# Rectifiability, interior approximation, absolute continuity of harmonic measure

# Murat Akman

University of Connecticut

AMS Special Session on Geometric Aspects of Harmonic Analysis Bowdoin College September 24

Joint with M. Badger, S. Bortz, S. Hofmann, J. M. Martell

 $\mathcal{H}^n$ : *n*-dimensional Hausdorff measure and Rectifiability in  $\mathbb{R}^{n+1}$ 

Let 
$$A \subset \mathbb{R}^{n+1}$$
,  $0 \le n < \infty$ ,  $0 < \delta \le \infty$ .

$$\mathcal{H}^{n}_{\delta}(A) = \inf\{\sum (\operatorname{diam}(E_{i}))^{n}; \ A \subset \bigcup_{i=1}^{\infty} E_{i}, \ \operatorname{diam}(E_{i}) \leq \delta\}.$$

$$\mathcal{H}^{n}(A) := \lim_{\delta \to 0} \mathcal{H}^{n}_{\delta}(A) = \sup_{\delta > 0} \mathcal{H}^{n}_{\delta}(A).$$

② E ⊂ ℝ<sup>n+1</sup> is n−rectifiable if there exists a family {Σ<sub>i</sub>}<sub>i</sub> of Lipschitz images of ℝ<sup>n</sup> such that

$$\mathcal{H}^n\left(E\setminus\bigcup_{i=1}^\infty\Sigma_i\right)=0,$$

 $\bigcirc E \subset \mathbb{R}^{n+1}$  is *n*−purely unrectifiable if *E* contains NO *n*−rectifiable set *F* with  $\mathcal{H}^n(F) > 0$ .  $\mathcal{H}^n$ : *n*-dimensional Hausdorff measure and Rectifiability in  $\mathbb{R}^{n+1}$ 

Let 
$$A \subset \mathbb{R}^{n+1}$$
,  $0 \le n < \infty$ ,  $0 < \delta \le \infty$ .

$$\mathcal{H}^{n}_{\delta}(A) = \inf\{\sum (\operatorname{diam}(E_{i}))^{n}; \ A \subset \bigcup_{i=1}^{\infty} E_{i}, \operatorname{diam}(E_{i}) \leq \delta\}.$$

$$\mathcal{H}^{n}(A) := \lim_{\delta \to 0} \mathcal{H}^{n}_{\delta}(A) = \sup_{\delta > 0} \mathcal{H}^{n}_{\delta}(A).$$

 $\mathfrak{S} \subset \mathbb{R}^{n+1}$  is *n*-rectifiable if there exists a family  $\{\Sigma_i\}_i$  of Lipschitz images of  $\mathbb{R}^n$  such that

$$\mathcal{H}^n\left(E\setminus\bigcup_{i=1}^\infty\Sigma_i\right)=0,$$

 $\mathbb{C} \ E \subset \mathbb{R}^{n+1}$  is *n*-purely unrectifiable if *E* contains NO *n*-rectifiable set *F* with  $\mathcal{H}^n(F) > 0.$   $\mathcal{H}^n$ : *n*-dimensional Hausdorff measure and Rectifiability in  $\mathbb{R}^{n+1}$ 

Let 
$$A \subset \mathbb{R}^{n+1}$$
,  $0 \le n < \infty$ ,  $0 < \delta \le \infty$ .

$$\mathcal{H}^{n}_{\delta}(A) = \inf\{\sum (\operatorname{diam}(E_{i}))^{n}; \ A \subset \bigcup_{i=1}^{\infty} E_{i}, \operatorname{diam}(E_{i}) \leq \delta\}.$$

$$\mathcal{H}^{n}(A) := \lim_{\delta \to 0} \mathcal{H}^{n}_{\delta}(A) = \sup_{\delta > 0} \mathcal{H}^{n}_{\delta}(A).$$

 $\mathfrak{S} \subset \mathbb{R}^{n+1}$  is *n*-rectifiable if there exists a family  $\{\Sigma_i\}_i$  of Lipschitz images of  $\mathbb{R}^n$  such that

$$\mathcal{H}^n\left(E\setminus\bigcup_{i=1}^\infty\Sigma_i\right)=0,$$

 $\mathfrak{S} E \subset \mathbb{R}^{n+1}$  is *n*-purely unrectifiable if *E* contains NO *n*-rectifiable set *F* with  $\mathcal{H}^n(F) > 0$ .

Let  $\Omega \subset \mathbb{R}^{n+1}$  be a domain and let  $\omega$  be harmonic measure for  $\Omega$ .

#### Question

① Under what conditions, one has  $\omega \ll \mathcal{H}^n$  and/or  $\mathcal{H}^n \ll \omega$  on  $\partial \Omega$ ? ② What are the implications of  $\omega \ll \mathcal{H}^n$  and  $\mathcal{H}^n \ll \omega$  on  $\partial \Omega$ ?

• **F. and M. Riesz**(1916): If  $\Omega \subset \mathbb{R}^2$  is simply connected,  $\mathcal{H}^1(\partial \Omega) < \infty$  then

 $\omega \ll \mathcal{H}^1 \ll \omega$  on  $\partial \Omega$ .

- **Lavrentiev**(1936): Quantitative version.
- **Ziemer**(1974):  $\mathcal{H}^2 \not\ll \omega$  for some topological sphere in  $\mathbb{R}^3$ .
- **Wu**(1986):  $\omega \ll \mathcal{H}^2$  for some topological sphere in  $\mathbb{R}^3$ .

• **Bishop and Jones**(1990):  $\omega \ll \mathcal{H}^1$  for a connected domain in  $\mathbb{R}^2$ .

Let  $\Omega \subset \mathbb{R}^{n+1}$  be a domain and let  $\omega$  be harmonic measure for  $\Omega$ .

## Question

① Under what conditions, one has  $\omega \ll \mathcal{H}^n$  and/or  $\mathcal{H}^n \ll \omega$  on  $\partial \Omega$ ? ② What are the implications of  $\omega \ll \mathcal{H}^n$  and  $\mathcal{H}^n \ll \omega$  on  $\partial \Omega$ ?

• **F. and M. Riesz**(1916): If  $\Omega \subset \mathbb{R}^2$  is simply connected,  $\mathcal{H}^1(\partial \Omega) < \infty$  then

 $\omega \ll \mathcal{H}^1 \ll \omega$  on  $\partial \Omega$ .

- **Lavrentiev**(1936): Quantitative version.
- **Ziemer**(1974):  $\mathcal{H}^2 \ll \omega$  for some topological sphere in  $\mathbb{R}^3$ .
- **Wu**(1986):  $\omega \ll \mathcal{H}^2$  for some topological sphere in  $\mathbb{R}^3$ .

• **Bishop and Jones**(1990):  $\omega \ll \mathcal{H}^1$  for a connected domain in  $\mathbb{R}^2$ .

Let  $\Omega \subset \mathbb{R}^{n+1}$  be a domain and let  $\omega$  be harmonic measure for  $\Omega$ .

## Question

Under what conditions, one has ω ≪ H<sup>n</sup> and/or H<sup>n</sup> ≪ ω on ∂Ω?
 What are the implications of ω ≪ H<sup>n</sup> and H<sup>n</sup> ≪ ω on ∂Ω?

• **F. and M. Riesz**(1916): If  $\Omega \subset \mathbb{R}^2$  is simply connected,  $\mathcal{H}^1(\partial \Omega) < \infty$  then

 $\omega \ll \mathcal{H}^1 \ll \omega \quad \text{on} \quad \partial \Omega.$ 

- **Lavrentiev**(1936): Quantitative version.
- **Ziemer**(1974):  $\mathcal{H}^2 \not\ll \omega$  for some topological sphere in  $\mathbb{R}^3$ .
- **Wu**(1986):  $\omega \ll \mathcal{H}^2$  for some topological sphere in  $\mathbb{R}^3$ .
- **Bishop and Jones**(1990):  $\omega \ll \mathcal{H}^1$  for a connected domain in  $\mathbb{R}^2$ .

Let  $\Omega \subset \mathbb{R}^{n+1}$  be a domain and let  $\omega$  be harmonic measure for  $\Omega$ .

### Question

Under what conditions, one has ω ≪ H<sup>n</sup> and/or H<sup>n</sup> ≪ ω on ∂Ω?
 What are the implications of ω ≪ H<sup>n</sup> and H<sup>n</sup> ≪ ω on ∂Ω?

• F. and M. Riesz(1916): If  $\Omega \subset \mathbb{R}^2$  is simply connected,  $\mathcal{H}^1(\partial \Omega) < \infty$  then

 $\omega \ll \mathcal{H}^1 \ll \omega$  on  $\partial \Omega$ .

- **Lavrentiev**(1936): Quantitative version.
- **Ziemer**(1974):  $\mathcal{H}^2 \not\ll \omega$  for some topological sphere in  $\mathbb{R}^3$ .
- **Wu**(1986):  $\omega \ll \mathcal{H}^2$  for some topological sphere in  $\mathbb{R}^3$ .
- **Bishop and Jones**(1990):  $\omega \ll \mathcal{H}^1$  for a connected domain in  $\mathbb{R}^2$ .

Let  $\Omega \subset \mathbb{R}^{n+1}$  be a domain and let  $\omega$  be harmonic measure for  $\Omega$ .

## Question

Under what conditions, one has ω ≪ H<sup>n</sup> and/or H<sup>n</sup> ≪ ω on ∂Ω?
 What are the implications of ω ≪ H<sup>n</sup> and H<sup>n</sup> ≪ ω on ∂Ω?

• F. and M. Riesz(1916): If  $\Omega \subset \mathbb{R}^2$  is simply connected,  $\mathcal{H}^1(\partial \Omega) < \infty$  then

 $\omega \ll \mathcal{H}^1 \ll \omega$  on  $\partial \Omega$ .

- **Lavrentiev**(1936): Quantitative version.
- **Ziemer**(1974):  $\mathcal{H}^2 \ll \omega$  for some topological sphere in  $\mathbb{R}^3$ .
- **Wu**(1986):  $\omega \ll \mathcal{H}^2$  for some topological sphere in  $\mathbb{R}^3$ .
- **Bishop and Jones**(1990):  $\omega \ll \mathcal{H}^1$  for a connected domain in  $\mathbb{R}^2$ .

Let  $\Omega \subset \mathbb{R}^{n+1}$  be a domain and let  $\omega$  be harmonic measure for  $\Omega$ .

## Question

Under what conditions, one has ω ≪ H<sup>n</sup> and/or H<sup>n</sup> ≪ ω on ∂Ω?
 What are the implications of ω ≪ H<sup>n</sup> and H<sup>n</sup> ≪ ω on ∂Ω?

• F. and M. Riesz(1916): If  $\Omega \subset \mathbb{R}^2$  is simply connected,  $\mathcal{H}^1(\partial \Omega) < \infty$  then

$$\omega \ll \mathcal{H}^1 \ll \omega$$
 on  $\partial \Omega$ .

- **Lavrentiev**(1936): Quantitative version.
- **Ziemer**(1974):  $\mathcal{H}^2 \not\ll \omega$  for some topological sphere in  $\mathbb{R}^3$ .
- **Wu**(1986):  $\omega \ll \mathcal{H}^2$  for some topological sphere in  $\mathbb{R}^3$ .

• **Bishop and Jones**(1990):  $\omega \ll \mathcal{H}^1$  for a connected domain in  $\mathbb{R}^2$ .

Let  $\Omega \subset \mathbb{R}^{n+1}$  be a domain and let  $\omega$  be harmonic measure for  $\Omega$ .

## Question

Under what conditions, one has ω ≪ H<sup>n</sup> and/or H<sup>n</sup> ≪ ω on ∂Ω?
 What are the implications of ω ≪ H<sup>n</sup> and H<sup>n</sup> ≪ ω on ∂Ω?

• F. and M. Riesz(1916): If  $\Omega \subset \mathbb{R}^2$  is simply connected,  $\mathcal{H}^1(\partial \Omega) < \infty$  then

$$\omega \ll \mathcal{H}^1 \ll \omega \quad \text{on} \quad \partial \Omega.$$

- **Lavrentiev**(1936): Quantitative version.
- **Ziemer**(1974):  $\mathcal{H}^2 \not\ll \omega$  for some topological sphere in  $\mathbb{R}^3$ .
- **Wu**(1986):  $\omega \ll \mathcal{H}^2$  for some topological sphere in  $\mathbb{R}^3$ .

• Bishop and Jones(1990):  $\omega \ll \mathcal{H}^1$  for a connected domain in  $\mathbb{R}^2$ .

Ω is NTA = {
 Interior Corkscrew and Harnack Chain.
 Exterior Corkscrew.

•  $\Omega$  is 1-sided NTA  $\equiv$  **Interior** Corkscrew and Harnack Chain.



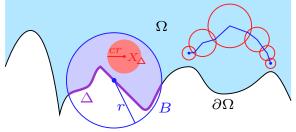


ONTA domains need not be graph domains or of finite perimeter.

• E is called n-Ahlfors-David regular (ADR) if

 $cr^n \leq \mathcal{H}^n(E \cap B(x,r)) \leq cr^n$  whenever  $x \in \partial \Omega$ .

- Ω is NTA = {
   Interior Corkscrew and Harnack Chain.
   Exterior Corkscrew.
- $\Omega$  is 1-sided NTA  $\equiv$  **Interior** Corkscrew and Harnack Chain.





ONTA domains need not be graph domains or of finite perimeter.

• E is called n-Ahlfors-David regular (ADR) if

 $cr^n \leq \mathcal{H}^n(E \cap B(x,r)) \leq cr^n$  whenever  $x \in \partial \Omega$ .

- Ω is NTA = {
   Interior Corkscrew and Harnack Chain.
   Exterior Corkscrew.
- $\Omega$  is 1-sided NTA  $\equiv$  **Interior** Corkscrew and Harnack Chain.





• E is called n-Ahlfors-David regular (ADR) if

 $cr^n \leq \mathcal{H}^n(E \cap B(x,r)) \leq cr^n$  whenever  $x \in \partial \Omega$ .

- Ω is NTA = {
   Interior Corkscrew and Harnack Chain.
   Exterior Corkscrew.
- $\Omega$  is 1-sided NTA  $\equiv$  **Interior** Corkscrew and Harnack Chain.





⊗ NTA domains need not be graph domains or of finite perimeter.

• E is called n-Ahlfors-David regular (ADR) if

 $cr^n \leq \mathcal{H}^n(E \cap B(x,r)) \leq cr^n$  whenever  $x \in \partial \Omega$ .

# $A_{\infty}$ and $A_{\infty}^{\text{weak}}$ conditions

Let  $E \subset \mathbb{R}^{n+1}$  be ADR set and let  $\Delta_0 = E \cap B(z, r), z \in E$ .

# $A_{\infty}$ Condition

 $\omega \in A_{\infty}(\mathcal{H}^n|_{\Delta_0})$  if there exist C and  $\theta$  such that for all  $\Delta = B(x, r') \cap E$  where  $x, \in E$  and  $B(x, r') \subset B(z, r)$  one has

$$\frac{\omega(F)}{\omega(\Delta)} \le C \left(\frac{\mathcal{H}^n(F)}{\mathcal{H}^n(\Delta)}\right)^{\theta} \text{ for every Borel set } F \subset \Delta.$$

## $A_{\infty}^{\text{weak}}$ Condition

 $\omega \in A_{\infty}^{\text{weak}}(\mathcal{H}^{n}|_{\Delta_{0}})$  if there exist C and  $\theta$  such that for all  $\Delta = B(x, r') \cap E$  with  $B(x, 2r') \subset B(z, r)$  one has

 $\frac{\omega(F)}{\omega(2\Delta)} \le C \left(\frac{\mathcal{H}^n(F)}{\mathcal{H}^n(\Delta)}\right)^{\theta} \text{ for every Borel set } F \subset \Delta.$ 

# $A_{\infty}$ and $A_{\infty}^{\text{weak}}$ conditions

Let  $E \subset \mathbb{R}^{n+1}$  be ADR set and let  $\Delta_0 = E \cap B(z, r), z \in E$ .

# $A_{\infty}$ Condition

 $\omega \in A_{\infty}(\mathcal{H}^n|_{\Delta_0})$  if there exist C and  $\theta$  such that for all  $\Delta = B(x, r') \cap E$  where  $x, \in E$  and  $B(x, r') \subset B(z, r)$  one has

$$\frac{\omega(F)}{\omega(\Delta)} \le C \left(\frac{\mathcal{H}^n(F)}{\mathcal{H}^n(\Delta)}\right)^{\theta} \text{ for every Borel set } F \subset \Delta.$$

# $A_{\infty}^{\text{weak}}$ Condition

 $\omega \in A_{\infty}^{\text{weak}}(\mathcal{H}^n|_{\Delta_0})$  if there exist C and  $\theta$  such that for all  $\Delta = B(x, r') \cap E$  with  $B(x, 2r') \subset B(z, r)$  one has

$$\frac{\omega(F)}{\omega(2\Delta)} \leq C \left(\frac{\mathcal{H}^n(F)}{\mathcal{H}^n(\Delta)}\right)^{\theta} \text{ for every Borel set } F \subset \Delta$$

- **Dahlberg**(1977):  $\Omega$  is a **Lipschitz** domain then  $\omega \in A_{\infty}(\mathcal{H}^n|_{\partial\Omega})$ .
- Semmes(1989) & David and Jerison(1990):

If  $\Omega$  is **NTA** and  $\partial \Omega$  is **ADR** then  $\omega \in A_{\infty}(\mathcal{H}^n|_{\partial \Omega})$ .

- **Badger**(2012):
- If  $\Omega \subset \mathbb{R}^{n+1}$  is **NTA** then  $\omega \ll \mathcal{H}^n \ll \omega$  on a *n*-rectifiable set  $A \subset \partial \Omega$

$$\mathbf{A} = \left\{ x \in \partial\Omega; \ \lim \inf_{r \to 0} \frac{\mathcal{H}^n(\partial\Omega \cap B(x, r))}{r^n} < \infty \right\}$$

2 If Ω ⊂ ℝ<sup>n+1</sup> is NTA and  $\mathcal{H}^n(\partial \Omega) < \infty$  then  $\partial \Omega$  is *n*-rectifiable and  $\mathcal{H}^n \ll \omega$  on  $\partial \Omega$ .

Portions of the **boundary** should be contained in a **nice** set(like a graph or curve).

- **Dahlberg**(1977):  $\Omega$  is a **Lipschitz** domain then  $\omega \in A_{\infty}(\mathcal{H}^n|_{\partial\Omega})$ .
- Semmes(1989) & David and Jerison(1990):

If  $\Omega$  is **NTA** and  $\partial \Omega$  is **ADR** then  $\omega \in A_{\infty}(\mathcal{H}^n|_{\partial \Omega})$ .

- **Badger**(2012):
- **()** If  $\Omega \subset \mathbb{R}^{n+1}$  is **NTA** then  $\omega \ll \mathcal{H}^n \ll \omega$  on a *n*-rectifiable set  $A \subset \partial \Omega$

$$\mathbf{A} = \left\{ x \in \partial\Omega; \ \lim \inf_{r \to 0} \frac{\mathcal{H}^n(\partial\Omega \cap B(x, r))}{r^n} < \infty \right\}$$

2 If Ω ⊂ ℝ<sup>n+1</sup> is NTA and  $\mathcal{H}^n(\partial \Omega) < \infty$  then  $\partial \Omega$  is n-rectifiable and  $\mathcal{H}^n \ll \omega$  on  $\partial \Omega$ .

Portions of the **boundary** should be contained in a **nice** set(like a graph or curve).

- **Dahlberg**(1977):  $\Omega$  is a **Lipschitz** domain then  $\omega \in A_{\infty}(\mathcal{H}^n|_{\partial\Omega})$ .
- Semmes(1989) & David and Jerison(1990):

If  $\Omega$  is **NTA** and  $\partial \Omega$  is **ADR** then  $\omega \in A_{\infty}(\mathcal{H}^n|_{\partial \Omega})$ .

- **Badger**(2012):
- **4** If  $\Omega \subset \mathbb{R}^{n+1}$  is **NTA** then  $\omega \ll \mathcal{H}^n \ll \omega$  on a *n*-rectifiable set  $A \subset \partial \Omega$

$$\mathbf{A} = \left\{ x \in \partial\Omega; \ \lim \inf_{r \to 0} \frac{\mathcal{H}^n(\partial\Omega \cap B(x, r))}{r^n} < \infty \right\}.$$

**2** If  $\Omega \subset \mathbb{R}^{n+1}$  is **NTA** and  $\mathcal{H}^n(\partial \Omega) < \infty$  then  $\partial \Omega$  is *n*-rectifiable and  $\mathcal{H}^n \ll \omega$  on  $\partial \Omega$ .

Portions of the **boundary** should be contained in a **nice** set(like a graph or curve).

- **Dahlberg**(1977):  $\Omega$  is a **Lipschitz** domain then  $\omega \in A_{\infty}(\mathcal{H}^n|_{\partial\Omega})$ .
- Semmes(1989) & David and Jerison(1990):

If  $\Omega$  is **NTA** and  $\partial \Omega$  is **ADR** then  $\omega \in A_{\infty}(\mathcal{H}^n|_{\partial \Omega})$ .

- **Badger**(2012):
- **4** If  $\Omega \subset \mathbb{R}^{n+1}$  is **NTA** then  $\omega \ll \mathcal{H}^n \ll \omega$  on a *n*-rectifiable set  $A \subset \partial \Omega$

$$\mathbf{A} = \left\{ x \in \partial\Omega; \ \lim \inf_{r \to 0} \frac{\mathcal{H}^n(\partial\Omega \cap B(x, r))}{r^n} < \infty \right\}.$$

**2** If  $\Omega \subset \mathbb{R}^{n+1}$  is **NTA** and  $\mathcal{H}^n(\partial \Omega) < \infty$  then  $\partial \Omega$  is *n*-rectifiable and  $\mathcal{H}^n \ll \omega$  on  $\partial \Omega$ .

Ortions of the **boundary** should be contained in a **nice** set(like a graph or curve).

- **Dahlberg**(1977):  $\Omega$  is a **Lipschitz** domain then  $\omega \in A_{\infty}(\mathcal{H}^n|_{\partial\Omega})$ .
- Semmes(1989) & David and Jerison(1990):

If  $\Omega$  is **NTA** and  $\partial \Omega$  is **ADR** then  $\omega \in A_{\infty}(\mathcal{H}^n|_{\partial \Omega})$ .

- **Badger**(2012):
- **4** If  $\Omega \subset \mathbb{R}^{n+1}$  is **NTA** then  $\omega \ll \mathcal{H}^n \ll \omega$  on a *n*-rectifiable set  $A \subset \partial \Omega$

$$\mathbf{A} = \left\{ x \in \partial\Omega; \ \lim \inf_{r \to 0} \frac{\mathcal{H}^n(\partial\Omega \cap B(x, r))}{r^n} < \infty \right\}.$$

**2** If  $\Omega \subset \mathbb{R}^{n+1}$  is **NTA** and  $\mathcal{H}^n(\partial \Omega) < \infty$  then  $\partial \Omega$  is *n*-rectifiable and  $\mathcal{H}^n \ll \omega$  on  $\partial \Omega$ .

Ortions of the **boundary** should be contained in a **nice** set(like a graph or curve).

## Theorem

# Let $\Omega$ be **1-sided NTA** and $\partial \Omega$ **ADR**. TFAE

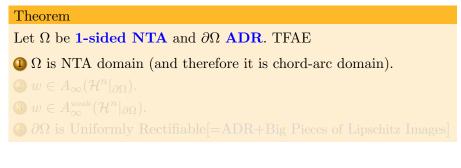
- (1)  $\Omega$  is NTA domain (and therefore it is chord-arc domain). (2)  $w \in A_{\infty}(\mathcal{H}^n|_{\partial\Omega}).$
- $3 w \in A^{\text{weak}}_{\infty}(\mathcal{H}^n|_{\partial\Omega}).$

 $@ \partial \Omega$  is Uniformly Rectifiable[=ADR+Big Pieces of Lipschitz Images]

 $\bigcirc \longrightarrow \bigcirc$  by David and Jerison and independently by Semmes.

 $2 \implies 3 \text{ is trivial.}$ 

 $3 \implies 4$  by Hofmann, Martell, and Uriarte-Tuero.

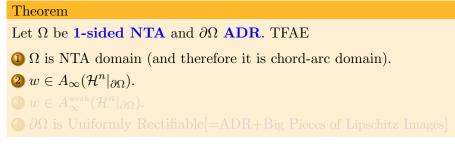


 $\mathbb{D} \implies \mathbb{Q}$  by David and Jerison and independently by Semmes.

 $2 \implies 3 \text{ is trivial.}$ 

 $3 \implies 4$  by Hofmann, Martell, and Uriarte-Tuero.

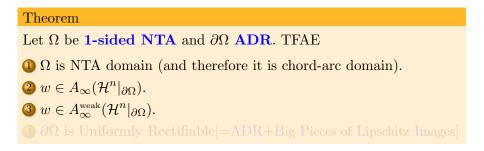
 $] \longrightarrow ]$  by Azzam, Hofmann, Martell, Nyström, and Toro.



 $2 \implies 3 \text{ is trivial.}$ 

 $3 \implies 4$  by Hofmann, Martell, and Uriarte-Tuero.

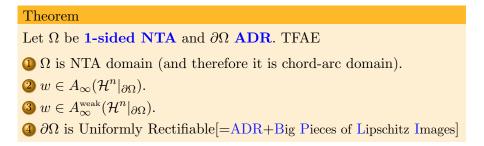
 $\longrightarrow$  (1) by Azzam, Hofmann, Martell, Nyström, and Toro.



 $2 \implies 3$  is trivial.

 $\implies$  by Hofmann, Martell, and Uriarte-Tuero.

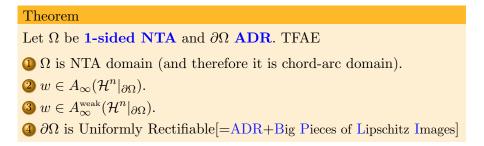
)  $\implies$  (1) by Azzam, Hofmann, Martell, Nyström, and Toro.



 $2 \implies 3 \text{ is trivial.}$ 

 $(3) \implies (4)$  by Hofmann, Martell, and Uriarte-Tuero.

 $) \implies (1)$  by Azzam, Hofmann, Martell, Nyström, and Toro.



 $2 \implies 3 \text{ is trivial.}$ 

 $3 \implies 4$  by Hofmann, Martell, and Uriarte-Tuero.

 $4 \implies 1$  by Azzam, Hofmann, Martell, Nyström, and Toro.

## Let $\Omega$ be **1-sided NTA** and $\partial \Omega$ be **ADR**. TFAE;

 $\partial \Omega$  is Rectifiable.

**Weak Existence of Ext. Corkscrew**: for  $\mathcal{H}^n$  a.e.  $x \in \partial \Omega$ 

 $\Delta(x,r), 0 < r < r_x, \text{ there exists } X^{ext}_{\Delta(x,r)} \text{ Ext. Corkscrew.}$ 

# $\begin{array}{l} \textcircled{O} \ \mathcal{H}^n \ll \omega \ on \ \partial\Omega. \\ \hline \textcircled{O} \ \partial\Omega \stackrel{a.e.}{=} \bigcup_N F_N \ where \ F_N = \partial\Omega_N \cap \partial\Omega, \ \Omega_N \subset \Omega \ is \ chord-arc. \\ \hline \textcircled{O} \ \partial\Omega \stackrel{a.e.}{=} \bigcup_N F_N \ s.t. \ (\mathcal{H}^n(F))^{\theta'_N} \lesssim_N \omega(F) \lesssim_N (\mathcal{H}^n(F))^{\theta_N}, \ \forall F \subset F_N. \end{array}$

• Mourgoglou: (lower ADR+ $\mathcal{H}^n|_{\partial\Omega}$  is locally finite) (1)  $\Longrightarrow$  (3)

Theorem A holds when  $\omega$  is replaced by *elliptic measures*  $\omega_L$  associated with real symmetric second order divergence form linear elliptic operators L with certain assumptions on the matrix A.

Theorem A (A., Badger, Hofmann, Martell) Let  $\Omega$  be **1-sided NTA** and  $\partial \Omega$  be **ADR**. TFAE; **(1)**  $\partial \Omega$  is Rectifiable.

• Mourgoglou: (lower ADR+ $\mathcal{H}^n|_{\partial\Omega}$  is locally finite)  $\square \implies \emptyset$ 

Theorem A holds when  $\omega$  is replaced by *elliptic measures*  $\omega_L$  associated with real symmetric second order divergence form linear elliptic operators L with certain assumptions on the matrix A.

Let  $\Omega$  be 1-sided NTA and  $\partial \Omega$  be ADR. TFAE;

**(1)**  $\partial \Omega$  is Rectifiable.

**2 Weak Existence of Ext. Corkscrew**: for  $\mathcal{H}^n$  a.e.  $x \in \partial \Omega$ 

 $\Delta(x,r), 0 < r < r_x, \text{ there exists } X^{ext}_{\Delta(x,r)} \text{ Ext. Corkscrew.}$ 

$$\begin{array}{l} \textcircled{O} \ \mathcal{H}^n \ll \omega \ on \ \partial\Omega. \\ \hline \textcircled{O} \ \partial\Omega \stackrel{a.e.}{=} \bigcup_N F_N \ where \ F_N = \partial\Omega_N \cap \partial\Omega, \ \Omega_N \subset \Omega \ is \ chord-arc. \\ \hline \textcircled{O} \ \partial\Omega \stackrel{a.e.}{=} \bigcup_N F_N \ s.t. \ (\mathcal{H}^n(F))^{\theta'_N} \lesssim_N \omega(F) \lesssim_N (\mathcal{H}^n(F))^{\theta_N}, \ \forall F \subset F_N. \end{array}$$

• Mourgoglou: (lower ADR+ $\mathcal{H}^n|_{\partial\Omega}$  is locally finite)  $\mathbb{1} \implies \mathbb{3}$ 

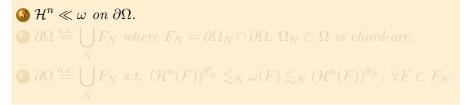
<sup>(a)</sup> Theorem A holds when  $\omega$  is replaced by *elliptic measures*  $\omega_L$  associated with real symmetric second order divergence form linear elliptic operators L with certain assumptions on the matrix A.

Let  $\Omega$  be 1-sided NTA and  $\partial \Omega$  be ADR. TFAE;

**(1)**  $\partial \Omega$  is Rectifiable.

**2** Weak Existence of Ext. Corkscrew: for  $\mathcal{H}^n$  a.e.  $x \in \partial \Omega$ 

 $\Delta(x,r), 0 < r < r_x, \text{ there exists } X^{ext}_{\Delta(x,r)} \text{ Ext. Corkscrew.}$ 



• Mourgoglou: (lower ADR+ $\mathcal{H}^n|_{\partial\Omega}$  is locally finite)  $\square \implies \mathbb{G}$ 

<sup>(a)</sup> Theorem A holds when  $\omega$  is replaced by *elliptic measures*  $\omega_L$  associated with real symmetric second order divergence form linear elliptic operators L with certain assumptions on the matrix A.

Let  $\Omega$  be 1-sided NTA and  $\partial \Omega$  be ADR. TFAE;

**(1)**  $\partial \Omega$  is Rectifiable.

**2** Weak Existence of Ext. Corkscrew: for  $\mathcal{H}^n$  a.e.  $x \in \partial \Omega$ 

 $\Delta(x,r), 0 < r < r_x, \text{ there exists } X^{ext}_{\Delta(x,r)} \text{ Ext. Corkscrew.}$ 

$$\begin{array}{l} \mathfrak{G} \ \mathcal{H}^{n} \ll \omega \ on \ \partial\Omega. \\ \mathfrak{G} \ \mathfrak{G} \ \mathfrak{G} \stackrel{a.e.}{=} \bigcup_{N} F_{N} \ where \ F_{N} = \partial\Omega_{N} \cap \partial\Omega, \ \Omega_{N} \subset \Omega \ is \ chord-arc. \\ \mathfrak{G} \ \mathfrak{G$$

• Mourgoglou: (lower ADR+ $\mathcal{H}^n|_{\partial\Omega}$  is locally finite)  $(1) \implies (3)$ 

Theorem A holds when  $\omega$  is replaced by *elliptic measures*  $\omega_L$  associated with real symmetric second order divergence form linear elliptic operators L with certain assumptions on the matrix A.

Let  $\Omega$  be 1-sided NTA and  $\partial \Omega$  be ADR. TFAE;

**(1)**  $\partial \Omega$  is Rectifiable.

**2** Weak Existence of Ext. Corkscrew: for  $\mathcal{H}^n$  a.e.  $x \in \partial \Omega$ 

 $\Delta(x,r), 0 < r < r_x, \text{ there exists } X^{ext}_{\Delta(x,r)} \text{ Ext. Corkscrew.}$ 

$$\begin{array}{l} \Im \ \mathcal{H}^{n} \ll \omega \ on \ \partial\Omega. \\ \Im \ \partial\Omega \stackrel{a.e.}{=} \bigcup_{N} F_{N} \ where \ F_{N} = \partial\Omega_{N} \cap \partial\Omega, \ \Omega_{N} \subset \Omega \ is \ chord-arc. \\ \Im \ \partial\Omega \stackrel{a.e.}{=} \bigcup_{N} F_{N} \ s.t. \ (\mathcal{H}^{n}(F))^{\theta'_{N}} \lesssim_{N} \omega(F) \lesssim_{N} (\mathcal{H}^{n}(F))^{\theta_{N}}, \ \forall F \subset F_{N}. \end{array}$$

• Mourgoglou: (lower ADR+ $\mathcal{H}^n|_{\partial\Omega}$  is locally finite)  $\square \implies \emptyset$ 

<sup>(a)</sup> Theorem A holds when  $\omega$  is replaced by *elliptic measures*  $\omega_L$  associated with real symmetric second order divergence form linear elliptic operators L with certain assumptions on the matrix A.

Let  $\Omega$  be 1-sided NTA and  $\partial \Omega$  be ADR. TFAE;

**(1)**  $\partial \Omega$  is Rectifiable.

**2** Weak Existence of Ext. Corkscrew: for  $\mathcal{H}^n$  a.e.  $x \in \partial \Omega$ 

 $\Delta(x,r), 0 < r < r_x, \text{ there exists } X^{ext}_{\Delta(x,r)} \text{ Ext. Corkscrew.}$ 

$$\begin{array}{l} \Im \ \mathcal{H}^{n} \ll \omega \ on \ \partial\Omega. \\ \Im \ \partial\Omega \stackrel{a.e.}{=} \bigcup_{N} F_{N} \ where \ F_{N} = \partial\Omega_{N} \cap \partial\Omega, \ \Omega_{N} \subset \Omega \ is \ chord-arc. \\ \Im \ \partial\Omega \stackrel{a.e.}{=} \bigcup_{N} F_{N} \ s.t. \ (\mathcal{H}^{n}(F))^{\theta'_{N}} \lesssim_{N} \omega(F) \lesssim_{N} (\mathcal{H}^{n}(F))^{\theta_{N}}, \ \forall F \subset F_{N}. \end{array}$$

• Mourgoglou: (lower ADR+ $\mathcal{H}^n|_{\partial\Omega}$  is locally finite)  $\mathbb{1} \Longrightarrow \mathbb{3}$ .

Theorem A holds when  $\omega$  is replaced by *elliptic measures*  $\omega_L$  associated with real symmetric second order divergence form linear elliptic operators L with certain assumptions on the matrix A.

Let  $\Omega$  be 1-sided NTA and  $\partial \Omega$  be ADR. TFAE;

**(1)**  $\partial \Omega$  is Rectifiable.

**2** Weak Existence of Ext. Corkscrew: for  $\mathcal{H}^n$  a.e.  $x \in \partial \Omega$ 

 $\Delta(x,r), 0 < r < r_x, \text{ there exists } X^{ext}_{\Delta(x,r)} \text{ Ext. Corkscrew.}$ 

$$\begin{array}{l} \Im \ \mathcal{H}^{n} \ll \omega \ on \ \partial\Omega. \\ \Im \ \partial\Omega \stackrel{a.e.}{=} \bigcup_{N} F_{N} \ where \ F_{N} = \partial\Omega_{N} \cap \partial\Omega, \ \Omega_{N} \subset \Omega \ is \ chord-arc. \\ \Im \ \partial\Omega \stackrel{a.e.}{=} \bigcup_{N} F_{N} \ s.t. \ (\mathcal{H}^{n}(F))^{\theta'_{N}} \lesssim_{N} \omega(F) \lesssim_{N} (\mathcal{H}^{n}(F))^{\theta_{N}}, \ \forall F \subset F_{N}. \end{array}$$

• Mourgoglou: (lower ADR+ $\mathcal{H}^n|_{\partial\Omega}$  is locally finite)  $(1) \implies (3)$ .

<sup>(a)</sup> Theorem A holds when  $\omega$  is replaced by *elliptic measures*  $\omega_L$  associated with real symmetric second order divergence form linear elliptic operators L with certain assumptions on the matrix A.

All results requires some strong connectivity hypothesis;

**1** Simply Connected or **2** Harnack Chain or **3** Corkscrew

Theorem[ $\Rightarrow$  Bortz and Holmann,  $\Leftarrow$  Holmann and Marte Let E be **ADR** and let  $\Omega = \mathbb{R}^{n+1} \setminus E$ . Then

E is Uniformly Rectifiable  $\iff E$  has BPGHME.

BPGHME= Big Pieces of Good Harmonic Measure Estimates:

- $\bigcirc \partial \Omega_Q$  is ADR.
- $\bigcirc \Omega_Q$  satisfies interior corkscrew condition.

 $\bigcirc \partial\Omega \text{ and } \partial\Omega_Q \text{ have a big overlap; } \mathcal{H}^n(\partial\Omega\cap Q) \gtrsim \mathcal{H}^n(Q).$ 

 $\textcircled{E} \omega_{\Omega_Q} \in A^{\text{weak}}_{\infty}(\mathcal{H}^n|_{\partial\Omega_Q}).$ 

All results requires some strong connectivity hypothesis;

1 Simply Connected or 2 Harnack Chain or 3 Corkscrew

**Theorem**  $\Rightarrow$  Bortz and Hofmann,  $\leftarrow$  Hofmann and Martell

Let E be **ADR** and let  $\Omega = \mathbb{R}^{n+1} \setminus E$ . Then

E is Uniformly Rectifiable  $\iff E$  has BPGHME.

BPGHME= Big Pieces of Good Harmonic Measure Estimates:

 $\bigcirc \partial \Omega_Q$  is ADR.

 $\bigcirc \Omega_Q$  satisfies interior corkscrew condition.

 $\bigcirc \partial \Omega$  and  $\partial \Omega_Q$  have a big overlap;  $\mathcal{H}^n(\partial \Omega \cap Q) \gtrsim \mathcal{H}^n(Q)$ .

 $\mathbb{D} \ \omega_{\Omega_Q} \in A^{\mathrm{weak}}_{\infty}(\mathcal{H}^n|_{\partial\Omega_Q}).$ 

All results requires some strong connectivity hypothesis;

**1** Simply Connected or **2** Harnack Chain or **3** Corkscrew

**Theorem** $\Rightarrow$  Bortz and Hofmann,  $\Leftarrow$  Hofmann and Martell

Let *E* be **ADR** and let  $\Omega = \mathbb{R}^{n+1} \setminus E$ . Then

E is Uniformly Rectifiable  $\iff E$  has BPGHME.

All results requires some strong connectivity hypothesis;

1 Simply Connected or 2 Harnack Chain or 3 Corkscrew

Theorem [ $\Rightarrow$  Bortz and Hofmann,  $\leftarrow$  Hofmann and Martell]

Let E be **ADR** and let  $\Omega = \mathbb{R}^{n+1} \setminus E$ . Then

E is Uniformly Rectifiable  $\iff E$  has BPGHME.

BPGHME= Big Pieces of Good Harmonic Measure Estimates:

- **B**  $\partial \Omega_Q$  is ADR.
- $\bigcirc \Omega_Q$  satisfies interior corkscrew condition.

 $\bigcirc \partial \Omega$  and  $\partial \Omega_Q$  have a big overlap;  $\mathcal{H}^n(\partial \Omega \cap Q) \gtrsim \mathcal{H}^n(Q)$ .

$$\textcircled{B} \omega_{\Omega_Q} \in A^{\text{weak}}_{\infty}(\mathcal{H}^n|_{\partial\Omega_Q}).$$

# Theorem[AHM<sup>3</sup>TV]

# • Let $\Omega \subset \mathbb{R}^{n+1}$ , $n \ge 1$ , open and connected.

• Let  $F \subset \partial \Omega$  with  $\mathcal{H}^n(F) < \infty$ .

(1) If  $\omega_{\Omega} \ll \mathcal{H}^n$  on  $F \implies \omega_{\Omega}|_F$  is *n*-rectifiable. (2) If  $\mathcal{H}^n \ll \omega_{\Omega}$  on  $F \implies F$  is *n*-rectifiable.

A Radon measure  $\mu$  on  $\mathbb{R}^{n+1}$  is *n*-rectifiable if its (any) Borel support can be covered by countably many (rotated) graphs of scalar Lipschitz functions on  $\mathbb{R}^n$  up to zero  $\mu$ -measure.

[AHM<sup>3</sup>TV]=Azzam, Hofmann, Martell, Mayboroda, Mourgoglou, Tolsa, and Volberg.

- Let  $\Omega \subset \mathbb{R}^{n+1}$ ,  $n \ge 1$ , open and connected.
- Let  $F \subset \partial \Omega$  with  $\mathcal{H}^n(F) < \infty$ .

(1) If  $\omega_{\Omega} \ll \mathcal{H}^n$  on  $F \implies \omega_{\Omega}|_F$  is *n*-rectifiable. (2) If  $\mathcal{H}^n \ll \omega_{\Omega}$  on  $F \implies F$  is *n*-rectifiable.

A Radon measure  $\mu$  on  $\mathbb{R}^{n+1}$  is *n*-rectifiable if its (any) Borel support can be covered by countably many (rotated) graphs of scalar Lipschitz functions on  $\mathbb{R}^n$  up to zero  $\mu$ -measure.

[AHM<sup>3</sup>TV]=Azzam, Hofmann, Martell, Mayboroda, Mourgoglou, Tolsa, and Volberg.

• Let  $\Omega \subset \mathbb{R}^{n+1}$ ,  $n \ge 1$ , open and connected.

• Let 
$$F \subset \partial \Omega$$
 with  $\mathcal{H}^n(F) < \infty$ .

A Radon measure  $\mu$  on  $\mathbb{R}^{n+1}$  is *n*-rectifiable if its (any) Borel support can be covered by countably many (rotated) graphs of scalar Lipschitz functions on  $\mathbb{R}^n$  up to zero  $\mu$ -measure.

[AHM<sup>3</sup>TV]=Azzam, Hofmann, Martell, Mayboroda, Mourgoglou, Tolsa, and Volberg.

• Let 
$$\Omega \subset \mathbb{R}^{n+1}$$
,  $n \ge 1$ , open and connected.

• Let 
$$F \subset \partial \Omega$$
 with  $\mathcal{H}^n(F) < \infty$ .

1) If  $\omega_{\Omega} \ll \mathcal{H}^n$  on  $F \implies \omega_{\Omega}|_F$  is *n*-rectifiable. 2) If  $\mathcal{H}^n \ll \omega_{\Omega}$  on  $F \implies F$  is *n*-rectifiable.

A Radon measure  $\mu$  on  $\mathbb{R}^{n+1}$  is *n*-rectifiable if its (any) Borel support can be covered by countably many (rotated) graphs of scalar Lipschitz functions on  $\mathbb{R}^n$  up to zero  $\mu$ -measure.

# [AHM<sup>3</sup>TV]=Azzam, Hofmann, Martell, Mayboroda, Mourgoglou, Tolsa, and Volberg.

• Let 
$$\Omega \subset \mathbb{R}^{n+1}$$
,  $n \ge 1$ , open and connected.

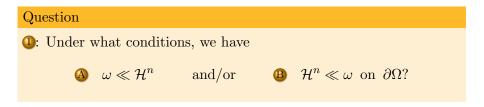
• Let 
$$F \subset \partial \Omega$$
 with  $\mathcal{H}^n(F) < \infty$ .

**1** If  $\omega_{\Omega} \ll \mathcal{H}^n$  on  $F \implies \omega_{\Omega}|_F$  is *n*-rectifiable. **2** If  $\mathcal{H}^n \ll \omega_{\Omega}$  on  $F \implies F$  is *n*-rectifiable.

A Radon measure  $\mu$  on  $\mathbb{R}^{n+1}$  is *n*-rectifiable if its (any) Borel support can be covered by countably many (rotated) graphs of scalar Lipschitz functions on  $\mathbb{R}^n$  up to zero  $\mu$ -measure.

[AHM<sup>3</sup>TV]=Azzam, Hofmann, Martell, Mayboroda, Mourgoglou, Tolsa, and Volberg.

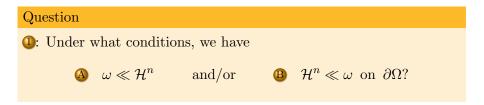
# Let $\Omega \subset \mathbb{R}^{n+1}$ be a domain and let $\omega$ be the harmonic measure for $\Omega$ .



• weakening the **Ahlfors-David Regularity** condition.

• weakening the Interior Corkscrew condition

# Let $\Omega \subset \mathbb{R}^{n+1}$ be a domain and let $\omega$ be the harmonic measure for $\Omega$ .



Goals ~> {

 weakening the Ahlfors-David Regularity condition.
 weakening the Interior Corkscrew condition.

# Weakening the Lower Ahlfors-David Regularity condition

•  $E \subset \mathbb{R}^{n+1}$ ,  $n \ge 1$ , closed set with locally finite  $\mathcal{H}^n$ -measure. Lower Ahlfors-David Regularity:  $r^n \lesssim \mathcal{H}^n(E \cap B(x,r)), \forall x \in E$ .

#### WLADR

 $\mathcal{H}^{n}|_{E}$  satisfies the Weak Lower Ahlfors-David regular condition (WLADR) if

$$\mathcal{H}^n(E \setminus E_*) = 0,$$

$$E_* = \left\{ x \in E : \inf_{\substack{\mathbf{y} \in \mathbf{B}(\mathbf{x},\rho) \cap \mathbf{E} \\ \mathbf{0} < \mathbf{r} < \rho}} \frac{\mathcal{H}^n(B(y,r) \cap E)}{r^n} > 0, \text{ for some } \rho > 0 \right\}.$$

i.e.: For  $x \in E_*$ , there exists a small ball  $B_x$  center at x and a constant  $c_x$  such that the lower ADR condition holds for all balls  $B \subset B_x$  with constant  $c_x$ .

#### 🖲 WLADR is **weaker** than Lower ADR.

# Weakening the Lower Ahlfors-David Regularity condition

•  $E \subset \mathbb{R}^{n+1}$ ,  $n \ge 1$ , closed set with locally finite  $\mathcal{H}^n$ -measure. Lower Ahlfors-David Regularity:  $r^n \lesssim \mathcal{H}^n(E \cap B(x, r)), \forall x \in E$ .

#### WLADR

 $\mathcal{H}^{n}|_{E}$  satisfies the Weak Lower Ahlfors-David regular condition (WLADR) if

$$\mathcal{H}^n(E \setminus E_*) = 0,$$

$$E_* = \left\{ x \in E : \inf_{\substack{\mathbf{y} \in \mathbf{B}(\mathbf{x},\rho) \cap \mathbf{E} \\ \mathbf{0} < \mathbf{r} < \rho}} \frac{\mathcal{H}^n(B(y,r) \cap E)}{r^n} > 0, \text{ for some } \rho > 0 \right\}.$$

i.e.: For  $x \in E_*$ , there exists a small ball  $B_x$  center at x and a constant  $c_x$  such that the lower ADR condition holds for all balls  $B \subset B_x$  with constant  $c_x$ .

WLADR is weaker than Lower ADR.

# Weakening the Lower Ahlfors-David Regularity condition

•  $E \subset \mathbb{R}^{n+1}$ ,  $n \ge 1$ , closed set with locally finite  $\mathcal{H}^n$ -measure. Lower Ahlfors-David Regularity:  $r^n \lesssim \mathcal{H}^n(E \cap B(x,r)), \forall x \in E$ .

#### WLADR

 $\mathcal{H}^{n}|_{E}$  satisfies the Weak Lower Ahlfors-David regular condition (WLADR) if

$$\mathcal{H}^n(E \setminus E_*) = 0,$$

$$E_* = \left\{ x \in E : \inf_{\substack{\mathbf{y} \in \mathbf{B}(\mathbf{x},\rho) \cap \mathbf{E} \\ \mathbf{0} < \mathbf{r} < \rho}} \frac{\mathcal{H}^n(B(y,r) \cap E)}{r^n} > 0, \text{ for some } \rho > 0 \right\}.$$

i.e.: For  $x \in E_*$ , there exists a small ball  $B_x$  center at x and a constant  $c_x$  such that the lower ADR condition holds for all balls  $B \subset B_x$  with constant  $c_x$ .

#### WLADR is weaker than Lower ADR.

Let  $\Omega \subset \mathbb{R}^{n+1}$  be a domain,  $n \geq 1$ .

Interior corkscrew condition: for some uniform constant c, 0 < c < 1, and for every ball B(x, r) centered on  $\partial\Omega$  with  $0 < r < \operatorname{diam}(\partial\Omega)$ , there is a ball  $B(\tilde{x}, cr) \subset B(x, r) \cap \Omega$ .

#### Interior Measure Theoretic Boundary

The Interior Measure Theoretic Boundary  $\partial_+\Omega$  is defined as

$$\partial_+\Omega := \left\{ x \in \partial\Omega : \lim_{r \to 0^+} \sup_{|B(x,r) \cap \Omega|} > 0 
ight\}.$$

<sup>(a)</sup> If  $x \in \partial \Omega$  satisfies **interior corkcscrew** condition then  $x \in \partial_+ \Omega$ .

Let  $\Omega \subset \mathbb{R}^{n+1}$  be a domain,  $n \geq 1$ .

Interior corkscrew condition: for some uniform constant c, 0 < c < 1, and for every ball B(x, r) centered on  $\partial\Omega$  with  $0 < r < \operatorname{diam}(\partial\Omega)$ , there is a ball  $B(\tilde{x}, cr) \subset B(x, r) \cap \Omega$ .

#### Interior Measure Theoretic Boundary

The Interior Measure Theoretic Boundary  $\partial_+\Omega$  is defined as

$$\partial_+\Omega := \left\{ x \in \partial\Omega: \ \limsup_{r \to 0^+} \frac{|B(x,r) \cap \Omega|}{|B(x,r)|} > 0 \right\}.$$

If  $x \in \partial \Omega$  satisfies **interior corkcscrew** condition then  $x \in \partial_+ \Omega$ .

Let  $\Omega \subset \mathbb{R}^{n+1}$  be a domain,  $n \geq 1$ .

Interior corkscrew condition: for some uniform constant c, 0 < c < 1, and for every ball B(x, r) centered on  $\partial\Omega$  with  $0 < r < \operatorname{diam}(\partial\Omega)$ , there is a ball  $B(\tilde{x}, cr) \subset B(x, r) \cap \Omega$ .

#### Interior Measure Theoretic Boundary

The Interior Measure Theoretic Boundary  $\partial_+\Omega$  is defined as

$$\partial_+\Omega := \left\{ x \in \partial\Omega: \ \limsup_{r \to 0^+} \frac{|B(x,r) \cap \Omega|}{|B(x,r)|} > 0 \right\}.$$

**(3)** If  $x \in \partial \Omega$  satisfies **interior corkcscrew** condition then  $x \in \partial_+ \Omega$ .

#### Theorem B (A., Bortz, Hofmann, Martell)

- Let  $E \subset \mathbb{R}^{n+1}$ ,  $n \ge 1$ , be a closed set,
- E have locally finite  $\mathcal{H}^n$ -measure,
- E satisfy the WLADR condition.

#### Then

$$E \text{ is } n-rectifiable \iff E \subset Z \cup \Big(\bigcup_j \partial \Omega_j\Big).$$

③ {Ω<sub>j</sub>}<sub>j</sub> is a countable collection of bounded Lipschitz domains,
③ Ω<sub>j</sub> ⊂ ℝ<sup>n+1</sup> \ E for every j,
③ Z ⊂ E with H<sup>n</sup>(Z) = 0.

#### Theorem B (A., Bortz, Hofmann, Martell)

- Let  $E \subset \mathbb{R}^{n+1}$ ,  $n \ge 1$ , be a closed set,
- E have locally finite  $\mathcal{H}^n$ -measure,
- E satisfy the WLADR condition. Then

$$E \text{ is } n\text{-rectifiable } \iff E \subset Z \cup \Big(\bigcup_j \partial \Omega_j\Big).$$

(Ω<sub>j</sub>)<sub>j</sub> is a countable collection of bounded Lipschitz domains,
(Ω<sub>j</sub>) ⊂ ℝ<sup>n+1</sup> \ E for every j,
(Ω Z ⊂ E with H<sup>n</sup>(Z) = 0.

#### Theorem B (A., Bortz, Hofmann, Martell)

- Let  $E \subset \mathbb{R}^{n+1}$ ,  $n \ge 1$ , be a closed set,
- E have locally finite  $\mathcal{H}^n$ -measure,
- E satisfy the WLADR condition. Then

$$E \text{ is } n-rectifiable \iff E \subset Z \cup \Big(\bigcup_j \partial \Omega_j\Big).$$

④ {Ω<sub>j</sub>}<sub>j</sub> is a countable collection of bounded Lipschitz domains,
◎ Ω<sub>j</sub> ⊂ ℝ<sup>n+1</sup> \ E for every j,
◎ Z ⊂ E with H<sup>n</sup>(Z) = 0.

#### Theorem B (A., Bortz, Hofmann, Martell)

- Let  $E \subset \mathbb{R}^{n+1}$ ,  $n \ge 1$ , be a closed set,
- E have locally finite  $\mathcal{H}^n$ -measure,
- E satisfy the WLADR condition. Then

$$E \text{ is } n-rectifiable \iff E \subset Z \cup \Big(\bigcup_j \partial \Omega_j\Big).$$

④ {Ω<sub>j</sub>}<sub>j</sub> is a countable collection of bounded Lipschitz domains,
 ℬ Ω<sub>j</sub> ⊂ ℝ<sup>n+1</sup> \ E for every j,

 $\bigcirc Z \subset E \text{ with } \mathcal{H}^n(Z) = 0.$ 

#### Theorem B (A., Bortz, Hofmann, Martell)

- Let  $E \subset \mathbb{R}^{n+1}$ ,  $n \ge 1$ , be a closed set,
- E have locally finite  $\mathcal{H}^n$ -measure,
- E satisfy the WLADR condition. Then

$$E \text{ is } n-rectifiable \iff E \subset Z \cup \Big(\bigcup_j \partial \Omega_j\Big).$$

④ {Ω<sub>j</sub>}<sub>j</sub> is a countable collection of bounded Lipschitz domains,
 ③ Ω<sub>j</sub> ⊂ ℝ<sup>n+1</sup> \ E for every j,

 $O Z \subset E$  with  $\mathcal{H}^n(Z) = 0$ .

Let  $\Omega \subset \mathbb{R}^{n+1}$ ,  $n \geq 1$ , be an open and connected set. Let

- $\partial \Omega$  has locally finite  $\mathcal{H}^n$ -measure,
- $\partial \Omega$  satisfies the **WLADR** condition,
- $\mathcal{H}^n(\partial\Omega\setminus\partial_+\Omega)=0.$

Then

 $\partial \Omega \text{ is } n-rectifiable \ \mathcal{H}^n \ll \omega \quad on \quad \partial \Omega.$ 

**Mourgoglou**: Under stronger assumption that the reduced boundary  $\partial^* \Omega$  agrees with  $\partial \Omega \mathcal{H}^n$  almost everywhere.

 $^{*}\mathrm{By}$  combining one of the results from [AHM $^{3}\mathrm{TV}$ ].

Let  $\Omega \subset \mathbb{R}^{n+1}$ ,  $n \geq 1$ , be an open and connected set. Let

- $\partial \Omega$  has locally finite  $\mathcal{H}^n$ -measure,
- $\partial \Omega$  satisfies the **WLADR** condition,
- $\mathcal{H}^n(\partial\Omega\setminus\partial_+\Omega)=0.$

Then

 $\partial \Omega \text{ is } n\text{-rectifiable} \implies \mathcal{H}^n \ll \omega \quad on \quad \partial \Omega.$ 

**Mourgoglou**: Under stronger assumption that the reduced boundary  $\partial^* \Omega$  agrees with  $\partial \Omega \mathcal{H}^n$  almost everywhere.

 $^{*}\mathrm{By}$  combining one of the results from [AHM $^{3}\mathrm{TV}$ ].

Let  $\Omega \subset \mathbb{R}^{n+1}$ ,  $n \geq 1$ , be an open and connected set. Let

- $\partial \Omega$  has locally finite  $\mathcal{H}^n$ -measure,
- $\partial \Omega$  satisfies the **WLADR** condition,
- $\mathcal{H}^n(\partial\Omega\setminus\partial_+\Omega)=0.$

Then

$$\partial \Omega \text{ is } n-\text{rectifiable} \implies \mathcal{H}^n \ll \omega \quad on \quad \partial \Omega.$$

**Mourgoglou**: Under stronger assumption that the reduced boundary  $\partial^*\Omega$  agrees with  $\partial\Omega \mathcal{H}^n$  almost everywhere.

<sup>\*</sup>By combining one of the results from  $[AHM^{3}TV]$ .

Let  $\Omega \subset \mathbb{R}^{n+1}$ ,  $n \geq 1$ , be an open and connected set. Let

- $\partial \Omega$  has locally finite  $\mathcal{H}^n$ -measure,
- $\partial \Omega$  satisfies the **WLADR** condition,
- $\mathcal{H}^n(\partial\Omega\setminus\partial_+\Omega)=0.$

Then

$$\partial \Omega \text{ is } n-rectifiable \iff^* \mathcal{H}^n \ll \omega \quad on \quad \partial \Omega.$$

**Mourgoglou**: Under stronger assumption that the reduced boundary  $\partial^*\Omega$  agrees with  $\partial\Omega \mathcal{H}^n$  almost everywhere.

<sup>\*</sup>By combining one of the results from  $[AHM^{3}TV]$ .

Theorem D (A., Bortz, Hofmann, Martell)

Let  $\Omega \subset \mathbb{R}^{n+1}$ ,  $n \geq 1$ , be an open and connected set.

- Let  $\partial \Omega$  has locally finite  $\mathcal{H}^n$ -measure.
- Let  $\partial \Omega$  satisfies the **WLADR** condition.
- Let  $\mathcal{H}^n(\partial\Omega\setminus\partial_+\Omega)=0.$

Then

 $\partial \Omega = \mathbf{R} \cup \mathbf{P}$ 

where

*Q* R is n-rectifiable with H<sup>n</sup>|<sub>R</sub> ≪ ω.
 *Q* P is purely n-unrectifiable with ω(P) = 0.

Theorem D (A., Bortz, Hofmann, Martell)

Let  $\Omega \subset \mathbb{R}^{n+1}$ ,  $n \geq 1$ , be an open and connected set.

- Let  $\partial \Omega$  has locally finite  $\mathcal{H}^n$ -measure.
- Let  $\partial \Omega$  satisfies the **WLADR** condition.
- Let  $\mathcal{H}^n(\partial\Omega\setminus\partial_+\Omega)=0.$

Then

 $\partial \Omega = \mathbf{R} \cup \mathbf{P}$ 

where

Q R is n-rectifiable with H<sup>n</sup>|<sub>R</sub> ≪ ω.
 Q P is purely n-unrectifiable with ω(P) = 0.

Theorem D (A., Bortz, Hofmann, Martell)

Let  $\Omega \subset \mathbb{R}^{n+1}$ ,  $n \geq 1$ , be an open and connected set.

- Let  $\partial \Omega$  has locally finite  $\mathcal{H}^n$ -measure.
- Let  $\partial \Omega$  satisfies the **WLADR** condition.
- Let  $\mathcal{H}^n(\partial\Omega\setminus\partial_+\Omega)=0.$

Then

$$\partial \Omega = \mathbf{R} \cup \mathbf{P}$$

where

# **(2)** R is n-rectifiable with $\mathcal{H}^n|_R \ll \omega$ . **(2)** P is purely n-unrectifiable with $\omega(P) = 0$

Theorem D (A., Bortz, Hofmann, Martell)

Let  $\Omega \subset \mathbb{R}^{n+1}$ ,  $n \geq 1$ , be an open and connected set.

- Let  $\partial \Omega$  has locally finite  $\mathcal{H}^n$ -measure.
- Let  $\partial \Omega$  satisfies the **WLADR** condition.
- Let  $\mathcal{H}^n(\partial\Omega\setminus\partial_+\Omega)=0.$

Then

$$\partial \Omega = \mathbf{R} \cup \mathbf{P}$$

where

Q R is n-rectifiable with H<sup>n</sup>|<sub>R</sub> ≪ ω.
Q P is purely n-unrectifiable with ω(P) = 0.

# **Thanks!**