Absolute continuity of harmonic measure on rough domains

Murat Akman
MSRI/University of Connecticut
May 9

Rainwater Seminar - University of Washington
Part I

Detecting the exit point of Brownian motion
Let $\Omega \subset \mathbb{R}^{n+1}$, $n \geq 1$, connected and open.
Let $\Omega \subset \mathbb{R}^{n+1}$, $n \geq 1$, connected and open.

Dirichlet problem:

(D) \[\begin{cases} \Delta u = 0 \text{ in } \Omega \\ u = f \text{ on } \partial \Omega \\ u \in C^2(\Omega) \cap C(\partial \Omega) \\ f \in C_c(\partial \Omega). \end{cases} \]

$\Delta := \partial_{x_1x_1} + \ldots + \partial_{x_{n+1}x_{n+1}}$
Harmonic measure

Let $\Omega \subset \mathbb{R}^{n+1}$, $n \geq 1$, connected and open.

\[\Delta u = 0 \text{ in } \Omega \]
\[u = f \text{ on } \partial \Omega \]
\[u \in C^2(\Omega) \cap C(\partial \Omega) \]
\[f \in C_c(\partial \Omega). \]

\[\Delta := \partial_{x_1} x_1 + \ldots + \partial_{x_{n+1}} x_{n+1} \]

Dirichlet problem:

Potential Theory: \(\exists! \) a family of probability measures \(\{\omega_X^\Omega\}_{X \in \Omega} \) on \(\partial \Omega \) called harmonic measure of \(\Omega \) with a pole at \(X \in \Omega \) such that

\[u(X) = \int_{\partial \Omega} f(Q) \, d\omega_X^\Omega(Q) \text{ solves } (D). \]
Harmonic measure

Let $\Omega \subset \mathbb{R}^{n+1}$, $n \geq 1$, connected and open.

Dirichlet problem:

\[
\begin{array}{l}
\Delta u = 0 \text{ in } \Omega \\
u = f \text{ on } \partial \Omega \\
u \in C^2(\Omega) \cap C(\partial \Omega) \\
f \in C_c(\partial \Omega). \quad (D)
\end{array}
\]

\[\Delta := \partial x_1 x_1 + \ldots + \partial x_{n+1} x_{n+1}\]

Potential Theory: There exists a family of probability measures $\{\omega^X_\Omega\}_{X \in \Omega}$ on $\partial \Omega$ called harmonic measure of Ω with a pole at $X \in \Omega$ such that

\[u(X) = \int_{\partial \Omega} f(Q) \, d\omega^X_\Omega(Q) \quad \text{solves (D)}.
\]

Probability: Harmonic measure $\omega^X_\Omega(E)$ of E with a given pole X is the probability that a Brownian motion starting at X will first hit $\partial \Omega$ in the set E.
Examples of Harmonic Measure

- If $\Omega \subset \mathbb{R}^2$ is a simply connected domain, $\partial \Omega$ is Jordan curve

![Diagram showing conformal transformation and harmonic measure](image)
If $\Omega \subset \mathbb{R}^2$ is a simply connected domain, $\partial \Omega$ is Jordan curve, then by Carathéodory’s theorem

$$\omega^x_\Omega(E) = \frac{\text{arclength}(\psi^{-1}(E))}{2\pi}$$
Examples of Harmonic Measure

- If $\Omega \subset \mathbb{R}^2$ is a simply connected domain, $\partial \Omega$ is Jordan curve then by Carathéodory’s theorem

$$\omega^X_\Omega(E) = \frac{\text{arclength}(\psi^{-1}(E))}{2\pi}$$

- If $\Omega = A(0, r, R) \subset \mathbb{R}^{n+1}$ is an annular region then the harmonic measure of the inner shell $S(0, r)$ is

$$\omega^X_\Omega(S(0, r)) = \begin{cases} \rac{\log R - \log |X|}{\log R - \log r} & \text{if } n = 1, \\ \frac{|X|^{2-(n+1)} - R^{2-(n+1)}}{r^{2-(n+1)} - R^{2-(n+1)}} & \text{if } n \geq 2. \end{cases}$$
Assume Ω is at least C^1 and bounded. Let $K_\Omega(X, \xi)$ be the Poisson kernel for Ω and $E \subset \partial \Omega$;

\[
\omega^X_\Omega(E) = \int \chi_E(\xi) K_\Omega(X, \xi) d\mathcal{H}^n(\xi).
\]
More examples of harmonic Measure

Assume Ω is at least C^1 and bounded. Let $K_{\Omega}(X, \xi)$ be the Poisson kernel for Ω and $E \subset \partial \Omega$:

$$\omega^{X}_{\Omega}(E) = \int \chi_E(\xi) K_{\Omega}(X, \xi) dH^n(\xi).$$

Example

Let $\Omega = \mathbb{R}^2_+$ and $E = [-T, T] \times \{0\}$, $z = x + iy$. Find $\omega^z_{\Omega}(E)$.
More examples of harmonic Measure

Assume Ω is at least C^1 and bounded. Let $K_{\Omega}(X, \xi)$ be the Poisson kernel for Ω and $E \subset \partial \Omega$;

$$\omega^X_{\Omega}(E) = \int \chi_E(\xi)K_{\Omega}(X, \xi)d\mathcal{H}^n(\xi).$$

Example

Let $\Omega = \mathbb{R}^2_+$ and $E = [-T, T] \times \{0\}$, $z = x + iy$. Find $\omega^z_{\Omega}(E)$. Since $P(x, y) = \frac{1}{\pi} \frac{y}{x^2 + y^2}$.
More examples of harmonic Measure

Assume Ω is at least C^1 and bounded. Let $K_\Omega(X, \xi)$ be the Poisson kernel for Ω and $E \subset \partial \Omega$;

$$\omega_\Omega^X(E) = \int \chi_E(\xi)K_\Omega(X, \xi)d\mathcal{H}^n(\xi).$$

Example

Let $\Omega = \mathbb{R}^2_+$ and $E = [-T, T] \times \{0\}$, $z = x + iy$. Find $\omega_\Omega^z(E)$. Since $P(x, y) = \frac{1}{\pi} \frac{y}{x^2 + y^2}$. Then

$$\omega_\Omega^z(E) = \int_{\partial \Omega} \chi_{[-T, T]}(t) \frac{1}{\pi} \frac{y}{(x - t)^2 + y^2} dt = \int_{-T}^{T} \frac{1}{\pi} \frac{y}{(x - t)^2 + y^2} dt$$

$$= \frac{1}{\pi} \arctan \left(\frac{x + T}{y} \right) - \frac{1}{\pi} \arctan \left(\frac{x - T}{y} \right)$$
More examples of harmonic Measure

Assume Ω is at least C^1 and bounded. Let $K_\Omega(X, \xi)$ be the Poisson kernel for Ω and $E \subset \partial \Omega$;

$$\omega^X_\Omega(E) = \int \chi_E(\xi)K_\Omega(X, \xi)d\mathcal{H}^n(\xi).$$

Example

Let $\Omega = \mathbb{R}^2_+$ and $E = [-T, T] \times \{0\}$, $z = x + iy$. Find $\omega^z_\Omega(E)$. Since $P(x, y) = \frac{1}{\pi} \frac{y}{x^2+y^2}$. Then

$$\omega^z_\Omega(E) = \int_{\partial \Omega} \chi_{[-T,T]}(t) \frac{1}{\pi} \frac{y}{(x-t)^2 + y^2} dt = \int_{-T}^{T} \frac{1}{\pi} \frac{y}{(x-t)^2 + y^2} dt$$

$$= \frac{1}{\pi} \arctan \left(\frac{x+T}{y} \right) - \frac{1}{\pi} \arctan \left(\frac{x-T}{y} \right)$$

Notice that $\omega^z_\Omega(E)$ is a harmonic function and

$$\begin{cases}
\omega^z_\Omega(E) \to 1 & \text{as } z \to E \subset \partial \Omega, \\
\omega^z_\Omega(E) \to 0 & \text{as } z \to \partial \Omega \setminus E.
\end{cases}$$
Even more examples of Harmonic Measures

- If $\Omega = \mathbb{B}^{n+1}$, $(n + 1)$-dimensional unit ball, and $X \in \Omega$. Then

$$\omega^X(E) = \frac{1}{\mathcal{H}^n(S^n)} \int_E \frac{1 - |X|^2}{|X - Y|^{n+1}} \, d\mathcal{H}^n(Y) \quad \text{for every Borel set } E \subset S^n.$$
Even more examples of Harmonic Measures

- If $\Omega = \mathbb{B}^{n+1}$, $(n + 1) -$dimensional unit ball, and $X \in \Omega$. Then
 \[
 \omega^X(E) = \frac{1}{\mathcal{H}^n(\mathbb{S}^n)} \int_E \frac{1 - |X|^2}{|X - Y|^{n+1}} d\mathcal{H}^n(Y) \quad \text{for every Borel set } E \subset \mathbb{S}^n.
 \]

- When the pole $X = 0$ and $\Omega = \mathbb{B}^{n+1}$ then
 \[
 \omega^0(E) = \frac{\mathcal{H}^n(E)}{\mathcal{H}^n(\mathbb{S}^n)} \quad \text{for every Borel set } E \subset \mathbb{S}^n.
 \]

\mathcal{H}^n is the $n -$dimensional Hausdorff measure which will be defined soon.
Even more examples of Harmonic Measures

- If \(\Omega = \mathbb{B}^{n+1} \), \((n + 1)\)–dimensional unit ball, and \(X \in \Omega \). Then

\[
\omega^X(E) = \frac{1}{\mathcal{H}^n(\mathbb{S}^n)} \int_E \frac{1 - |X|^2}{|X - Y|^{n+1}} d\mathcal{H}^n(Y) \quad \text{for every Borel set } E \subset \mathbb{S}^n.
\]

- When the pole \(X = 0 \) and \(\Omega = \mathbb{B}^{n+1} \) then

\[
\omega^0(E) = \frac{\mathcal{H}^n(E)}{\mathcal{H}^n(\mathbb{S}^n)} \quad \text{for every Borel set } E \subset \mathbb{S}^n.
\]

- If \(\Omega \subset \mathbb{R}^{n+1} \) is bounded domain of class \(C^1 \), then there is \(K(X, Y) : \Omega \times \partial \Omega \to \mathbb{R} \) such that

\[
\omega^X(E) = \int_E K(X, Y) d\mathcal{H}^n(Y) \quad \text{for every Borel set } E \subset \partial \Omega.
\]

\(\mathcal{H}^n \) is the \(n \)–dimensional Hausdorff measure which will be defined soon.
For every Borel set $E \subset \partial \Omega$, $X \to \omega^X(E)$ is a non-negative harmonic function in Ω.

Drop the pole X to get the harmonic measure ω. Therefore, the sets of harmonic measure zero do not depend on the pole.
For every Borel set $E \subset \partial \Omega$, $X \rightarrow \omega^X(E)$ is a non-negative harmonic function in Ω.

Harmonic measure ω^{X_1} and ω^{X_2} at different poles are mutually absolutely continuous; $\omega^{X_1}(E) = 0 \Leftrightarrow \omega^{X_2}(E) = 0$.

$$c^{-1} \omega^{X_1}(E) \leq \omega^{X_2}(E) \leq c \omega^{X_1}(E).$$
For every Borel set $E \subset \partial \Omega$, $X \rightarrow \omega^X(E)$ is a non-negative harmonic function in Ω.

Harmonic measure ω^{X_1} and ω^{X_2} at different poles are mutually absolutely continuous; $\omega^{X_1}(E) = 0 \iff \omega^{X_2}(E) = 0$.

Drop the pole X to get the harmonic measure ω of Ω.

$$c^{-1} \omega^{X_1}(E) \leq \omega^{X_2}(E) \leq c \omega^{X_1}(E).$$
For every borel set $E \subset \partial \Omega$, $X \to \omega^X(E)$ is a non-negative harmonic function in Ω.

Harmonic measure ω^X_1 and ω^X_2 at different poles are mutually absolutely continuous; $\omega^X_1(E) = 0 \Leftrightarrow \omega^X_2(E) = 0$.

Drop the pole X to get the harmonic measure ω of Ω.

$C^{-1}\omega^X_1(E) \leq \omega^X_2(E) \leq C\omega^X_1(E)$.

Therefore, the sets of harmonic measure zero do not depend on the pole.
Detecting the exit point of a Brownian motion

Consider a random Brownian particle moving in a domain $\Omega \subset \mathbb{R}^2$.

- Aim is to find the point where it first hits the boundary $\partial \Omega$.
Detecting the exit point of a Brownian motion

Consider a random Brownian particle moving in a domain $\Omega \subset \mathbb{R}^2$.

- Aim is to find the point where it first hits the boundary $\partial \Omega$.

To do this we are allowed to place circular detectors along the boundary which register if the particle hits them.
Detecting the exit point of a Brownian motion

Consider a random Brownian particle moving in a domain $\Omega \subset \mathbb{R}^2$.

- Aim is to find the point where it first hits the boundary $\partial \Omega$.

To do this we are allowed to place circular detectors along the boundary which register if the particle hits them.

If a detector of radius r costs us $\phi(r)$ (for some increasing ϕ on $(0, \infty)$), can we detect the exit point almost surely on a finite budget?
Detecting the exit point of a Brownian motion

Consider a random Brownian particle moving in a domain $\Omega \subset \mathbb{R}^2$.

- Aim is to find the point where it first hits the boundary $\partial \Omega$.

To do this we are allowed to place circular detectors along the boundary which register if the particle hits them.

If a detector of radius r costs us $\phi(r)$ (for some increasing ϕ on $(0, \infty)$), can we detect the exit point almost surely on a finite budget?

- Note that to detect an exit at x, the point must be contained in infinitely many detectors whose radii tend to zero.
Detecting the exit point of Brownian motion

► When Ω is the unit disk \mathbb{D}, and the Brownian particle starts at 0 then the hitting distribution on $\partial \Omega$ is normalized Lebesgue measure.

► Thus to detect the exit point almost surely, we must cover almost every point of $\partial \Omega$ by arbitrarily small balls.
Detecting the exit point of Brownian motion

- When Ω is the unit disk \mathbb{D}, and the Brownian particle starts at 0 then the hitting distribution on $\partial \Omega$ is normalized Lebesgue measure.

- Thus to detect the exit point almost surely, we must cover almost every point of $\partial \Omega$ by arbitrarily small balls.

- If $\phi(r) \geq r$ then we can not detect the exit point on a finite budget.

- However, if $\phi(r) = o(r)$ then we can cover $\partial \Omega$ by about n_k balls of size $1/n_k$ and let $n_k \uparrow \infty$ so fast that $\sum n_k \phi(1/n_k) < \infty$.
Detecting the exit point of Brownian motion

- When \(\Omega \) is the unit disk \(\mathbb{D} \), and the Brownian particle starts at 0 then the hitting distribution on \(\partial \Omega \) is normalized Lebesgue measure.

- Thus to detect the exit point almost surely, we must cover almost every point of \(\partial \Omega \) by arbitrarily small balls.

- If \(\phi(r) \geq r \) then we can not detect the exit point on a finite budget.

- However, if \(\phi(r) = o(r) \) then we can cover \(\partial \Omega \) by about \(n_k \) balls of size \(1/n_k \) and let \(n_k \uparrow \infty \) so fast that \(\sum n_k \phi(1/n_k) < \infty \).

- If \(\partial \Omega \) is the von Koch Snowflake then it takes roughly \(4^n \) balls of size \(3^n \) to cover the whole boundary, which we can do on a finite budget iff \(\phi(t) = o(t^\alpha) \), where \(\alpha = \log 4 / \log 3 > 1 \).
Detecting the exit point of Brownian motion

- When Ω is the unit disk \mathbb{D}, and the Brownian particle starts at 0 then the hitting distribution on $\partial\Omega$ is normalized Lebesgue measure.

- Thus to detect the exit point almost surely, we must cover almost every point of $\partial\Omega$ by arbitrarily small balls.

- If $\phi(r) \geq r$ then we can not detect the exit point on a finite budget.

- However, if $\phi(r) = o(r)$ then we can cover $\partial\Omega$ by about n_k balls of size $1/n_k$ and let $n_k \uparrow \infty$ so fast that $\sum n_k \phi(1/n_k) < \infty$.

- If $\partial\Omega$ is the von Koch Snowflake then it takes roughly 4^n balls of size 3^n to cover the whole boundary, which we can do on a finite budget iff $\phi(t) = o(t^{\alpha})$, where $\alpha = \log 4 / \log 3 > 1$.

- However, not all parts of the snowflake are equally likely to be hit by Brownian motion, and there is a small subset of $\partial\Omega$ which still gets hit with probability 1.
Hausdorff measure and Hausdorff dimension

We estimate harmonic measure by comparing it to the more geometrically defined Hausdorff measures:

\[(H^\alpha)(E) = \lim_{\delta \to 0} \inf \left(\sum_{i=1}^{\infty} r_i \right) \]

When \(\alpha = 1 \) we then denote this by \(H_1(E) = \lim_{\delta \to 0} \inf \left(\sum_{i=1}^{\infty} r_i \right) \).

\(H_2 \) is multiple of Lebesgue area measure; \(H_1 \) is length...
Hausdorff measure and Hausdorff dimension

We estimate harmonic measure by comparing it to the more geometrically defined Hausdorff measures:

Let ϕ be increasing function on $[0, \infty)$,

$$\mathcal{H}_\phi(E) := \lim_{\delta \to 0} \inf \left\{ \sum_{i=1}^{\infty} \phi(r_i); \; E \subset \bigcup_{i=1}^{\infty} B(x_i, r_i), \; r_i \leq \delta \right\}.$$
We estimate harmonic measure by comparing it to the more geometrically defined Hausdorff measures:

Let ϕ be increasing function on $[0, \infty)$,

$$\mathcal{H}_\phi(E) := \lim_{\delta \to 0} \inf \left\{ \sum_{i=1}^{\infty} \phi(r_i); \ E \subset \bigcup_{i=1}^{\infty} B(x_i, r_i), \ r_i \leq \delta \right\}.$$

- When $\phi(t) = t^\alpha$ we then denote this by \mathcal{H}^α;

$$\mathcal{H}^\alpha(E) = \lim_{\delta \to 0} \mathcal{H}_{\delta}^\alpha(E) = \lim_{\delta \to 0} \inf \left\{ \sum_{i=1}^{\infty} r_i^\alpha; \ E \subset \bigcup_{i=1}^{\infty} B(x_i, r_i), \ r_i \leq \delta \right\}.$$

- \mathcal{H}^2 is multiple of Lebesgue area measure; \mathcal{H}^1 is length...
Hausdorff measure and Hausdorff dimension

We estimate harmonic measure by comparing it to the more geometrically defined Hausdorff measures:

Let \(\phi \) be increasing function on \([0, \infty)\),

\[
\mathcal{H}_\phi(E) := \lim_{\delta \to 0} \inf \left\{ \sum_{i=1}^{\infty} \phi(r_i); \ E \subset \bigcup_{i=1}^{\infty} B(x_i, r_i), \ r_i \leq \delta \right\}.
\]

- When \(\phi(t) = t^\alpha \) we then denote this by \(\mathcal{H}^\alpha \);

\[
\mathcal{H}^\alpha(E) = \lim_{\delta \to 0} \mathcal{H}_\delta^\alpha(E) = \lim_{\delta \to 0} \inf \left\{ \sum_{i=1}^{\infty} r_i^\alpha; \ E \subset \bigcup_{i=1}^{\infty} B(x_i, r_i), \ r_i \leq \delta \right\}.
\]

- \(\mathcal{H}^2 \) is multiple of Lebesgue area measure; \(\mathcal{H}^1 \) is length...

\(\mathcal{H}^n_\infty(B) \) is called the Hausdorff content of \(E \) and is defined as

\[
\mathcal{H}^n_\infty(E) = \inf \left\{ \sum_{i=1}^{\infty} (r_i)^n; \ E \subset \bigcup_{i=1}^{\infty} B(x_i, r_i) \right\}.
\]

- \(\mathcal{H}^\alpha_\infty(E) \leq \mathcal{H}^\alpha_\delta(E) \leq \mathcal{H}^\alpha(E) \). But still \(\mathcal{H}^\alpha_\infty(E) = 0 \iff \mathcal{H}^\alpha(E) = 0 \).
Being singular \perp – absolutely continuous \Leftrightarrow

The Hausdorff dimension of a set E is defined by

$$\dim_{\mathcal{H}}(E) = \inf\{\alpha; \mathcal{H}^\alpha(E) = 0\}.$$

The smaller α is, the more expensive it is to cover E; the dimension marks the transition from positive to zero cost coverings.
Being singular ⊥ – absolutely continuous ★

The Hausdorff dimension of a set E is defined by

$$\dim_H(E) = \inf\{\alpha; \mathcal{H}^\alpha(E) = 0\}.$$

The smaller α is, the more expensive it is to cover E; the dimension marks the transition from positive to zero cost coverings.

The dimension of a measure μ is the smallest dimension of a full μ-measure set, i.e.,

$$\dim_H(\mu) = \inf\{\dim_H(E) : \mu(E^c) = 0\} = \inf\{\alpha : \mu \perp \mathcal{H}^\alpha\}$$

- $\mu \perp \nu$ if there is a set E such that $\mu(E) = \nu(E^c) = 0$
- $\mu \ll \nu$ if $\nu(E) = 0 \Rightarrow \mu(E) = 0$.
- $\mu \sim \nu$ if $\nu \ll \mu \ll \nu$.

It is always true that $\dim_H(\mu) \leq \dim_H(\text{supp}(\mu))$.

Thus the detection question is really: For which we have $\not\perp_H \perp$ and when is $\not\perp_H \perp \ll_H \ll$.

The Hausdorff dimension of a set \(E \) is defined by

\[
\dim_{\mathcal{H}}(E) = \inf \{ \alpha; \ \mathcal{H}^\alpha(E) = 0 \}.
\]

The smaller \(\alpha \) is, the more expensive it is to cover \(E \); the dimension marks the transition from positive to zero cost coverings.

The dimension of a measure \(\mu \) is the smallest dimension of a full \(\mu \)-measure set, i.e.,

\[
\dim_{\mathcal{H}}(\mu) = \inf \{ \dim_{\mathcal{H}}(E) : \ \mu(E^c) = 0 \} = \inf \{ \alpha : \ \mu \perp \mathcal{H}^\alpha \}
\]

- \(\mu \perp \nu \) if there is a set \(E \) such that \(\mu(E) = \nu(E^c) = 0 \)
- \(\mu \ll \nu \) if \(\nu(E) = 0 \Rightarrow \mu(E) = 0 \).
- \(\mu \sim \nu \) if \(\nu \ll \mu \ll \nu \).

It is always true that \(\dim_{\mathcal{H}}(\mu) \leq \dim_{\mathcal{H}}(\text{supp}(\mu)) \).
The Hausdorff dimension of a set E is defined by
\[
\dim_{\mathcal{H}}(E) = \inf\{\alpha; \mathcal{H}^{\alpha}(E) = 0\}.
\]
The smaller α is, the more expensive it is to cover E; the dimension marks the transition from positive to zero cost coverings.

The dimension of a measure μ is the smallest dimension of a full μ-measure set, i.e.,
\[
\dim_{\mathcal{H}}(\mu) = \inf\{\dim_{\mathcal{H}}(E) : \mu(E^c) = 0\} = \inf\{\alpha : \mu \perp \mathcal{H}^{\alpha}\}
\]

$\mu \perp \nu$ if there is a set E such that $\mu(E) = \nu(E^c) = 0$

$\mu \ll \nu$ if $\nu(E) = 0 \Rightarrow \mu(E) = 0$.

$\mu \sim \nu$ if $\nu \ll \mu \ll \nu$.

It is always true that $\dim_{\mathcal{H}}(\mu) \leq \dim_{\mathcal{H}}(\text{supp}(\mu))$.

Thus the detection question is really:

$\mu \perp \nu$ if there is a set E such that $\mu(E) = \nu(E^c) = 0$.

$\mu \ll \nu$ if $\nu(E) = 0 \Rightarrow \mu(E) = 0$.

$\mu \sim \nu$ if $\nu \ll \mu \ll \nu$.

It is always true that $\dim_{\mathcal{H}}(\mu) \leq \dim_{\mathcal{H}}(\text{supp}(\mu))$.
Main question and the first result

$\Rightarrow n - 1 \leq \dim_H(\omega) < n + 1$ (in fact $\mathcal{H}^{n-1}(E) = 0 \Rightarrow \omega(E) = 0$).
Main question and the first result

- $n - 1 \leq \dim_{\mathcal{H}}(\omega) < n + 1$ (in fact $\mathcal{H}^{n-1}(E) = 0 \Rightarrow \omega(E) = 0$).

Question

Find sufficient conditions (geometric and/or analytic) on Ω for which we have $\omega \ll \mathcal{H}^n$ on $\partial\Omega$?
Main question and the first result

\[n - 1 \leq \dim_{\mathcal{H}}(\omega) < n + 1 \text{ (in fact } \mathcal{H}^{n-1}(E) = 0 \Rightarrow \omega(E) = 0) \].

Question

Find sufficient conditions (geometric and/or analytic) on \(\Omega \) for which we have

\[\omega \ll \mathcal{H}^n \text{ on } \partial \Omega? \]

Theorem (F. and M. Riesz(1916))

Let \(\Omega \) be a simply connected domain in the plane with \(\mathcal{H}^1(\partial \Omega) < \infty \). Let \(\psi : \mathbb{D} \to \Omega \) be conformal.

Then \(\psi' \in L^1(\partial \mathbb{D}) \). Moreover, for any Borel set \(E \subset \partial \mathbb{D} \),

\[\mathcal{H}^1(\psi(E)) = \int_E |\psi'(e^{i\theta})| \, d\theta. \]

Hence, using \(\omega^2_{\Omega}(K) = 1/2\pi \text{ arclength}(\psi^{-1}(K)) \), \(K \subset \partial \Omega \), one has

\[\omega(A) = 0 \iff \mathcal{H}^1(A) = 0 \text{ whenever } A \subset \partial \Omega \text{ Borel.} \]

i.e. \(\omega \ll \mathcal{H}^1 \ll \omega \text{ on } \partial \Omega. \)
Thanks!
Detecting the exit point of Brownian motion

How does our problem about the cost of detecting exit points fit into this notation?
Detecting the exit point of Brownian motion

How does our problem about the cost of detecting exit points fit into this notation?

A collection \mathcal{C} of balls is called a Vitali covering of a set E if for each $\varepsilon > 0$,

$$\mathcal{C}_\varepsilon = \{ D \in \mathcal{C} : \text{diam}(D) < \varepsilon \}$$

is also a cover.

We can detect a.e. exit point of Brownian motion on a finite ϕ-budget iff there is a Vitali covering of a full ω-measure set E by balls of radius $\{r_j\}$ such that $\sum \phi(r_j) < \infty$.
Detecting the exit point of Brownian motion

How does our problem about the cost of detecting exit points fit into this notation?

A collection \mathcal{C} of balls is called a Vitali covering of a set E if for each $\varepsilon > 0$,

$$
\mathcal{C}_\varepsilon = \{ D \in \mathcal{C} : \text{diam}(D) < \varepsilon \} \text{ is also a cover.}
$$

We can detect a.e. exit point of Brownian motion on a finite ϕ-budget iff there is a Vitali covering of a full ω-measure set E by balls of radius $\{r_j\}$ such that $\sum \phi(r_j) < \infty$.

This happens iff $\mathcal{H}_\phi(E) = 0$ which happens iff $\omega \perp \mathcal{H}_\phi$.
Detecting the exit point of Brownian motion

How does our problem about the cost of detecting exit points fit into this notation?

A collection \mathcal{C} of balls is called a Vitali covering of a set E if for each $\epsilon > 0$,

$$\mathcal{C}_\epsilon = \{D \in \mathcal{C} : \text{diam}(D) < \epsilon\}$$

is also a cover.

We can detect a.e. exit point of Brownian motion on a finite ϕ-budget iff there is a Vitali covering of a full ω-measure set E by balls of radius $\{r_j\}$ such that $\sum \phi(r_j) < \infty$.

This happens iff $\mathcal{H}_\phi(E) = 0$ which happens iff $\omega \perp \mathcal{H}_\phi$.

Conversely $\omega \ll \mathcal{H}_\phi$ holds iff any set E which we can afford to test has zero ω-measure.
Detecting the exit point of Brownian motion

How does our problem about the cost of detecting exit points fit into this notation?

A collection C of balls is called a Vitali covering of a set E if for each $\epsilon > 0$,

$$C_\epsilon = \{D \in C : \text{diam}(D) < \epsilon\}$$

is also a cover.

We can detect a.e. exit point of Brownian motion on a finite ϕ-budget iff there is a Vitali covering of a full ω-measure set E by balls of radius $\{r_j\}$ such that $\sum \phi(r_j) < \infty$.

This happens iff $\mathcal{H}_\phi(E) = 0$ which happens iff $\omega \perp \mathcal{H}_\phi$.

- Conversely $\omega \ll \mathcal{H}_\phi$ holds iff any set E which we can afford to test has zero ω-measure.

Thus the detection question is really:

- For which ϕ we have $\omega \perp \mathcal{H}_\phi$ and when is $\omega \ll \mathcal{H}_\phi$?
Part II

Absolute continuity of harmonic measure on rough domains
Question

Find sufficient conditions for $\omega \ll \mathcal{H}^n$ on $\partial \Omega$?
Question

Find sufficient conditions for $\omega \ll \mathcal{H}^n$ on $\partial \Omega$?

- **F. and M. Riesz** (’16): If $\Omega \subset \mathbb{C}$ is domain bounded by Jordan curve of finite length then $\omega \ll \mathcal{H}^1 \ll \omega$ on $\partial \Omega$ (i.e., $\omega \sim \mathcal{H}^1$).
Question

Find sufficient conditions for $\omega \ll \mathcal{H}^n$ on $\partial \Omega$?

- **F. and M. Riesz** (’16): If $\Omega \subset \mathbb{C}$ is domain bounded by Jordan curve of finite length then $\omega \ll \mathcal{H}^1 \ll \omega$ on $\partial \Omega$ (i.e., $\omega \sim \mathcal{H}^1$).

- **Lavrentiev** (’36): Quantitative version.
Question

Find sufficient conditions for $\omega \ll \mathcal{H}^n$ on $\partial \Omega$?

- **F. and M. Riesz** (‘16): If $\Omega \subset \mathbb{C}$ is domain bounded by Jordan curve of finite length then $\omega \ll \mathcal{H}^1 \ll \omega$ on $\partial \Omega$ (i.e., $\omega \sim \mathcal{H}^1$).

- **Lavrentiev** (‘36): Quantitative version.

- **McMillan** (‘69): Let $\Omega \subset \mathbb{C}$ be simply connected and $E \subset \partial \Omega$ be cone points of Ω then $\omega \sim \mathcal{H}^1$ on E.
Necessary and sufficient conditions for absolute continuity

Question

Find sufficient conditions for $\omega \ll H^n$ on $\partial \Omega$?

- **F. and M. Riesz** ('16): If $\Omega \subset \mathbb{C}$ is domain bounded by Jordan curve of finite length then $\omega \ll H^1 \ll \omega$ on $\partial \Omega$ (i.e., $\omega \sim H^1$).

- **Lavrentiev** ('36): Quantitative version.

- **McMillan** ('69): Let $\Omega \subset \mathbb{C}$ be simply connected and $E \subset \partial \Omega$ be cone points of Ω then $\omega \sim H^1$ on E.

- **Makarov** ('85): If Ω is simply connected then $\dim_H(\omega) = 1$, i.e., $\omega \ll H_\phi$ where $\phi(r) = r e^{A \sqrt{\log \frac{1}{r} \log \log \log \frac{1}{r}}}$ for some $A >> 1$.

- **Bishop and Jones** ('90): Let $\Omega \subset \mathbb{C}$ be simply connected. Then $\omega \ll H^1$ on $\partial \Omega$ whenever γ is curve of finite length.

- **Wu** ('86): $\omega \not\ll H^2$ for some topological sphere in \mathbb{R}^3.

- **Bishop and Jones** ('90): $\omega \not\ll H^1$ for a connected domain in \mathbb{R}^2.
Question

Find sufficient conditions for $\omega \ll \mathcal{H}^n$ on $\partial \Omega$?

► **F. and M. Riesz** ('16): If $\Omega \subset \mathbb{C}$ is domain bounded by Jordan curve of finite length then $\omega \ll \mathcal{H}^1 \ll \omega$ on $\partial \Omega$ (i.e., $\omega \sim \mathcal{H}^1$).

► **Lavrentiev** ('36): Quantitative version.

► **McMillan** ('69): Let $\Omega \subset \mathbb{C}$ be simply connected and $E \subset \partial \Omega$ be cone points of Ω then $\omega \sim \mathcal{H}^1$ on E.

► **Makarov** ('85): If Ω is simply connected then $\dim_{\mathcal{H}}(\omega) = 1$, i.e., $\omega \ll \mathcal{H}_\phi$ where $\phi(r) = re^{A\sqrt{\log \frac{1}{r} \log \log \log \frac{1}{r}}}$ for some $A >> 1$.

► **Bishop and Jones** ('90): Let $\Omega \subset \mathbb{C}$ be simply connected. Then $\omega \ll \mathcal{H}^1$ on $\Gamma \cap \partial \Omega$ whenever Γ is curve of finite length.
Question

Find sufficient conditions for $\omega \ll \mathcal{H}^n$ on $\partial \Omega$?

- **F. and M. Riesz** (’16): If $\Omega \subset \mathbb{C}$ is domain bounded by Jordan curve of finite length then $\omega \ll \mathcal{H}^1 \ll \omega$ on $\partial \Omega$ (i.e., $\omega \sim \mathcal{H}^1$).

- **Lavrentiev** (’36): Quantitative version.

- **McMillan** (’69): Let $\Omega \subset \mathbb{C}$ be simply connected and $E \subset \partial \Omega$ be cone points of Ω then $\omega \sim \mathcal{H}^1$ on E.

- **Makarov** (’85): If Ω is simply connected then $\dim_{\mathcal{H}}(\omega) = 1$, i.e., $\omega \ll \mathcal{H}_\phi$ where $\phi(r) = r e^{A \sqrt{\log \frac{1}{r} \log \log \log \frac{1}{r}}}$ for some $A >> 1$.

- **Bishop and Jones** (’90): Let $\Omega \subset \mathbb{C}$ be simply connected. Then $\omega \ll \mathcal{H}^1$ on $\Gamma \cap \partial \Omega$ whenever Γ is curve of finite length.

- **Wu** (’86): $\omega \ll \mathcal{H}^2$ for some topological sphere in \mathbb{R}^3.

Necessary and sufficient conditions for absolute continuity

Question

Find sufficient conditions for \(\omega \ll \mathcal{H}^n \) on \(\partial \Omega \)?

- **F. and M. Riesz (’16):** If \(\Omega \subset \mathbb{C} \) is domain bounded by Jordan curve of finite length then \(\omega \ll \mathcal{H}^1 \ll \omega \) on \(\partial \Omega \) (i.e., \(\omega \sim \mathcal{H}^1 \)).

- **Lavrentiev (’36):** Quantitative version.

- **McMillan (’69):** Let \(\Omega \subset \mathbb{C} \) be simply connected and \(E \subset \partial \Omega \) be cone points of \(\Omega \) then \(\omega \sim \mathcal{H}^1 \) on \(E \).

- **Makarov (’85):** If \(\Omega \) is simply connected then \(\dim_{\mathcal{H}}(\omega) = 1 \), i.e., \(\omega \ll \mathcal{H}_\phi \) where \(\phi(r) = r e^{A \sqrt{\log \frac{1}{r} \log \log \log \frac{1}{r}}} \) for some \(A >> 1 \).

- **Bishop and Jones (’90):** Let \(\Omega \subset \mathbb{C} \) be simply connected. Then \(\omega \ll \mathcal{H}^1 \) on \(\Gamma \cap \partial \Omega \) whenever \(\Gamma \) is curve of finite length.

- **Wu (’86):** \(\omega \ll \mathcal{H}^2 \) for some topological sphere in \(\mathbb{R}^3 \).

- **Bishop and Jones (’90):** \(\omega \ll \mathcal{H}^1 \) for a connected domain in \(\mathbb{R}^2 \).
Non-tangentially Accessible Domains (NTA)

- Openness

\[\partial \Omega \]

\[\Omega \]

\[\Omega \text{ is NTA} \]
Non-tangentially Accessible Domains (NTA)

- Openness \leadsto Corkscrew condition.

$\partial \Omega$ is NTA if $\partial \Omega$ is Ahlfors regular (AR) and Ω is interior corkscrew and Harnack chain.

Exterior Corkscrew.

$\partial \Omega$ is \mathcal{X} if $\partial \Omega \cap B(z, r)$ for all $z \in \partial \Omega$ and $r \in (0, \text{diam}(\partial \Omega))$.
Non-tangentially Accessible Domains (NTA)

- Path-connectedness

\[\partial \Omega \]

\[\Omega \]
Non-tangentially Accessible Domains (NTA)

- Path-connectedness \rightsquigarrow Harnack chain condition.
Non-tangentially Accessible Domains (NTA)

- Openness $\sim \rightarrow$ Corkscrew condition.
- Path-connectedness $\sim \rightarrow$ Harnack chain condition.

Ω is NTA \equiv \begin{cases}
 \textbf{Interior} & \text{Corkscrew and Harnack Chain.} \\
 \textbf{Exterior} & \text{Corkscrew.}
\end{cases}$
Non-tangentially Accessible Domains (NTA)

- **Openness** \leadsto Corkscrew condition.
- **Path-connectedness** \leadsto Harnack chain condition.

Ω is NTA \equiv

- **Interior** Corkscrew and Harnack Chain.
- **Exterior** Corkscrew.

$\partial\Omega$
Non-tangentially Accessible Domains (NTA)

- Openness $\sim \rightarrow$ Corkscrew condition.
- Path-connectedness $\sim \rightarrow$ Harnack chain condition.

Ω is NTA $\equiv \begin{cases}
\textbf{Interior} & \text{Corkscrew and Harnack Chain.} \\
\textbf{Exterior} & \text{Corkscrew.}
\end{cases}$

- $\partial \Omega$ is $n-$Ahlfors regular (AR) if

$$cr^n \leq \mathcal{H}^n(\partial \Omega \cap B(z, r)) \leq cr^n \text{ whenever } z \in \partial \Omega \text{ and } r \in (0, \text{diam}(\partial \Omega)).$$
Examples of such domains

- Smooth Domains
- Lipschitz Domains
- NTA Domains

- NTA domains need not be graph domains or of finite perimeter.
Rectifiability of a set

Let $\Sigma = f(\mathbb{R}^n)$ be a Lipschitz image of \mathbb{R}^n.
Rectifiability of a set

Let $\Sigma = f(\mathbb{R}^n)$ be a Lipschitz image of \mathbb{R}^n.

$\implies E \subset \mathbb{R}^{n+1}$ is n–rectifiable if there exists a family $\{\Sigma_i\}_i$ of Lipschitz images of \mathbb{R}^n such that

\[
E \subset \left(\bigcup_{i=1}^{\infty} \Sigma_i \right) \cup \Sigma_0 \quad \text{with } \mathcal{H}^n(\Sigma_0) = 0.
\]

That is,

\[
\mathcal{H}^n \left(E \setminus \bigcup_{i=1}^{\infty} \Sigma_i \right) = 0,
\]
Let $\Sigma = f(\mathbb{R}^n)$ be a Lipschitz image of \mathbb{R}^n.

$E \subset \mathbb{R}^{n+1}$ is n–rectifiable if there exists a family $\{\Sigma_i\}_i$ of Lipschitz images of \mathbb{R}^n such that

$$E \subset \left(\bigcup_{i=1}^{\infty} \Sigma_i \right) \cup \Sigma_0 \quad \text{ with } \mathcal{H}^n(\Sigma_0) = 0.$$

That is,

$$\mathcal{H}^n \left(E \setminus \bigcup_{i=1}^{\infty} \Sigma_i \right) = 0,$$

$E \subset \mathbb{R}^{n+1}$ is n–purely unrectifiable if E contains NO n–rectifiable set F with $\mathcal{H}^n(F) > 0$.

[$\text{Besicovitch-Federer}$]

E is purely unrectifiable if $0 < \mathcal{H}^n(E) < 1$ and $\mathcal{H}^n(\Sigma) = 0$ for almost every n–dimensional plane $\Sigma \subset \mathbb{R}^{n+1}$.
Rectifiability of a set

Let $\Sigma = f(\mathbb{R}^n)$ be a Lipschitz image of \mathbb{R}^n.

- $E \subset \mathbb{R}^{n+1}$ is n–rectifiable if there exists a family $\{\Sigma_i\}_i$ of Lipschitz images of \mathbb{R}^n such that
 \[
 E \subset \left(\bigcup_{i=1}^{\infty} \Sigma_i \right) \cup \Sigma_0 \quad \text{with } H^n(\Sigma_0) = 0.
 \]

That is,

\[
H^n \left(E \setminus \bigcup_{i=1}^{\infty} \Sigma_i \right) = 0.
\]

- $E \subset \mathbb{R}^{n+1}$ is n–purely unrectifiable if E contains NO n–rectifiable set F with $H^n(F) > 0$.

- [Besicovitch-Federer] E is n–purely unrectifiable if $0 < H^n(E) < \infty$ and $H^n(\pi_L(E)) = 0$ for almost every n–dimensional plane $L \subset \mathbb{R}^{n+1}$.

Here π_L denotes the orthogonal projection of \mathbb{R}^{n+1} onto L.
An example of a purely unrectifiable set

The usual example is 4-corner Cantor set.
An example of a purely unrectifiable set

The usual example is 4-corner Cantor set.
An example of a purely unrectifiable set

The usual example is 4-corner Cantor set.
An example of a purely unrectifiable set

The usual example is 4-corner Cantor set.
An example of a purely unrectifiable set

The usual example is 4-corner Cantor set.

\[C_0 \quad C_1 \quad C_2 \quad \cdots \quad C_{\infty} = \bigcap_k C_k \]

There exists \(c > 1 \) such that for each \(z \in C_1 \) and \(r \in (0, \frac{1}{c}) \),

\[c r \leq H^1 \left(C_1 \setminus B(z, r) \right) \leq c r \]

For almost every line \(L \) in \(\mathbb{R}^2 \),

\[H^1 \left(\pi_L \left(C_1 \right) \right) = 0 \]

Hence \(C_1 \) is a purely 1-unrectifiable set.

Every rectifiable curve intersects \(C_1 \) in a set of zero \(H^1 \)-measure.
An example of a purely unrectifiable set

The usual example is 4-corner Cantor set.

\[C_0 \cap C_1 \cap C_2 = \bigcap_k C_k \]

There exists \(c > 1 \) such that for each \(z \in C_\infty \) and \(r \in (0, \sqrt{2}) \)

\[c^{-1} r \leq \mathcal{H}^1(C_\infty \cap B(z, r)) \leq cr \]
An example of a purely unrectifiable set

The usual example is 4-corner Cantor set.

$C_0 \supseteq C_1 \supseteq C_2 \supseteq \cdots \supseteq C_{\infty} = \bigcap_k C_k$

- There exists $c > 1$ such that for each $z \in C_{\infty}$ and $r \in (0, \sqrt{2})$,

 $$c^{-1} r \leq \mathcal{H}^1(C_{\infty} \cap B(z, r)) \leq cr$$

- For almost every line L in \mathbb{R}^2, $\mathcal{H}^1(\pi_L(C_{\infty})) = 0$.

- Hence C_{∞} is a purely 1-unrectifiable.

- Every rectifiable curve intersects C_{∞} in a set of zero \mathcal{H}^1-measure.
Global results in higher dimension

- **Dahlberg** ('77): If $\partial \Omega$ is a union of Lipschitz graphs then $\omega \sim H^n$ on $\partial \Omega$.

- **Wu** ('86): Let $\Omega \subset \mathbb{R}^{n+1}$ be a domain satisfying exterior corkscrew condition and suppose that ω is an A_{∞} set and divides \mathbb{R}^{n+1} into two NTA domains. Then $\omega \sim H^n$ on $\Omega \setminus \partial \Omega$.

- **David and Jerison** ('90); **Semmes** ('89): If Ω is NTA and $\partial \Omega$ is AR then $\omega \sim H^n$ on $\partial \Omega$.

- **Badger** ('12): If $\Omega \subset \mathbb{R}^{n+1}$ is NTA with $H^n(\partial \Omega) < 1$ then $\omega \sim H^n$ on $\Omega \setminus \partial \Omega$; \[\liminf_{r \to 0} \frac{H^n(\partial \Omega \setminus B(x, r))}{r^n} < 1 \].

- **Azzam, Mourgoglou, and Tolsa** ('15): There exists a NTA domain Ω with $H^n(\partial \Omega) < 1$ such that $\omega \not\sim H^n$ on $\partial \Omega$.

(Using the deep result of Wolff which was further developed by Lewis, Nyström, Vogel).
Global results in higher dimension

- **Dahlberg (’77):** If $\partial \Omega$ is a union of Lipschitz graphs then $\omega \sim \mathcal{H}^n$ on $\partial \Omega$.

- **Wu (’86):** Let $\Omega \subset \mathbb{R}^{n+1}$ be a domain satisfying exterior corkscrew condition and suppose that Γ is a n–AR set and divides \mathbb{R}^{n+1} into two NTA domains. Then $\omega_{\Omega} \ll \mathcal{H}^n$ on $\Gamma \cap \partial \Omega$.

- **David and Jerison (’90); Semmes (’89):** If Ω is NTA and $\partial \Omega$ is AR then $\omega \prec \mathcal{H}^n$ on $\partial \Omega$.

- **Badger (’12):** If $\Omega \supset \mathbb{R}^{n+1}$ is NTA with $\mathcal{H}^n(\partial \Omega) < 1$ then $\omega \ll \mathcal{H}^n$ on $\partial \Omega$; $\lim \inf_{r \to 0} \frac{\mathcal{H}^n(\partial \Omega \setminus B(x, r))}{r^n} < 1$.

- **Azzam, Mourgoglou, and Tolsa (’15):** For an NTA domain Ω with $\mathcal{H}^n(\partial \Omega) < 1$ such that $\omega \ll \mathcal{H}^n$ on $\partial \Omega$.

Using the deep result of Wolff which was further developed by Lewis, Nyström, Vogel.
Global results in higher dimension

- **Dahlberg ('77):** If $\partial \Omega$ is a union of Lipschitz graphs then $\omega \sim \mathcal{H}^n$ on $\partial \Omega$.

- **Wu ('86):** Let $\Omega \subset \mathbb{R}^{n+1}$ be a domain satisfying exterior corkscrew condition and suppose that Γ is a n–AR set and divides \mathbb{R}^{n+1} into two NTA domains. Then $\omega_\Omega \ll \mathcal{H}^n$ on $\Gamma \cap \partial \Omega$.

- **David and Jerison ('90);**

- **Semmes ('89):**

 If Ω is NTA and $\partial \Omega$ is AR then $\omega \sim \mathcal{H}^n$ on $\partial \Omega$.

- **Badger ('12):** If $\Omega \subset \mathbb{R}^{n+1}$ is NTA with $\mathcal{H}^n(\partial \Omega) < 1$ then $\omega \ll \mathcal{H}^n$ on $\times \Omega$.

- **Azzam, Mourgoglou, and Tolsa ('15):**

 Using the deep result of Wolff which was further developed by Lewis, Nyström, Vogel.
Global results in higher dimension

- **Dahlberg** ('77): If $\partial \Omega$ is a union of Lipschitz graphs then $\omega \sim \mathcal{H}^n$ on $\partial \Omega$.

- **Wu** ('86): Let $\Omega \subset \mathbb{R}^{n+1}$ be a domain satisfying exterior corkscrew condition and suppose that Γ is a n–AR set and divides \mathbb{R}^{n+1} into two NTA domains. Then $\omega_{\Omega} \ll \mathcal{H}^n$ on $\Gamma \cap \partial \Omega$.

- **David and Jerison** ('90);

- **Semmes** ('89):

 If Ω is NTA and $\partial \Omega$ is AR then $\omega \sim \mathcal{H}^n$ on $\partial \Omega$.

- **Badger** ('12): If $\Omega \subset \mathbb{R}^{n+1}$ is NTA with $\mathcal{H}^n(\partial \Omega) < \infty$ then $\omega \ll \mathcal{H}^n$ on

 $$\left\{ x \in \partial \Omega; \liminf_{r \to 0} \frac{\mathcal{H}^n(\partial \Omega \cap B(x, r))}{r^n} < \infty \right\}.$$
Global results in higher dimension

- **Dahlberg ('77):** If $\partial \Omega$ is a union of Lipschitz graphs then $\omega \sim \mathcal{H}^n$ on $\partial \Omega$.

- **Wu ('86):** Let $\Omega \subset \mathbb{R}^{n+1}$ be a domain satisfying exterior corkscrew condition and suppose that Γ is a n–AR set and divides \mathbb{R}^{n+1} into two NTA domains. Then $\omega_\Omega \ll \mathcal{H}^n$ on $\Gamma \cap \partial \Omega$.

- **David and Jerison ('90); Semmes ('89):**

 If Ω is NTA and $\partial \Omega$ is AR then $\omega \sim \mathcal{H}^n$ on $\partial \Omega$.

- **Badger ('12):** If $\Omega \subset \mathbb{R}^{n+1}$ is NTA with $\mathcal{H}^n(\partial \Omega) < \infty$ then $\omega \ll \mathcal{H}^n$ on

 $$\left\{ x \in \partial \Omega; \liminf_{r \to 0} \frac{\mathcal{H}^n(\partial \Omega \cap B(x, r))}{r^n} < \infty \right\}.$$

- **Azzam, Mourgoglou, and Tolsa ('15):** \exists NTA domain Ω with $\mathcal{H}^n(\partial \Omega) < \infty$ such that $\omega \ll \mathcal{H}^n|_{\partial \Omega}$ (Using the deep result of Wolff which was further developed by Lewis, Nyström, Vogel).
Necessary conditions for Absolute Continuity

- Pommerenke ('86): If $\Omega \subset \mathbb{C}$ is simply connected and $\omega \ll \mathcal{H}^1$ on a set $E \subset \partial \Omega$ then ω a.e. point E is a cone point for Ω and ω—almost all of F can be covered by a countable union of 1—dimensional (possibly rotated) Lipschitz graphs (i.e., $\omega|_E$ is rectifiable).
Necessary conditions for Absolute Continuity

- **Pommerenke** (’86): If $\Omega \subset \mathbb{C}$ is simply connected and $\omega \ll \mathcal{H}^1$ on a set $E \subset \partial \Omega$ then ω a.e. point E is a cone point for Ω and ω–almost all of F can be covered by a countable union of 1–dimensional (possibly rotated) Lipschitz graphs (i.e., $\omega|_E$ is rectifiable).

- Let $\Omega \subset \mathbb{R}^{n+1}$, $n \geq 1$, open and connected.
- Let $F \subset \partial \Omega$ with $\mathcal{H}^n(F) < \infty$.

1. If $\omega \ll \mathcal{H}^n$ on F \implies $\omega|_F$ is n–rectifiable.
2. If $\mathcal{H}^n \ll \omega$ on F \implies F is n–rectifiable.

* Portion of the boundary should be contained in a nice rectifiable set (like a graph or curve)!
Notion of Capacity - First Definition

Let E be a closed subset of $\mathbb{R}^{n+1}, n \geq 2$. Then

$$\text{Cap}(E) = \inf \left\{ \int |\nabla v|^2 dx, \ v \in C_0^\infty(\mathbb{R}^{n+1}), \ v \geq 1 \text{ on } E \right\}.$$
Let E be a closed subset of $\mathbb{R}^{n+1}, n \geq 2$. Then

$$\text{Cap}(E) = \inf \left\{ \int |\nabla v|^2 dx, \ v \in C_0^\infty(\mathbb{R}^{n+1}), \ v \geq 1 \text{ on } E \right\}.$$

If u is the minimizer of energy then u weakly satisfies

$$\begin{cases}
\Delta u = 0 & \text{in } \mathbb{R}^{n+1} \setminus E, \\
u = 1 & \text{on } E, \\
u \to 0 & \text{as } |x| \to \infty.
\end{cases}$$
Let E be a closed subset of \mathbb{R}^{n+1}, $n \geq 2$. Then

$$\text{Cap}(E) = \inf \left\{ \int |\nabla v|^2 \, dx, \ v \in C^\infty_0(\mathbb{R}^{n+1}), \ v \geq 1 \text{ on } E \right\}.$$

If u is the minimizer of energy then u weakly satisfies

$$\begin{cases}
\Delta u = 0 & \text{in } \mathbb{R}^{n+1} \setminus E, \\
 u = 1 & \text{on } E, \\
 u \to 0 & \text{as } |x| \to \infty.
\end{cases}$$

Indeed, if u solves abode Dirichlet problem then

$$u(x) = \gamma c_n |x|^{2-(n+1)} + o(|x|^{1-(n+1)}) \text{ for } |x| \to \infty.$$
Notion of Capacity - First Definition

Let E be a closed subset of \mathbb{R}^{n+1}, $n \geq 2$. Then

$$\text{Cap}(E) = \inf \left\{ \int |\nabla v|^2 \, dx, \ v \in C_0^\infty(\mathbb{R}^{n+1}), \ v \geq 1 \text{ on } E \right\}.$$

If u is the minimizer of energy then u weakly satisfies

$$\begin{cases}
\Delta u = 0 \quad \text{in } \mathbb{R}^{n+1} \setminus E, \\
u = 1 \quad \text{on } E, \\
u \to 0 \quad \text{as } |x| \to \infty.
\end{cases}$$

Indeed, if u solves abode Dirichlet problem then

$$u(x) = \gamma c_n |x|^{2-(n+1)} + o(|x|^{1-(n+1)}) \text{ for } |x| \to \infty.$$

Then,

$$\text{Cap}(E) = \gamma = \lim_{|x| \to \infty} \frac{u(x)}{|x|^{(n+1)-2}}.$$

This definition is called the electrostatic capacity of E.
Potential of a given measure μ is defined as

$$U_\mu(x) = \int_E \frac{1}{|x-y|^{(n+1)-2}} d\mu(y)$$
Potential of a given measure μ is defined as

$$U_\mu(x) = \int_E \frac{1}{|x-y|^{(n+1)-2}} d\mu(y)$$

Then

$$\text{Cap}(E) = \sup\{\mu(E); \; U_\mu(x) \leq 1, \; x \in \text{supp}(\mu)\}.$$
Potential of a given measure μ is defined as

$$U_\mu(x) = \int_E \frac{1}{|x - y|^{(n+1)-2}} d\mu(y)$$

Then

$$\mathrm{Cap}(E) = \sup\{\mu(E); U_\mu(x) \leq 1, \ x \in \text{supp}(\mu)\}.$$

Then $\mathrm{Cap}(E) = \nu(E)$ for a measure ν which is called equilibrium measure and satisfying $U_\nu(x) \leq 1$ for $x \in \text{supp}(\nu)$ and $U_\nu(x) \geq 1$ up to a set of measure zero capacity on E. Note that U_ν is a positive super harmonic function in \mathbb{R}^{n+1} and harmonic outside of E.
Notion of Capacity - Second Definition

Potential of a given measure μ is defined as

$$U_\mu(x) = \int_E \frac{1}{|x - y|^{(n+1)-2}} d\mu(y)$$

Then

$$\text{Cap}(E) = \sup\{\mu(E); \ U_\mu(x) \leq 1, \ x \in \text{supp}(\mu)\}.$$

Then $\text{Cap}(E) = \nu(E)$ for a measure ν which is called equilibrium measure and satisfying $U_\nu(x) \leq 1$ for $x \in \text{supp}(\nu)$ and $U_\nu(x) \geq 1$ up to a set of measure zero capacity on E. Note that U_ν is a positive super harmonic function in \mathbb{R}^{n+1} and harmonic outside of E. Also

$$\text{Cap}(E) = \left[\inf\{\mathcal{K}_\mu: \ \mu(E) = 1, \ \mu(E^c) = 0\} \right]^{-1}$$

where

$$\mathcal{K}_\mu = \iint_{E \times E} \frac{1}{|x - y|^{(n+1)-2}} d\mu(x)d\mu(y).$$

which denotes the energy of μ with respect to the kernel $1/|x|^{(n+1)-2}$.
Counter example of Wu revisited.

In \mathbb{R}^2, there exists simply connected Jordan domain K satisfying

1. $K \cap \{x : x_1 > 0\} \subset \{x : |x| < 2\}$, $K \cap \{x : x_1 < 0\} = \{x : x_1 < 0, |x| < 3\}$
2. $\partial_2 K$ has Hausdorff dimension 1,
3. $\text{Cap}_3(\partial_2 K) > 0$,
4. $\text{Cap}_3(K_\epsilon) \to 0$ as $\epsilon \to 0$ where $K_\epsilon = \{x \in K : \text{dist}(x, \partial_2 K) < \epsilon\}$.

Let $\bar{\Omega} = B(0, 20) \cap \bar{K}$ in \mathbb{R}^3. Then $\!\bar{\Omega} (\partial_2 K) > 0 = H_2(\partial_2 K)$.

Key point here is that for $0 < \beta < \epsilon$, $\text{Cap}_3(K_\epsilon \cap \bar{K} \cap \partial_2 K) < 10 \cdot \text{Cap}_3(\partial_2 K)$.

Counter example of Wu revisited.

In \mathbb{R}^2, there exists simply connected Jordan domain K satisfying

1. $K \cap \{x : x_1 > 0\} \subset \{x : |x| < 2\}$, $K \cap \{x : x_1 < 0\} = \{x : x_1 < 0, |x| < 3\}$
2. $\partial_2 K$ has Hausdorff dimension 1,
3. $\text{Cap}_3(\partial_2 K) > 0$,
4. $\text{Cap}_3(K_\epsilon) \to 0$ as $\epsilon \to 0$ where $K_\epsilon = \{x \in K : \text{dist}(x, \partial_2 K) < \epsilon\}$.

Let Ω any set satisfying (1)-(4). Identify the set $\{x, 0) \times K\}$ in \mathbb{R}^3. Let $\Omega' = B(0, 20) \cap \overline{K}$ in \mathbb{R}^3. Then $\Omega' \cap (\partial_2 K)$ has Hausdorff dimension 1.
Counter example of Wu revisited.

In \(\mathbb{R}^2 \), there exists simply connected Jordan domain \(K \) satisfying

1. \(K \cap \{ x : x_1 > 0 \} \subset \{ x : |x| < 2 \} \), \(K \cap \{ x : x_1 < 0 \} = \{ x : x_1 < 0, |x| < 3 \} \)
2. \(\partial_2 K \) has Hausdorff dimension 1,
3. \(\text{Cap}_3(\partial_2 K) > 0 \),
4. \(\text{Cap}_3(K_\epsilon) \to 0 \) as \(\epsilon \to 0 \) where \(K_\epsilon = \{ x \in K : \text{dist}(x, \partial_2 K) < \epsilon \} \).

Let \(K \) any set satisfying (1)-(4). Identify the set \(\{(x, 0); \ x \in K\} \) in \(\mathbb{R}^3 \).
Counter example of Wu revisited.

In \mathbb{R}^2, there exists simply connected Jordan domain K satisfying

1. $K \cap \{x : x_1 > 0\} \subset \{x : |x| < 2\}$, $K \cap \{x : x_1 < 0\} = \{x : x_1 < 0, |x| < 3\}$
2. $\partial_2 K$ has Hausdorff dimension 1,
3. $\text{Cap}_3(\partial_2 K) > 0$,
4. $\text{Cap}_3(K_\epsilon) \to 0$ as $\epsilon \to 0$ where $K_\epsilon = \{x \in K : \text{dist}(x, \partial_2 K) < \epsilon\}$.

Let K any set satisfying (1)-(4). Identify the set $\{(x, 0) ; x \in K\}$ in \mathbb{R}^3.

![Diagram of a simply connected Jordan domain K in R^2 with a shaded area and two vertical bars on the boundary]
Counter example of Wu revisited.

In \mathbb{R}^2, there exists simply connected Jordan domain K satisfying

1. $K \cap \{x : x_1 > 0\} \subset \{x : |x| < 2\}, \ K \cap \{x : x_1 < 0\} = \{x : x_1 < 0, |x| < 3\}$
2. $\partial_2 K$ has Hausdorff dimension 1,
3. $\text{Cap}_3(\partial_2 K) > 0$,
4. $\text{Cap}_3(K_\epsilon) \to 0$ as $\epsilon \to 0$ where $K_\epsilon = \{x \in K : \text{dist}(x, \partial_2 K) < \epsilon\}$.

Let K any set satisfying (1)-(4). Identify the set $\{(x,0) ; \ x \in K\}$ in \mathbb{R}^3.

![Diagram of a simply connected Jordan domain K](image-url)
Counter example of Wu revisited.

In \mathbb{R}^2, there exists simply connected Jordan domain K satisfying

(1) $K \cap \{x : x_1 > 0\} \subset \{x : |x| < 2\}$, $K \cap \{x : x_1 < 0\} = \{x : x_1 < 0, |x| < 3\}$

(2) $\partial_2 K$ has Hausdorff dimension 1,

(3) $\text{Cap}_3(\partial_2 K) > 0$,

(4) $\text{Cap}_3(K_{\epsilon}) \to 0$ as $\epsilon \to 0$ where $K_{\epsilon} = \{x \in K : \text{dist}(x, \partial_2 K) < \epsilon\}$.

Let K any set satisfying (1)-(4). Identify the set $\{(x, 0); \ x \in K\}$ in \mathbb{R}^3.

![Diagram](image)
Counter example of Wu revisited.

In \mathbb{R}^2, there exists simply connected Jordan domain K satisfying

(1) $K \cap \{x : x_1 > 0\} \subset \{x : |x| < 2\}$, $K \cap \{x : x_1 < 0\} = \{x : x_1 < 0, |x| < 3\}$

(2) $\partial_2 K$ has Hausdorff dimension 1,

(3) $\text{Cap}_3(\partial_2 K) > 0$,

(4) $\text{Cap}_3(K_\epsilon) \to 0$ as $\epsilon \to 0$ where $K_\epsilon = \{x \in K : \text{dist}(x, \partial_2 K) < \epsilon\}$.

Let K any set satisfying (1)-(4). Identify the set $\{(x, 0) ; x \in K\}$ in \mathbb{R}^3.

Let $\Omega = B(0, 20) \setminus \overline{K}$ in \mathbb{R}^3.

Then $\omega_\Omega(\partial_2 K) > 0 = \mathcal{H}^2(\partial_2 K)$.
Counter example of Wu revisited.

In \mathbb{R}^2, there exists simply connected Jordan domain K satisfying

1. $K \cap \{x : x_1 > 0\} \subset \{x : |x| < 2\}, \quad K \cap \{x : x_1 < 0\} = \{x : x_1 < 0, |x| < 3\}$
2. $\partial_2 K$ has Hausdorff dimension 1,
3. $\text{Cap}_3(\partial_2 K) > 0$,
4. $\text{Cap}_3(K_\epsilon) \to 0$ as $\epsilon \to 0$ where $K_\epsilon = \{x \in K : \text{dist}(x, \partial_2 K) < \epsilon\}$.

Let K any set satisfying (1)-(4). Identify the set $\{(x, 0); \ x \in K\}$ in \mathbb{R}^3.

Let $\Omega = B(0, 20) \setminus \bar{K}$ in \mathbb{R}^3. Then $\omega_\Omega(\partial_2 K) > 0 = \mathcal{H}^2(\partial_2 K)$.

Key point here is that for $0 < \eta < \epsilon$, $\text{Cap}_3(K_\epsilon \setminus \bar{K}_\eta) < \frac{1}{100} \text{Cap}_3(\partial_2 K)$.
Necessary condition for $\omega \ll H^n$: Portion of the boundary should be contained in a nice rectifiable set (like a graph or curve).
Sufficient conditions for absolute continuity $\omega \ll \mathcal{H}^n$

- Necessary condition for $\omega \ll \mathcal{H}^n$: Portion of the boundary should be contained in a nice rectifiable set (like a graph or curve).

Theorem (Wu (’86))

Let $\Omega \subset \mathbb{R}^{n+1}$ be domain with exterior corkscrews and suppose Γ is n–AR and divides \mathbb{R}^{n+1} into two NTA domains. Then $\omega_\Omega \ll \mathcal{H}^n$ on $\partial \Omega \cap \Gamma$.
Sufficient conditions for absolute continuity $\omega \ll \mathcal{H}^n$

- **Necessary condition for $\omega \ll \mathcal{H}^n$:** Portion of the boundary should be contained in a nice rectifiable set (like a graph or curve).

Theorem (Wu ('86))

Let $\Omega \subset \mathbb{R}^{n+1}$ be domain with **exterior corkscrews** and suppose Γ is $n-$AR and divides \mathbb{R}^{n+1} into two NTA domains. Then $\omega_\Omega \ll \mathcal{H}^n$ on $\partial \Omega \cap \Gamma$.

A set $\Omega \subset \mathbb{R}^{n+1}$ has **big boundary** or **n-thick** if

$$\mathcal{H}_\infty^n(B(z, r) \setminus \Omega) \geq cr^n$$

for all $z \in \partial \Omega$ and $r \in (0, \text{diam}(\partial \Omega))$.

- **Simply connected planar domains**, NTA domains, complements of Ahlfors regular sets are such domains. Exterior corkscrew implies big boundary.
Sufficient conditions for absolute continuity $\omega \ll \mathcal{H}^n$

- **Necessary condition for** $\omega \ll \mathcal{H}^n$: Portion of the boundary should be contained in a nice rectifiable set (like a graph or curve).

Theorem (Wu (’86))

Let $\Omega \subset \mathbb{R}^{n+1}$ be a domain with exterior corkscrews and suppose Γ is n–AR and divides \mathbb{R}^{n+1} into two NTA domains. Then $\omega_\Omega \ll \mathcal{H}^n$ on $\partial \Omega \cap \Gamma$.

A set $\Omega \subset \mathbb{R}^{n+1}$ has **big boundary** or **n-thick** if

$$\mathcal{H}^n_\infty (B(z, r) \setminus \Omega) \geq cr^n \text{ for all } z \in \partial \Omega \text{ and } r \in (0, \text{diam}(\partial \Omega)).$$

- Simply connected planar domains, NTA domains, complements of Ahlfors regular sets are such domains. Exterior corkscrew implies big boundary.

Theorem (A., Azzam, Mourgoglou (’16))

Suppose $\Omega \subset \mathbb{R}^{n+1}$ has big boundary and let $\Gamma \subset \mathbb{R}^{n+1}$ is n–AR and splits \mathbb{R}^{n+1} into two NTA domains. Then $\omega_\Omega \ll \mathcal{H}^n$ on $\partial \Omega \cap \Gamma$.
Identifying exterior condition - Speculations

A closed set $E \subset \mathbb{R}^{n+1}$ is called **uniformly 2-fat** or said to satisfy Capacity Density Condition **CDC** if

$$\frac{\text{Cap}(E \cap \bar{B}(z, r))}{\text{Cap}(ar{B}(z, r))} = \text{Cap}(r^{-1}(E \cap \bar{B}(z, r))) \geq c \quad \text{for all } w \in E \text{ and } r > 0.$$
A closed set $E \subset \mathbb{R}^{n+1}$ is called **uniformly 2-fat** or said to satisfy Capacity Density Condition **CDC** if

$$\frac{\text{Cap}(E \cap \bar{B}(z, r))}{\text{Cap}(\bar{B}(z, r))} = \text{Cap}(r^{-1}(E \cap \bar{B}(z, r))) \geq c \quad \text{for all } w \in E \text{ and } r > 0.$$

Big boundary implies CDC. But converse is not true. However,
A closed set $E \subset \mathbb{R}^{n+1}$ is called **uniformly 2-fat** or said to satisfy Capacity Density Condition **CDC** if

$$\frac{\text{Cap}(E \cap \bar{B}(z, r))}{\text{Cap}(\bar{B}(z, r))} = \text{Cap}(r^{-1}(E \cap \bar{B}(z, r))) \geq c \quad \text{for all } w \in E \text{ and } r > 0.$$

Big boundary implies CDC. But converse is not true. However,

Theorem (Lewis ('88))

If $E \subset \mathbb{R}^{n+1}$ is CDC then there exists some $1 < q < 2$ such that

$$\mathcal{H}^{n+1-q}(B(w, r) \setminus \Omega) \geq cr^{n+1-q} \quad \text{for all } w \in E \text{ and } r > 0$$

*where $\Omega = \mathbb{R}^{n+1} \setminus E$. $(n + 1 - q < n)$.***
A closed set $E \subset \mathbb{R}^{n+1}$ is called uniformly 2-fat or said to satisfy Capacity Density Condition (CDC) if
\[
\frac{\text{Cap}(E \cap \bar{B}(z, r))}{\text{Cap}(\bar{B}(z, r))} = \text{Cap}(r^{-1}(E \cap \bar{B}(z, r))) \geq c \quad \text{for all } w \in E \text{ and } r > 0.
\]

Big boundary implies CDC. But converse is not true. However,

Theorem (Lewis (’88))

If $E \subset \mathbb{R}^{n+1}$ is CDC then there exists some $1 < q < 2$ such that
\[
\mathcal{H}_{\infty}^{n+1-q}(B(w, r) \setminus \Omega) \geq cr^{n+1-q} \quad \text{for all } w \in E \text{ and } r > 0
\]

where $\Omega = \mathbb{R}^{n+1} \setminus E$. $(n + 1 - q < n)$.

Can we replace the big boundary condition with CDC?
A closed set $E \subset \mathbb{R}^{n+1}$ is called **uniformly 2-fat** or said to satisfy Capacity Density Condition **CDC** if

$$\frac{\text{Cap}(E \cap \bar{B}(z, r))}{\text{Cap}(\bar{B}(z, r))} = \text{Cap}(r^{-1}(E \cap \bar{B}(z, r))) \geq c \quad \text{for all } w \in E \text{ and } r > 0.$$

Big boundary implies CDC. But converse is not true. However,

Theorem (Lewis (’88))

If $E \subset \mathbb{R}^{n+1}$ is CDC then there exists some $1 < q < 2$ such that

$$\mathcal{H}^{n+1-q}_\infty (B(w, r) \setminus \Omega) \geq cr^{n+1-q} \quad \text{for all } w \in E \text{ and } r > 0$$

where $\Omega = \mathbb{R}^{n+1} \setminus E$. $(n + 1 - q < n)$.

Can we replace the big boundary condition with CDC?

We[A., Badger, Bortz, Engelstein] believe that Wu’s counter example does not satisfy CDC!
Let Ω have big boundary and Γ be ADR splits \mathbb{R}^{n+1} into two NTA domains Ω_1, Ω_2. Aim: $E \subset \Gamma \cap \partial \Omega$, show $\omega^{X_0}_\Omega(E) > 0 \Rightarrow \mathcal{H}^n(E) > 0$.

\[\text{By David and Jerison} \]

$\mathcal{H}^n(E) > 0$. This implies $! \\Gamma \ni \omega^{X_0}_\Omega \mathcal{H}^n$ on $\partial \Omega$.

For the sake of contradiction, suppose $\omega^{X_i}_\Gamma(E) = 0$ for all $X_i \in 1, 2$. Suffices to show that $\sup_{X_2 \in \Gamma \cap \partial \Omega} \omega^{X_0}_\Omega(E) < 1$. Then, by strong Markov property of Brownian motion, for $X_2 \in \Gamma \cap \partial \Omega$, $\omega^{X_2}_\Gamma(E) = \omega^{X_2}_\Gamma(E) + \int_{\partial \Omega \setminus \Gamma \cap \partial \Omega} \omega^{X_2}_\Gamma(E) d\omega^{X_2}_\Gamma < 0 + = < 1$.

Same holds for $X_2 \in \Gamma \cap \partial \Omega$ and hence $\sup_{X_2 \in \Gamma \cap \partial \Omega} \omega^{X_0}_\Omega(E) < 1$ which is NOT possible!
Let Ω have big boundary and Γ be ADR splits \mathbb{R}^{n+1} into two NTA domains Ω_1, Ω_2. **Aim:** $E \subset \Gamma \cap \partial \Omega$, show $\omega_{\Omega}^{X_0}(E) > 0 \Rightarrow \mathcal{H}^n(E) > 0$.

- Enough to show $\omega_{\Omega_i \cap \Omega}(E) > 0$ for some $i \in \{1, 2\}$ and $X_i \in \Omega_i$. Then by the maximum principle $\omega_{\Omega_i}(E) \geq \omega_{\Omega_i \cap \Omega}(E) > 0$.

Sketch of the Proof

Let Ω have big boundary and Γ be ADR splits \mathbb{R}^{n+1} into two NTA domains Ω_1, Ω_2. **Aim:** $E \subset \Gamma \cap \partial \Omega$, show $\omega^X_\Omega(E) > 0 \Rightarrow H^n(E) > 0$.

- Enough to show $\omega^X_{\Omega_i \cap \Omega}(E) > 0$ for some $i \in \{1, 2\}$ and $X_i \in \Omega_i$. Then by the maximum principle $\omega_{\Omega_i}(E) \geq \omega^X_{\Omega_i \cap \Omega}(E) > 0$.

- By David and Jerison $H^n(E) > 0$. This implies $\omega_\Omega \ll H^n$ on $\partial \Omega$.
Sketch of the Proof

Let Ω have big boundary and Γ be ADR splits \mathbb{R}^{n+1} into two NTA domains Ω_1, Ω_2. **Aim:** $E \subset \Gamma \cap \partial \Omega$, show $\omega_{\Omega}^{X_0}(E) > 0 \Rightarrow \mathcal{H}^n(E) > 0$.

- Enough to show $\omega_{\Omega_i \cap \Omega}^{X_i}(E) > 0$ for some $i \in \{1, 2\}$ and $X_i \in \Omega_i$. Then by the maximum principle $\omega_{\Omega_i}(E) \geq \omega_{\Omega_i \cap \Omega}^{X_i}(E) > 0$.

- By David and Jerison $\mathcal{H}^n(E) > 0$. This implies $\omega_{\Omega} \ll \mathcal{H}^n$ on $\partial \Omega$.

- For the sake of contradiction, suppose

$$\omega_{\Omega_i \cap \Omega}^{X_i}(E) = 0 \text{ for all } X_i \in \Omega_i, \ i = 1, 2.$$
Sketch of the Proof

Let Ω have big boundary and Γ be ADR splits \mathbb{R}^{n+1} into two NTA domains Ω_1, Ω_2. **Aim:** $E \subset \Gamma \cap \partial \Omega$, show $\omega^{X_0}_\Omega(E) > 0 \Rightarrow \mathcal{H}^n(E) > 0$.

- Enough to show $\omega^{X_i}_{\Omega_i \cap \Omega}(E) > 0$ for some $i \in \{1, 2\}$ and $X_i \in \Omega_i$. Then by the maximum principle $\omega_{\Omega_i}(E) \geq \omega^{X_i}_{\Omega_i \cap \Omega}(E) > 0$.

- By David and Jerison $\mathcal{H}^n(E) > 0$. This implies $\omega_{\Omega} \ll \mathcal{H}^n$ on $\partial \Omega$.

- For the sake of contradiction, suppose

$$\omega^{X_i}_{\Omega_i \cap \Omega}(E) = 0 \text{ for all } X_i \in \Omega_i, \ i = 1, 2.$$

- Suffices to show that $\sup_{X \in \Gamma \cap \Omega} \omega^X_\Omega(E) \leq \gamma < 1$.
Let Ω have big boundary and Γ be ADR splits \mathbb{R}^{n+1} into two NTA domains Ω_1, Ω_2. **Aim:** $E \subset \Gamma \cap \partial \Omega$, show $\omega^X_\Omega(E) > 0 \Rightarrow \mathcal{H}^n(E) > 0$.

- Enough to show $\omega^{X_i}_{\Omega_i \cap \Omega}(E) > 0$ for some $i \in \{1, 2\}$ and $X_i \in \Omega_i$. Then by the maximum principle $\omega_{\Omega_i}(E) \geq \omega^{X_i}_{\Omega_i \cap \Omega}(E) > 0$.

- By David and Jerison $\mathcal{H}^n(E) > 0$. This implies $\omega_{\Omega} \ll \mathcal{H}^n$ on $\partial \Omega$.

- For the sake of contradiction, suppose

$$\omega^{X_i}_{\Omega_i \cap \Omega}(E) = 0 \text{ for all } X_i \in \Omega_i, \ i = 1, 2.$$

- Suffices to show that $\sup_{X \in \Gamma \cap \Omega} \omega^X_\Omega(E) \leq \gamma < 1$.

Then, by strong Markov property of Brownian motion, for $X \in \Omega \cap \Omega_1$

$$\omega^X_\Omega(E) = \omega^X_{\Omega \cap \Omega_1}(E) + \int_{\partial \Omega_1 \cap \Omega} \omega^Z_\Omega(E) \, d\omega^X_{\Omega \cap \Omega_1}(Z) < 0 + \gamma = \gamma < 1.$$
Let Ω have big boundary and Γ be ADR splits \mathbb{R}^{n+1} into two NTA domains Ω_1, Ω_2. **Aim:** $E \subset \Gamma \cap \partial \Omega$, show $\omega^X_\Omega (E) > 0 \Rightarrow \mathcal{H}^n (E) > 0$.

- Enough to show $\omega^X_{\Omega \cap \Omega} (E) > 0$ for some $i \in \{1, 2\}$ and $X_i \in \Omega_i$. Then by the maximum principle $\omega_{\Omega_i} (E) \geq \omega^X_{\Omega \cap \Omega} (E) > 0$.

- By David and Jerison $\mathcal{H}^n (E) > 0$. This implies $\omega_\Omega \ll \mathcal{H}^n$ on $\partial \Omega$.

- For the sake of contradiction, suppose
 \[
 \omega^X_{\Omega_i \cap \Omega} (E) = 0 \text{ for all } X_i \in \Omega_i, \ i = 1, 2.
 \]

- Suffices to show that $\sup_{X \in \Gamma \cap \Omega} \omega^X_\Omega (E) \leq \gamma < 1$.

Then, by strong Markov property of Brownian motion, for $X \in \Omega \cap \Omega_1$

\[
\omega^X_\Omega (E) = \omega^X_{\Omega \cap \Omega_1} (E) + \int_{\partial \Omega \cap \Omega} \omega^Z_{\Omega} (E) \, d\omega^X_{\Omega \cap \Omega_1} (Z) < 0 + \gamma = \gamma < 1.
\]

Same holds for $X \in \Omega \cap \Omega_2$ and hence

\[
\sup_{X \in \Omega} \omega^X_\Omega (E) \leq \gamma < 1 \text{ which is NOT possible!}
\]
Hence, we need to show
\[
\sup_{x \in \Gamma \cap \Omega} \omega^x_\Omega(E) \leq \gamma < 1.
\]
Hence, we need to show

\[\sup_{x \in \Gamma \cap \Omega} \omega^X_E \leq \gamma < 1. \]

Let \(X \in \Omega \) and \(r = \text{dist}(X, \partial \Omega) \). As \(\Omega_i \) are NTA, then there are balls

\[B^i = B(Y_i, cr) \subset \Omega_i \cap B(X, r) \text{ for } i = 1, 2. \]
Hence, we need to show
\[\sup_{x \in \Gamma \cap \Omega} \omega^X_{\varOmega}(E) \leq \gamma < 1. \]

Let \(X \in \varOmega \) and \(r = \text{dist}(X, \partial \varOmega) \). As \(\varOmega_i \) are NTA, then there are balls
\[B^i = B(Y_i, cr) \subset \varOmega_i \cap B(X, r) \text{ for } i = 1, 2. \]

Geometric to show that
\[\omega^{Y_i}_{\varOmega \cap \varOmega_i}(\Gamma \cap \varOmega) < \eta \text{ for some } \eta \in (0, 1) \text{ and } i \in \{1, 2\}. \]
Hence, we need to show
\[\sup_{x \in \Gamma \cap \Omega} \omega_X^X(E) \leq \gamma < 1. \]

Let \(X \in \Omega \) and \(r = \text{dist}(X, \partial \Omega) \). As \(\Omega_i \) are NTA, then there are balls
\[B^i = B(Y_i, cr) \subset \Omega_i \cap B(X, r) \text{ for } i = 1, 2. \]

足够的条件是证明
\[\omega_{\Omega \cap \Omega_i}^{Y_i}(\Gamma \cap \Omega) < \eta \text{ for some } \eta \in (0, 1) \text{ and } i \in \{1, 2\}. \]

If so, the Harnack chain, and \(\omega_\Omega \) is probability measure imply that
\[
\omega_X^X(E) = 1 - \omega_X^X(E^c) \leq 1 - t \omega_{\Omega}^{Y_i}(E^c) \\
= (1 - t) + t \omega_{\Omega}^{Y_i}(E) \\
= (1 - t) + t \left(\omega_{\Omega \cap \Omega_i}^{Y_i}(E) + \int_{\partial \Omega \cap \Omega} \omega_{\Omega}^{Z}(E) \, d\omega_{\Omega \cap \Omega_1}^{Y_i}(Z) \right) \\
< (1 - t) + t(0 + \eta) = (1 - t) + t\eta =: \gamma < 1.
\]
Hence, we need to show
\[\sup_{X \in \Gamma \cap \Omega} \omega_X^X(E) \leq \gamma < 1. \]

Let \(X \in \Omega \) and \(r = \text{dist}(X, \partial \Omega) \). As \(\Omega_i \) are NTA, then there are balls
\[B_i^i = B(Y_i, cr) \subset \Omega_i \cap B(X, r) \text{ for } i = 1, 2. \]

Enough to show that
\[\omega_{\Omega \cap \Omega_i}^{Y_i}(\Gamma \cap \Omega) < \eta \text{ for some } \eta \in (0, 1) \text{ and } i \in \{1, 2\}. \]

If so, the Harnack chain, and \(\omega_{\Omega} \) is probability measure imply that
\[
\omega_{\Omega}^X(E) = 1 - \omega_{\Omega}^X(E^c) \leq 1 - t \omega_{\Omega}^{Y_i}(E^c)
= (1 - t) + t \omega_{\Omega}^{Y_i}(E)
= (1 - t) + t \left(\omega_{\Omega \cap \Omega_i}^{Y_i}(E) + \int_{\partial \Omega_i \cap \Omega} \omega_{\Omega}^{Z}(E) \, d\omega_{\Omega \cap \Omega_i}^{Y_i}(Z) \right)
\]
\[< (1 - t) + t(0 + \eta) = (1 - t) + t\eta =: \gamma < 1. \]

So we focus on proving \(\omega_{\Omega \cap \Omega_i}^{Y_i}(\Gamma \cap \Omega) < \eta. \)
Proof of $\omega_{Y_i}^{\Omega_1}(\Gamma \cap \Omega) < \eta$.

Let $M_0 >> 1$.

Case 1: There is $Z \in \partial\Omega \cap B(X, M_0 r) \cap \Omega_1$ so that $\text{dist}(Z, \Gamma) \geq \epsilon r$
Sketch of the Proof cont’

Proof of $\omega_{\Omega \cap \Omega_i}^{Y_i} (\Gamma \cap \Omega) < \eta$.

Let $M_0 >> 1$.

Case 1: There is $Z \in \partial \Omega \cap B(X, M_0 r) \cap \Omega_1$ so that $\text{dist}(Z, \Gamma) \geq \epsilon r$

In this case, Brownian motion starting at Y^1 has a good chance of hitting outside $\Gamma \cap \Omega$.
Case 2: $\text{dist}(Z, \Gamma) \leq \epsilon r$ for all $Z \in \partial \Omega \cap B(X, M_0r) \cap \Omega_1$.
Case 2: $\text{dist}(Z, \Gamma) \leq \epsilon r$ for all $Z \in \partial \Omega \cap B(X, M_0r) \cap \Omega_1$.

If black parts are G then we can pick i so that $\mathcal{H}^n(G) \geq \mathcal{H}^n(\partial \Omega')$. Then result of David and Jerison implies

$$1 \leq \omega_{\Omega_1}^{X_{\Omega_1}}(G) \leq \omega_{\Omega_1}^{X_{\Omega_1}}((\Gamma \cap \Omega)^c) \leq \omega_{\Omega_1}^{Y}(\Gamma \cap \Omega)^c$$

This gives $\omega_{\Omega_1}^{Y}(\Gamma \cap \Omega) < \eta$.
Thanks!