR splits \mathbb{R}^{n+1} into two NTA domains Ω_1, Ω_2 . Aim: $E \subset \Gamma \cap \partial \Omega$, show $\omega_{\Omega}^{X_0}(E) > 0 \Rightarrow \mathcal{H}^n(E) > 0$.

► Enough to show $\omega_{\Omega_i \cap \Omega}^{X_i}(E) > 0$ for some $i \in \{1, 2\}$ and $X_i \in \Omega_i$. Then by the maximum principle $\omega_{\Omega_i}(E) \ge \omega_{\Omega_i \cap \Omega}^{X_i}(E) > 0$.

▶ By David and Jerison $\mathcal{H}^n(E) > 0$. This implies $\omega_\Omega \ll \mathcal{H}^n$ on $\partial \Omega$.

Let Ω have big boundary and Γ be ADR splits \mathbb{R}^{n+1} into two NTA domains Ω_1, Ω_2 . Aim: $E \subset \Gamma \cap \partial \Omega$, show $\omega_{\Omega}^{X_0}(E) > 0 \Rightarrow \mathcal{H}^n(E) > 0$.

► Enough to show $\omega_{\Omega_i \cap \Omega}^{X_i}(E) > 0$ for some $i \in \{1, 2\}$ and $X_i \in \Omega_i$. Then by the maximum principle $\omega_{\Omega_i}(E) \ge \omega_{\Omega_i \cap \Omega}^{X_i}(E) > 0$.

- ▶ By David and Jerison $\mathcal{H}^n(E) > 0$. This implies $\omega_\Omega \ll \mathcal{H}^n$ on $\partial \Omega$.
- ▶ For the sake of contradiction, suppose

$$\omega_{\Omega_i\cap\Omega}^{X_i}(E)=0$$
 for all $X_i\in\Omega_i, \ i=1,2.$

Let Ω have big boundary and Γ be ADR splits \mathbb{R}^{n+1} into two NTA domains Ω_1, Ω_2 . Aim: $E \subset \Gamma \cap \partial \Omega$, show $\omega_{\Omega}^{X_0}(E) > 0 \Rightarrow \mathcal{H}^n(E) > 0$.

► Enough to show $\omega_{\Omega_i \cap \Omega}^{X_i}(E) > 0$ for some $i \in \{1, 2\}$ and $X_i \in \Omega_i$. Then by the maximum principle $\omega_{\Omega_i}(E) \ge \omega_{\Omega_i \cap \Omega}^{X_i}(E) > 0$.

- ▶ By David and Jerison $\mathcal{H}^n(E) > 0$. This implies $\omega_\Omega \ll \mathcal{H}^n$ on $\partial \Omega$.
- ▶ For the sake of contradiction, suppose

 $\omega_{\Omega_i\cap\Omega}^{X_i}(E)=0 \text{ for all } X_i\in\Omega_i, \ i=1,2.$

► Suffices to show that $\sup_{X \in \Gamma \cap \Omega} \omega_{\Omega}^{X}(E) \leq \gamma < 1.$

Let Ω have big boundary and Γ be ADR splits \mathbb{R}^{n+1} into two NTA domains Ω_1, Ω_2 . Aim: $E \subset \Gamma \cap \partial \Omega$, show $\omega_{\Omega}^{X_0}(E) > 0 \Rightarrow \mathcal{H}^n(E) > 0$.

► Enough to show $\omega_{\Omega_i \cap \Omega}^{X_i}(E) > 0$ for some $i \in \{1, 2\}$ and $X_i \in \Omega_i$. Then by the maximum principle $\omega_{\Omega_i}(E) \ge \omega_{\Omega_i \cap \Omega}^{X_i}(E) > 0$.

- ▶ By David and Jerison $\mathcal{H}^n(E) > 0$. This implies $\omega_\Omega \ll \mathcal{H}^n$ on $\partial \Omega$.
- ▶ For the sake of contradiction, suppose

$$\omega_{\Omega_i \cap \Omega}^{X_i}(E) = 0$$
 for all $X_i \in \Omega_i, \ i = 1, 2.$

► Suffices to show that $\sup_{X \in \Gamma \cap \Omega} \omega_{\Omega}^{X}(E) \leq \gamma < 1.$

Then, by strong Markov property of Brownian motion, for $X \in \Omega \cap \Omega_1$

$$\omega_{\Omega}^{X}(E) = \omega_{\Omega \cap \Omega_{1}}^{X}(E) + \int_{\partial \Omega_{1} \cap \Omega} \omega_{\Omega}^{Z}(E) \, d\omega_{\Omega \cap \Omega_{1}}^{X}(Z) < 0 + \gamma = \gamma < 1.$$

Let Ω have big boundary and Γ be ADR splits \mathbb{R}^{n+1} into two NTA domains Ω_1, Ω_2 . Aim: $E \subset \Gamma \cap \partial \Omega$, show $\omega_{\Omega}^{X_0}(E) > 0 \Rightarrow \mathcal{H}^n(E) > 0$.

► Enough to show $\omega_{\Omega_i \cap \Omega}^{X_i}(E) > 0$ for some $i \in \{1, 2\}$ and $X_i \in \Omega_i$. Then by the maximum principle $\omega_{\Omega_i}(E) \ge \omega_{\Omega_i \cap \Omega}^{X_i}(E) > 0$.

▶ By David and Jerison $\mathcal{H}^n(E) > 0$. This implies $\omega_\Omega \ll \mathcal{H}^n$ on $\partial \Omega$.

▶ For the sake of contradiction, suppose

$$\omega_{\Omega_i\cap\Omega}^{X_i}(E)=0$$
 for all $X_i\in\Omega_i,\ i=1,2.$

► Suffices to show that $\sup_{X \in \Gamma \cap \Omega} \omega_{\Omega}^{X}(E) \leq \gamma < 1.$

Then, by strong Markov property of Brownian motion, for $X \in \Omega \cap \Omega_1$

$$\omega_{\Omega}^{X}(E) = \omega_{\Omega \cap \Omega_{1}}^{X}(E) + \int_{\partial \Omega_{1} \cap \Omega} \omega_{\Omega}^{Z}(E) \, d\omega_{\Omega \cap \Omega_{1}}^{X}(Z) < 0 + \gamma = \gamma < 1.$$

Same holds for $X \in \Omega \cap \Omega_2$ and hence

 $\sup_{X \in \Omega} \omega_{\Omega}^{X}(E) \leq \gamma < 1 \text{ which is NOT possible}!$

Hence, we need to show

 $\sup_{X\in\Gamma\cap\Omega}\omega_{\Omega}^{X}(E)\leq\gamma<1.$

Hence, we need to show

$$\sup_{X\in\Gamma\cap\Omega}\omega_{\Omega}^{X}(E)\leq\gamma<1.$$

Let $X \in \Omega$ and $r = \text{dist}(X, \partial \Omega)$. As Ω_i are NTA, then there are balls

 $B^i = B(Y_i, cr) \subset \Omega_i \cap B(X, r)$ for i = 1, 2.

Hence, we need to show

$$\sup_{X\in\Gamma\cap\Omega}\omega_{\Omega}^{X}(E)\leq\gamma<1.$$

Let $X \in \Omega$ and $r = dist(X, \partial \Omega)$. As Ω_i are NTA, then there are balls

y

$$B^i = B(Y_i, cr) \subset \Omega_i \cap B(X, r)$$
 for $i = 1, 2$.

Enough to show that

 $\omega_{\Omega\cap\Omega_i}^{Y_i}(\Gamma\cap\Omega) < \eta$ for some $\eta \in (0,1)$ and $i \in \{1,2\}$.

Hence, we need to show

$$\sup_{X\in\Gamma\cap\Omega}\omega_{\Omega}^{X}(E)\leq\gamma<1.$$

Let $X \in \Omega$ and $r = \text{dist}(X, \partial \Omega)$. As Ω_i are NTA, then there are balls

y

$$B^i = B(Y_i, cr) \subset \Omega_i \cap B(X, r)$$
 for $i = 1, 2$.

Enough to show that

$$\omega_{\Omega\cap\Omega_i}^{Y_i}(\Gamma\cap\Omega) < \eta \text{ for some } \eta \in (0,1) \text{ and } i \in \{1,2\}.$$

If so, the Harnack chain, and ω_{Ω} is probability measure imply that

$$\begin{split} \omega_{\Omega}^{X}(E) &= 1 - \omega_{\Omega}^{X}(E^{\circ}) \leq 1 - t\omega_{\Omega}^{Y_{i}}(E^{\circ}) \\ &= (1 - t) + t\omega_{\Omega}^{Y_{i}}(E) \\ &= (1 - t) + t\left(\omega_{\Omega \cap \Omega_{i}}^{Y_{i}}(E) + \int_{\partial \Omega_{i} \cap \Omega} \omega_{\Omega}^{Z}(E) \, d\omega_{\Omega \cap \Omega_{1}}^{Y_{i}}(Z)\right) \\ &< (1 - t) + t(0 + \eta) = (1 - t) + t\eta =: \gamma < 1. \end{split}$$

Hence, we need to show

$$\sup_{X\in\Gamma\cap\Omega}\omega_{\Omega}^{X}(E)\leq\gamma<1.$$

Let $X \in \Omega$ and $r = \text{dist}(X, \partial \Omega)$. As Ω_i are NTA, then there are balls

y

$$B^i = B(Y_i, cr) \subset \Omega_i \cap B(X, r)$$
 for $i = 1, 2$.

Enough to show that

$$\omega_{\Omega\cap\Omega_i}^{Y_i}(\Gamma\cap\Omega) < \eta \text{ for some } \eta \in (0,1) \text{ and } i \in \{1,2\}.$$

If so, the Harnack chain, and ω_{Ω} is probability measure imply that

$$\begin{split} \omega_{\Omega}^{X}(E) &= 1 - \omega_{\Omega}^{X}(E^{\circ}) \leq 1 - t\omega_{\Omega}^{Y_{i}}(E^{\circ}) \\ &= (1 - t) + t\omega_{\Omega}^{Y_{i}}(E) \\ &= (1 - t) + t\left(\omega_{\Omega \cap \Omega_{i}}^{Y_{i}}(E) + \int_{\partial\Omega_{i} \cap\Omega} \omega_{\Omega}^{Z}(E) \, d\omega_{\Omega \cap\Omega_{1}}^{Y_{i}}(Z)\right) \\ &< (1 - t) + t(0 + \eta) = (1 - t) + t\eta =: \gamma < 1. \end{split}$$

So we focus on proving $\omega_{\Omega \cap\Omega}^{Y_{i}}(\Gamma \cap \Omega) < \eta.$

Proof of $\omega_{\Omega \cap \Omega_i}^{Y_i}(\Gamma \cap \Omega) < \eta$.

Let $M_0 >> 1$.

Case 1: There is $Z \in \partial \Omega \cap B(X, M_0 r) \cap \Omega_1$ so that $dist(Z, \Gamma) \geq \epsilon r$

Proof of $\omega_{\Omega \cap \Omega_i}^{Y_i}(\Gamma \cap \Omega) < \eta$.

Let $M_0 >> 1$.

Case 1: There is $Z \in \partial \Omega \cap B(X, M_0 r) \cap \Omega_1$ so that $dist(Z, \Gamma) \geq \epsilon r$

In this case, Brownian motion starting at Y^1 has a good chance of hitting outside $\Gamma \cap \Omega$.

Case 2: dist $(Z, \Gamma) \leq \epsilon r$ for all $Z \in \partial \Omega \cap B(X, M_0 r) \cap \Omega_1$.

Case 2: dist $(Z, \Gamma) \leq \epsilon r$ for all $Z \in \partial \Omega \cap B(X, M_0 r) \cap \Omega_1$.

If black parts are *G* then we can pick *i* so that $\mathcal{H}^n(G) \ge \mathcal{H}^n(\partial \Omega')$. Then result of David and Jerison implies

$$\label{eq:constraint} \begin{split} &1\lesssim \omega^{X_{\Omega'}}_{\Omega'}(G)\lesssim \omega^{X_{\Omega'}}_{\Omega_1\cap\Omega}((\Gamma\cap\Omega)^\circ)\lesssim \omega^Y_{\Omega_1\cap\Omega}((\Gamma\cap\Omega)^\circ)\\ \end{split}$$
 This gives $\omega^Y_{\Omega_1\cap\Omega}(\Gamma\cap\Omega)<\eta.$

