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Hn: n−dimensional Hausdorff measure and Rectifiability in Rn+1

Let A ⊂ Rn+1, 0 ≤ n <∞, 0 < δ ≤ ∞.

Hnδ (A) = inf{
∑

(diam(Ei))
n; A ⊂

∞⋃
i=1

Ei, diam(Ei) ≤ δ}.

Hn(A) := lim
δ→0
Hnδ (A) = sup

δ>0
Hnδ (A).

? E ⊂ Rn+1 is n−rectifiable if there exists a family {Σi}i of
Lipschitz images of Rn such that

Hn
(
E \

∞⋃
i=1

Σi

)
= 0,

? E ⊂ Rn+1 is n−purely unrectifiable if E contains NO
n−rectifiable set F with Hn(F ) > 0.
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Rectifiability and Absolute Continuity

Let Ω ⊂ Rn+1 be a domain and let ω be harmonic measure for Ω.

Question

1 Under what conditions, one has ω � Hn and/or Hn � ω on ∂Ω?
2 What are the implications of ω � Hn and Hn � ω on ∂Ω?

F. and M. Riesz(1916): If Ω ⊂ R2 is simply connected,
H1(∂Ω) <∞ then

ω � H1 � ω on ∂Ω.

Lavrentiev(1936): Quantitative version.

Ziemer(1974): H2 6� ω for some topological sphere in R3.

Wu(1986): ω 6� H2 for some topological sphere in R3.

Bishop and Jones(1990): ω 6� H1 for a connected domain in
R2.
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Non-Tangentially Accessible Domains & Ahlfors-David Regularity

Ω is NTA ≡

{
Interior Corkscrew and Harnack Chain.

Exterior Corkscrew.

Ω is 1-sided NTA ≡ Interior Corkscrew and Harnack Chain.

r B
∆

cr
X∆

∂Ω

Ω

No corkscrew

No Harnack chain

Credit: Chema Martell

? NTA domains need not be graph domains or of finite perimeter.

E is called n−Ahlfors-David regular (ADR) if

crn ≤Hn(E ∩B(x, r)) ≤ crn whenever x ∈ ∂Ω.

ADR = Lower ADR + Upper ADR.
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A∞ and Aweak

∞ conditions

Let E ⊂ Rn+1 be ADR set and let ∆0 = E ∩B(z, r), z ∈ E.

A∞ Condition

ω ∈ A∞(Hn|∆0) if there exist C and θ such that for all
∆ = B(x, r′) ∩ E where x,∈ E and B(x, r′) ⊂ B(z, r) one has

ω(F )

ω(∆)
≤ C

(
Hn(F )

Hn(∆)

)θ
for every Borel set F ⊂ ∆.

Aweak
∞ Condition

ω ∈ Aweak
∞ (Hn|∆0) if there exist C and θ such that for all

∆ = B(x, r′) ∩ E with B(x, 2r′) ⊂ B(z, r) one has

ω(F )

ω(2∆)
≤ C

(
Hn(F )

Hn(∆)

)θ
for every Borel set F ⊂ ∆.
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Global results in higher dimension

Dahlberg(1977): Ω is a Lipschitz domain then ω ∈ A∞(Hn|∂Ω).

Semmes(1989) & David and Jerison(1990):

If Ω is NTA and ∂Ω is ADR then ω ∈ A∞(Hn|∂Ω).

Badger(2012):

1 If Ω ⊂ Rn+1 is NTA then ω � Hn � ω on a n−rectifiable set
A ⊂ ∂Ω

A =

{
x ∈ ∂Ω; lim inf

r→0

Hn(∂Ω ∩B(x, r))

rn
<∞

}
.

2 If Ω ⊂ Rn+1 is NTA and Hn(∂Ω) <∞ then ∂Ω is n−rectifiable
and Hn � ω on ∂Ω.

? Portions of the boundary should be contained in a nice set(like
a graph or curve).

Azzam, Mourgoglou, and Tolsa(2015): ∃ NTA domain Ω with
Hn(∂Ω) <∞ such that ω 6� Hn|∂Ω.
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A characterization of uniform rectifiablity

Theorem

Let Ω be 1-sided NTA and ∂Ω ADR. TFAE

1 Ω is NTA domain (and therefore it is chord-arc domain).

2 w ∈ A∞(Hn|∂Ω).

3 w ∈ Aweak
∞ (Hn|∂Ω).

4 ∂Ω is Uniformly Rectifiable[=ADR+Big Pieces of Lipschitz Images]

1 =⇒ 2 by David and Jerison and independently by Semmes.

2 =⇒ 3 is trivial.

3 =⇒ 4 by Hofmann, Martell, and Uriarte-Tuero.

4 =⇒ 1 by Azzam, Hofmann, Martell, Nyström, and Toro.
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Theorem A (A., Badger, Hofmann, Martell)

Let Ω be 1-sided NTA and ∂Ω be ADR. TFAE;

1 ∂Ω is Rectifiable.

2 Weak Existence of Ext. Corkscrew: for Hn a.e. x ∈ ∂Ω

∆(x, r), 0 < r < rx, there exists Xext
∆(x,r) Ext. Corkscrew.

3 Hn � ω on ∂Ω.

4 ∂Ω
a.e.
=
⋃
N

FN where FN = ∂ΩN ∩ ∂Ω, ΩN ⊂ Ω is chord-arc.

5 ∂Ω
a.e.
=
⋃
N

FN s.t. (Hn(F ))θ
′
N .N ω(F ) .N (Hn(F ))θN , ∀F ⊂ FN .

Mourgoglou: (lower ADR+Hn|∂Ω is locally finite) 1 =⇒ 3 .

? Theorem A holds when ω is replaced by elliptic measures ωL
associated with real symmetric second order divergence form linear
elliptic operators L with certain assumptions on the matrix A.
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Is Connectivity really required?

All results requires some strong connectivity hypothesis;

1 Simply Connected or 2 Harnack Chain or 3 Corkscrew

Theorem[⇒ Bortz and Hofmann, ⇐ Hofmann and Martell]

Let E be ADR and let Ω = Rn+1 \ E. Then

E is Uniformly Rectifiable ⇐⇒ E has BPGHME.

BPGHME= Big Pieces of Good Harmonic Measure Estimates:

A Q ∈ D(E) then ∃ΩQ ⊂ Ω.

B ∂ΩQ is ADR.

C ΩQ satisfies interior corkscrew condition.

D ∂Ω and ∂ΩQ have a big overlap; Hn(∂Ω ∩Q) & Hn(Q).

E ωΩQ
∈ Aweak

∞ (Hn|∂ΩQ
).
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Absolute continuity implies rectifiability

Theorem[AHM3TV]

Let Ω ⊂ Rn+1, n ≥ 1, open and connected.

Let F ⊂ ∂Ω with Hn(F ) <∞.

1 If ωΩ � Hn on F =⇒ ωΩ|F is n−rectifiable.

2 If Hn � ωΩ on F =⇒ F is n−rectifiable.

A Radon measure µ on Rn+1 is n-rectifiable if its (any) Borel
support can be covered by countably many (rotated) graphs of
scalar Lipschitz functions on Rn up to zero µ−measure.

[AHM3TV]=Azzam, Hofmann, Martell, Mayboroda, Mourgoglou,
Tolsa, and Volberg.

? Assuming portion of the boundary contained in a nice rectifiable
set(like a graph or curve) is not an unreasonable assumption!
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Let Ω ⊂ Rn+1 be a domain and let ω be the harmonic measure for Ω.

Question

1 : Under what conditions, we have

A ω � Hn and/or B Hn � ω on ∂Ω?

Goals ;
{

weakening the Ahlfors-David Regularity condition.

weakening the Interior Corkscrew condition.

}
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Weakening the Lower Ahlfors-David Regularity condition

E ⊂ Rn+1, n ≥ 1, closed set with locally finite Hn-measure.

Lower Ahlfors-David Regularity: rn . Hn(E ∩B(x, r)), ∀x ∈ E.

WLADR

Hn|E satisfies the Weak Lower Ahlfors-David regular
condition (WLADR) if

Hn(E \ E∗) = 0,

E∗ =

x ∈ E : inf
y∈B(x,ρ)∩E

0<r<ρ

Hn(B(y, r) ∩ E)

rn
> 0, for some ρ > 0

 .

i.e.: For x ∈ E∗, there exists a small ball Bx center at x and a
constant cx such that the lower ADR condition holds for all balls
B ⊂ Bx with constant cx.

? WLADR is weaker than Lower ADR.
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Weakening the interior corkscrew condition

Let Ω ⊂ Rn+1 be a domain, n ≥ 1.

Interior corkscrew condition: for some uniform constant c, 0 < c < 1,
and for every ball B(x, r) centered on ∂Ω with 0 < r < diam(∂Ω),
there is a ball B(x̃, cr) ⊂ B(x, r) ∩ Ω.

Interior Measure Theoretic Boundary

The Interior Measure Theoretic Boundary ∂+Ω is defined as

∂+Ω :=

{
x ∈ ∂Ω : lim sup

r→0+

|B(x, r) ∩ Ω|
|B(x, r)|

> 0

}
.

? If x ∈ ∂Ω satisfies interior corkcscrew condition then x ∈ ∂+Ω.
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Covering of E with boundaries of bounded Lipschitz domains

Theorem B (A., Bortz, Hofmann, Martell)

Let E ⊂ Rn+1, n ≥ 1, be a closed set,

E have locally finite Hn-measure,

E satisfy the WLADR condition.

Then

E is n−rectifiable ⇐⇒ E ⊂ Z ∪
(⋃

j

∂Ωj

)
.

A {Ωj}j is a countable collection of bounded Lipschitz domains,

B Ωj ⊂ Rn+1 \ E for every j,

C Z ⊂ E with Hn(Z) = 0.
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Rectifiability is necessary and sufficient for absolute continuity

Theorem C (A., Bortz, Hofmann, Martell)

Let Ω ⊂ Rn+1, n ≥ 1, be an open and connected set. Let

∂Ω has locally finite Hn-measure,

∂Ω satisfies the WLADR condition,

Hn(∂Ω \ ∂+Ω) = 0.

Then
∂Ω is n−rectifiable Hn � ω on ∂Ω.

Mourgoglou: Under stronger assumption that the reduced
boundary ∂∗Ω agrees with ∂Ω Hn almost everywhere.

∗By combining one of the results from [AHM3TV].



Rectifiability is necessary and sufficient for absolute continuity

Theorem C (A., Bortz, Hofmann, Martell)

Let Ω ⊂ Rn+1, n ≥ 1, be an open and connected set. Let

∂Ω has locally finite Hn-measure,

∂Ω satisfies the WLADR condition,

Hn(∂Ω \ ∂+Ω) = 0.

Then
∂Ω is n−rectifiable =⇒ Hn � ω on ∂Ω.

Mourgoglou: Under stronger assumption that the reduced
boundary ∂∗Ω agrees with ∂Ω Hn almost everywhere.

∗By combining one of the results from [AHM3TV].



Rectifiability is necessary and sufficient for absolute continuity

Theorem C (A., Bortz, Hofmann, Martell)

Let Ω ⊂ Rn+1, n ≥ 1, be an open and connected set. Let

∂Ω has locally finite Hn-measure,

∂Ω satisfies the WLADR condition,

Hn(∂Ω \ ∂+Ω) = 0.

Then
∂Ω is n−rectifiable =⇒ Hn � ω on ∂Ω.

Mourgoglou: Under stronger assumption that the reduced
boundary ∂∗Ω agrees with ∂Ω Hn almost everywhere.

∗By combining one of the results from [AHM3TV].



Rectifiability is necessary and sufficient for absolute continuity

Theorem C (A., Bortz, Hofmann, Martell)

Let Ω ⊂ Rn+1, n ≥ 1, be an open and connected set. Let

∂Ω has locally finite Hn-measure,

∂Ω satisfies the WLADR condition,

Hn(∂Ω \ ∂+Ω) = 0.

Then
∂Ω is n−rectifiable ⇐⇒∗ Hn � ω on ∂Ω.

Mourgoglou: Under stronger assumption that the reduced
boundary ∂∗Ω agrees with ∂Ω Hn almost everywhere.

∗By combining one of the results from [AHM3TV].



Local Result

Theorem D (A., Bortz, Hofmann, Martell)

Let Ω ⊂ Rn+1, n ≥ 1, be an open and connected set.

Let ∂Ω has locally finite Hn-measure.

Let ∂Ω satisfies the WLADR condition.

Let Hn(∂Ω \ ∂+Ω) = 0.

Then
∂Ω = R ∪P

where

1 R is n−rectifiable with Hn|R � ω.

2 P is purely n−unrectifiable with ω(P ) = 0.
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Thanks!


