Rectifiability, interior approximation and Absolute continuity of Harmonic Measure

Murat Akman

CSIC-UAM-UC3M-UCM

Seminario de Análisis y Aplicaciones April 22, 2016 - Depto. Matemáticas, UAM

Let $A \subset \mathbb{R}^m$, $0 \le n < \infty$, $0 < \delta \le \infty$.

$$\mathcal{H}^{n}_{\delta}(A) = \inf \left\{ \sum_{i=1}^{\infty} (\operatorname{diam}(E_{i}))^{n}; \ A \subset \bigcup_{i=1}^{\infty} E_{i}, \ \operatorname{diam}(E_{i}) \leq \delta \right\}.$$

•
$$\mathcal{H}^n(A) = \lim_{\delta \to 0} \mathcal{H}^n_{\delta}(A) = \sup_{\delta > 0} \mathcal{H}^n_{\delta}(A).$$

- (1) \mathcal{H}^n is a Borel measure.
- 2 Translation invariant: $\mathcal{H}^n(\lambda E) = \lambda^n \mathcal{H}^n(E)$ for all $\lambda > 0$.
- $3 \mathcal{H}^s \equiv 0 \text{ for } s > m.$
- $If \ \alpha > \alpha' \ then \ \mathcal{H}^{\alpha}(E) > 0 \to \mathcal{H}^{\alpha'}(E) = \infty.$
- (5) If $f : \mathbb{R}^m \to \mathbb{R}^s$ is a Lipschitz then $\mathcal{H}^n(f(E)) \leq \operatorname{Lip}(f)^n \mathcal{H}^n(E)$. (6) \mathcal{H}^m measure coincides with the Lebesgue measure

Let $A \subset \mathbb{R}^m$, $0 \le n < \infty$, $0 < \delta \le \infty$.

$$\mathcal{H}^{n}_{\delta}(A) = \inf \left\{ \sum_{i=1}^{\infty} (\operatorname{diam}(E_{i}))^{n}; \ A \subset \bigcup_{i=1}^{\infty} E_{i}, \operatorname{diam}(E_{i}) \leq \delta \right\}.$$

•
$$\mathcal{H}^n(A) = \lim_{\delta \to 0} \mathcal{H}^n_{\delta}(A) = \sup_{\delta > 0} \mathcal{H}^n_{\delta}(A).$$

- (1) \mathcal{H}^n is a Borel measure.
- 2 Translation invariant: $\mathcal{H}^n(\lambda E) = \lambda^n \mathcal{H}^n(E)$ for all $\lambda > 0$.
- $3 \mathcal{H}^s \equiv 0 \text{ for } s > m.$
- $If \ \alpha > \alpha' \ then \ \mathcal{H}^{\alpha}(E) > 0 \to \mathcal{H}^{\alpha'}(E) = \infty.$
- **(5)** If $f : \mathbb{R}^m \to \mathbb{R}^s$ is a Lipschitz then $\mathcal{H}^n(f(E)) \leq \operatorname{Lip}(f)^n \mathcal{H}^n(E)$. **(6)** \mathcal{H}^m measure coincides with the Lebesgue measure

Let $A \subset \mathbb{R}^m$, $0 \le n < \infty$, $0 < \delta \le \infty$.

$$\mathcal{H}^{n}_{\delta}(A) = \inf \left\{ \sum_{i=1}^{\infty} (\operatorname{diam}(E_{i}))^{n}; \ A \subset \bigcup_{i=1}^{\infty} E_{i}, \operatorname{diam}(E_{i}) \leq \delta \right\}.$$

•
$$\mathcal{H}^n(A) = \lim_{\delta \to 0} \mathcal{H}^n_{\delta}(A) = \sup_{\delta > 0} \mathcal{H}^n_{\delta}(A).$$

- (1) \mathcal{H}^n is a Borel measure.
- 2 Translation invariant: $\mathcal{H}^n(\lambda E) = \lambda^n \mathcal{H}^n(E)$ for all $\lambda > 0$.
- $3 \mathcal{H}^s \equiv 0 \text{ for } s > m.$
- (4) If $\alpha > \alpha'$ then $\mathcal{H}^{\alpha}(E) > 0 \to \mathcal{H}^{\alpha'}(E) = \infty$.
- **(5)** If $f : \mathbb{R}^m \to \mathbb{R}^s$ is a Lipschitz then $\mathcal{H}^n(f(E)) \leq \operatorname{Lip}(f)^n \mathcal{H}^n(E)$.

Let $A \subset \mathbb{R}^m$, $0 \le n < \infty$, $0 < \delta \le \infty$.

$$\mathcal{H}^{n}_{\delta}(A) = \inf \left\{ \sum_{i=1}^{\infty} (\operatorname{diam}(E_{i}))^{n}; \ A \subset \bigcup_{i=1}^{\infty} E_{i}, \operatorname{diam}(E_{i}) \leq \delta \right\}.$$

•
$$\mathcal{H}^n(A) = \lim_{\delta \to 0} \mathcal{H}^n_\delta(A) = \sup_{\delta > 0} \mathcal{H}^n_\delta(A).$$

- **(1)** \mathcal{H}^n is a Borel measure.
- 2 Translation invariant: $\mathcal{H}^n(\lambda E) = \lambda^n \mathcal{H}^n(E)$ for all $\lambda > 0$.
- (3) $\mathcal{H}^s \equiv 0$ for s > m.
- $If \ \alpha > \alpha' \ then \ \mathcal{H}^{\alpha}(E) > 0 \to \mathcal{H}^{\alpha'}(E) = \infty.$
- $5 If f : \mathbb{R}^m \to \mathbb{R}^s is a Lipschitz then \mathcal{H}^n(f(E)) \le Lip(f)^n \mathcal{H}^n(E).$
 -) \mathcal{H}^m measure coincides with the Lebesgue measure.

Let $A \subset \mathbb{R}^m$, $0 \le n < \infty$, $0 < \delta \le \infty$.

$$\mathcal{H}^{n}_{\delta}(A) = \inf \left\{ \sum_{i=1}^{\infty} (\operatorname{diam}(E_{i}))^{n}; \ A \subset \bigcup_{i=1}^{\infty} E_{i}, \operatorname{diam}(E_{i}) \leq \delta \right\}.$$

•
$$\mathcal{H}^n(A) = \lim_{\delta \to 0} \mathcal{H}^n_\delta(A) = \sup_{\delta > 0} \mathcal{H}^n_\delta(A).$$

- **1** \mathcal{H}^n is a Borel measure.
- **2** Translation invariant: $\mathcal{H}^n(\lambda E) = \lambda^n \mathcal{H}^n(E)$ for all $\lambda > 0$.
- (3) $\mathcal{H}^s \equiv 0$ for s > m.
- $If \ \alpha > \alpha' \ then \ \mathcal{H}^{\alpha}(E) > 0 \to \mathcal{H}^{\alpha'}(E) = \infty.$
- **(5)** If $f : \mathbb{R}^m \to \mathbb{R}^s$ is a Lipschitz then $\mathcal{H}^n(f(E)) \leq \operatorname{Lip}(f)^n \mathcal{H}^n(E)$.
 - $\mathfrak{G} \mathcal{H}^m$ measure coincides with the Lebesgue measure.

Let $A \subset \mathbb{R}^m$, $0 \le n < \infty$, $0 < \delta \le \infty$.

$$\mathcal{H}^{n}_{\delta}(A) = \inf \left\{ \sum_{i=1}^{\infty} (\operatorname{diam}(E_{i}))^{n}; \ A \subset \bigcup_{i=1}^{\infty} E_{i}, \operatorname{diam}(E_{i}) \leq \delta \right\}.$$

•
$$\mathcal{H}^n(A) = \lim_{\delta \to 0} \mathcal{H}^n_{\delta}(A) = \sup_{\delta > 0} \mathcal{H}^n_{\delta}(A).$$

- **(1)** \mathcal{H}^n is a Borel measure.
- **2** Translation invariant: $\mathcal{H}^n(\lambda E) = \lambda^n \mathcal{H}^n(E)$ for all $\lambda > 0$.
- $3 \mathcal{H}^s \equiv 0 \text{ for } s > m.$
- (4) If $\alpha > \alpha'$ then $\mathcal{H}^{\alpha}(E) > 0 \to \mathcal{H}^{\alpha'}(E) = \infty$.
- $(5) If f: \mathbb{R}^m \to \mathbb{R}^s is a Lipschitz then \mathcal{H}^n(f(E)) \le Lip(f)^n \mathcal{H}^n(E).$
- $\mathfrak{G} \mathcal{H}^m$ measure coincides with the Lebesgue measure.

Let $A \subset \mathbb{R}^m$, $0 \le n < \infty$, $0 < \delta \le \infty$.

$$\mathcal{H}^{n}_{\delta}(A) = \inf \left\{ \sum_{i=1}^{\infty} (\operatorname{diam}(E_{i}))^{n}; \ A \subset \bigcup_{i=1}^{\infty} E_{i}, \operatorname{diam}(E_{i}) \leq \delta \right\}.$$

•
$$\mathcal{H}^n(A) = \lim_{\delta \to 0} \mathcal{H}^n_\delta(A) = \sup_{\delta > 0} \mathcal{H}^n_\delta(A).$$

Properties of \mathcal{H}^n .

- **(1)** \mathcal{H}^n is a Borel measure.
- **2** Translation invariant: $\mathcal{H}^n(\lambda E) = \lambda^n \mathcal{H}^n(E)$ for all $\lambda > 0$.
- $3 \mathcal{H}^s \equiv 0 \text{ for } s > m.$

5 If f: ℝ^m → ℝ^s is a Lipschitz then Hⁿ(f(E)) ≤ Lip(f)ⁿHⁿ(E).
6 H^m measure coincides with the Lebesgue measure.

Let $A \subset \mathbb{R}^m$, $0 \le n < \infty$, $0 < \delta \le \infty$.

$$\mathcal{H}^{n}_{\delta}(A) = \inf \left\{ \sum_{i=1}^{\infty} (\operatorname{diam}(E_{i}))^{n}; \ A \subset \bigcup_{i=1}^{\infty} E_{i}, \operatorname{diam}(E_{i}) \leq \delta \right\}.$$

•
$$\mathcal{H}^n(A) = \lim_{\delta \to 0} \mathcal{H}^n_\delta(A) = \sup_{\delta > 0} \mathcal{H}^n_\delta(A).$$

Properties of \mathcal{H}^n .

- **(1)** \mathcal{H}^n is a Borel measure.
- **2** Translation invariant: $\mathcal{H}^n(\lambda E) = \lambda^n \mathcal{H}^n(E)$ for all $\lambda > 0$.
- $3 \mathcal{H}^s \equiv 0 \text{ for } s > m.$
- **(5)** If $f : \mathbb{R}^m \to \mathbb{R}^s$ is a Lipschitz then $\mathcal{H}^n(f(E)) \le \operatorname{Lip}(f)^n \mathcal{H}^n(E)$.

 \mathcal{H}^m measure coincides with the Lebesgue measure.

Let $A \subset \mathbb{R}^m$, $0 \le n < \infty$, $0 < \delta \le \infty$.

$$\mathcal{H}^{n}_{\delta}(A) = \inf \left\{ \sum_{i=1}^{\infty} (\operatorname{diam}(E_{i}))^{n}; \ A \subset \bigcup_{i=1}^{\infty} E_{i}, \operatorname{diam}(E_{i}) \leq \delta \right\}.$$

•
$$\mathcal{H}^n(A) = \lim_{\delta \to 0} \mathcal{H}^n_\delta(A) = \sup_{\delta > 0} \mathcal{H}^n_\delta(A).$$

- **1** \mathcal{H}^n is a Borel measure.
- **2** Translation invariant: $\mathcal{H}^n(\lambda E) = \lambda^n \mathcal{H}^n(E)$ for all $\lambda > 0$.
- $3 \mathcal{H}^s \equiv 0 \text{ for } s > m.$
- (5) If f: ℝ^m → ℝ^s is a Lipschitz then Hⁿ(f(E)) ≤ Lip(f)ⁿHⁿ(E).
 (6) H^m measure coincides with the Lebesgue measure.

Let $\Sigma = f(\mathbb{R}^n)$ be a Lipschitz image of \mathbb{R}^n .

• $E \subset \mathbb{R}^m$ is *n*-rectifiable, $n \in \{1, \ldots, m\}$, if there exists a family $\{\Sigma_i\}_i$ of Lipschitz images of \mathbb{R}^n such that

$$\mathcal{H}^n\left(E\setminus\bigcup_{i=1}^\infty\Sigma_i\right)=0,$$

i.e.
$$E \subset \left(\bigcup_{i=1}^{\infty} \Sigma_i\right) \cup \Sigma_0$$
 with $\mathcal{H}^n(\Sigma_0) = 0.$

• $E \subset \mathbb{R}^m$ is *n*-purely unrectifiable if $0 < \mathcal{H}^n(E) < \infty$ and $\mathcal{H}^n(\pi_L(E)) = 0$ for almost every *n*-dimensional plane $L \subset \mathbb{R}^m$.

Let $\Sigma = f(\mathbb{R}^n)$ be a Lipschitz image of \mathbb{R}^n .

• $E \subset \mathbb{R}^m$ is *n*-rectifiable, $n \in \{1, ..., m\}$, if there exists a family $\{\Sigma_i\}_i$ of Lipschitz images of \mathbb{R}^n such that

$$\mathcal{H}^n\left(E\setminus\bigcup_{i=1}^\infty\Sigma_i\right)=0,$$

i.e.
$$E \subset \left(\bigcup_{i=1}^{\infty} \Sigma_i\right) \cup \Sigma_0$$
 with $\mathcal{H}^n(\Sigma_0) = 0.$

• $E \subset \mathbb{R}^m$ is *n*-purely unrectifiable if $0 < \mathcal{H}^n(E) < \infty$ and $\mathcal{H}^n(\pi_L(E)) = 0$ for almost every *n*-dimensional plane $L \subset \mathbb{R}^m$.

𝔅 E ⊂ ℝ^m is *n*-purely unrectifiable if *E* contains NO *n*-rectifiable set *F* with $\mathcal{H}^n(F) > 0$.

Let $\Sigma = f(\mathbb{R}^n)$ be a Lipschitz image of \mathbb{R}^n .

• $E \subset \mathbb{R}^m$ is *n*-rectifiable, $n \in \{1, ..., m\}$, if there exists a family $\{\Sigma_i\}_i$ of Lipschitz images of \mathbb{R}^n such that

$$\mathcal{H}^n\left(E\setminus\bigcup_{i=1}^\infty\Sigma_i\right)=0,$$

i.e.
$$E \subset \left(\bigcup_{i=1}^{\infty} \Sigma_i\right) \cup \Sigma_0$$
 with $\mathcal{H}^n(\Sigma_0) = 0.$

• $E \subset \mathbb{R}^m$ is *n*-purely unrectifiable if $0 < \mathcal{H}^n(E) < \infty$ and $\mathcal{H}^n(\pi_L(E)) = 0$ for almost every *n*-dimensional plane $L \subset \mathbb{R}^m$.

𝔅 E ⊂ ℝ^m is *n*-purely unrectifiable if *E* contains NO *n*-rectifiable set *F* with $\mathcal{H}^n(F) > 0$.

Let $\Sigma = f(\mathbb{R}^n)$ be a Lipschitz image of \mathbb{R}^n .

• $E \subset \mathbb{R}^m$ is *n*-rectifiable, $n \in \{1, ..., m\}$, if there exists a family $\{\Sigma_i\}_i$ of Lipschitz images of \mathbb{R}^n such that

$$\mathcal{H}^n\left(E\setminus\bigcup_{i=1}^\infty\Sigma_i\right)=0,$$

i.e.
$$E \subset \left(\bigcup_{i=1}^{\infty} \Sigma_i\right) \cup \Sigma_0$$
 with $\mathcal{H}^n(\Sigma_0) = 0.$

• $E \subset \mathbb{R}^m$ is *n*-purely unrectifiable if $0 < \mathcal{H}^n(E) < \infty$ and $\mathcal{H}^n(\pi_L(E)) = 0$ for almost every *n*-dimensional plane $L \subset \mathbb{R}^m$.

 $\mathfrak{B} \subset \mathbb{R}^m$ is *n*-purely unrectifiable if *E* contains NO *n*-rectifiable set *F* with $\mathcal{H}^n(F) > 0$.

Let $\Sigma = f(\mathbb{R}^n)$ be a Lipschitz image of \mathbb{R}^n .

• $E \subset \mathbb{R}^m$ is *n*-rectifiable, $n \in \{1, ..., m\}$, if there exists a family $\{\Sigma_i\}_i$ of Lipschitz images of \mathbb{R}^n such that

$$\mathcal{H}^n\left(E\setminus\bigcup_{i=1}^\infty\Sigma_i\right)=0,$$

i.e.
$$E \subset \left(\bigcup_{i=1}^{\infty} \Sigma_i\right) \cup \Sigma_0$$
 with $\mathcal{H}^n(\Sigma_0) = 0.$

• $E \subset \mathbb{R}^m$ is *n*-purely unrectifiable if $0 < \mathcal{H}^n(E) < \infty$ and $\mathcal{H}^n(\pi_L(E)) = 0$ for almost every *n*-dimensional plane $L \subset \mathbb{R}^m$.

 $\mathfrak{S} E \subset \mathbb{R}^m$ is *n*-purely unrectifiable if *E* contains NO *n*-rectifiable set *F* with $\mathcal{H}^n(F) > 0$.

The usual example is 4-corner Cantor set.

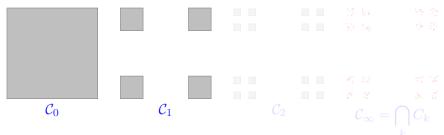
• There exists c > 1 such that for each $z \in \mathcal{C}_{\infty}$ and $r \in (0, \sqrt{2})$

$$c^{-1}r \leq \mathcal{H}^1(\mathcal{C}_\infty \cap B(z,r)) \leq cr$$

- For almost every line L in \mathbb{R}^2 , $\mathcal{H}^1(\pi_L(\mathcal{C}_\infty)) = 0$.
- Hence \mathcal{C}_{∞} is a purely 1-unrectifiable.

 ${}^{\textcircled{O}}$ Every rectifiable curve intersects \mathcal{C}_{∞} in a set of zero \mathcal{H}^1 -measure.

The usual example is 4-corner Cantor set.



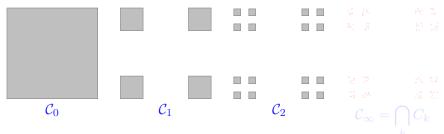
• There exists c > 1 such that for each $z \in \mathcal{C}_{\infty}$ and $r \in (0, \sqrt{2})$

 $c^{-1}r \leq \mathcal{H}^1(\mathcal{C}_\infty \cap B(z,r)) \leq cr$

- For almost every line L in \mathbb{R}^2 , $\mathcal{H}^1(\pi_L(\mathcal{C}_\infty)) = 0$.
- Hence \mathcal{C}_{∞} is a purely 1-unrectifiable.

 ${}^{\textcircled{O}}$ Every rectifiable curve intersects \mathcal{C}_{∞} in a set of zero \mathcal{H}^1 -measure.

The usual example is 4-corner Cantor set.



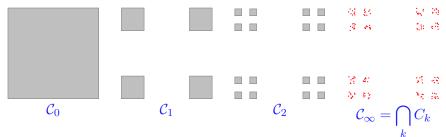
• There exists c > 1 such that for each $z \in \mathcal{C}_{\infty}$ and $r \in (0, \sqrt{2})$

 $c^{-1}r \leq \mathcal{H}^1(\mathcal{C}_\infty \cap B(z,r)) \leq cr$

- For almost every line L in \mathbb{R}^2 , $\mathcal{H}^1(\pi_L(\mathcal{C}_\infty)) = 0$.
- Hence \mathcal{C}_{∞} is a purely 1-unrectifiable.

Solution Every rectifiable curve intersects \mathcal{C}_{∞} in a set of zero \mathcal{H}^1 -measure.

The usual example is 4-corner Cantor set.



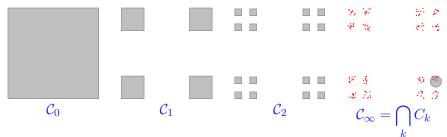
• There exists c > 1 such that for each $z \in \mathcal{C}_{\infty}$ and $r \in (0, \sqrt{2})$

 $c^{-1}r \leq \mathcal{H}^1(\mathcal{C}_\infty \cap B(z,r)) \leq cr$

- For almost every line L in \mathbb{R}^2 , $\mathcal{H}^1(\pi_L(\mathcal{C}_\infty)) = 0$.
- Hence \mathcal{C}_{∞} is a purely 1-unrectifiable.

 ${}^{>}_{>}$ Every rectifiable curve intersects \mathcal{C}_{∞} in a set of zero \mathcal{H}^1 -measure.

The usual example is 4-corner Cantor set.



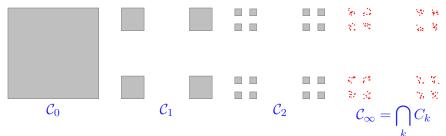
• There exists c > 1 such that for each $z \in \mathcal{C}_{\infty}$ and $r \in (0, \sqrt{2})$

$$c^{-1}r \leq \mathcal{H}^1(\mathcal{C}_\infty \cap B(z,r)) \leq cr$$

- For almost every line L in \mathbb{R}^2 , $\mathcal{H}^1(\pi_L(\mathcal{C}_\infty)) = 0$.
- Hence \mathcal{C}_{∞} is a purely 1-unrectifiable.

 ${}^{\textcircled{O}}$ Every rectifiable curve intersects \mathcal{C}_{∞} in a set of zero \mathcal{H}^1 -measure.

The usual example is 4-corner Cantor set.



• There exists c > 1 such that for each $z \in \mathcal{C}_{\infty}$ and $r \in (0, \sqrt{2})$

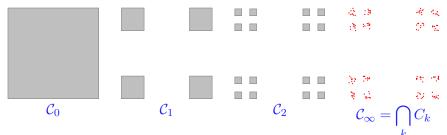
$$c^{-1}r \leq \mathcal{H}^1(\mathcal{C}_\infty \cap B(z,r)) \leq cr$$

• For almost every line L in \mathbb{R}^2 , $\mathcal{H}^1(\pi_L(\mathcal{C}_\infty)) = 0$.

• Hence \mathcal{C}_{∞} is a purely 1-unrectifiable.

 \ge Every rectifiable curve intersects \mathcal{C}_{∞} in a set of zero \mathcal{H}^1 -measure.

The usual example is 4-corner Cantor set.



• There exists c > 1 such that for each $z \in \mathcal{C}_{\infty}$ and $r \in (0, \sqrt{2})$

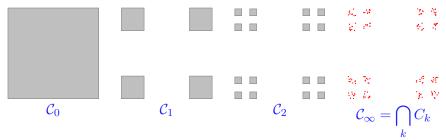
$$c^{-1}r \leq \mathcal{H}^1(\mathcal{C}_\infty \cap B(z,r)) \leq cr$$

• For almost every line L in \mathbb{R}^2 , $\mathcal{H}^1(\pi_L(\mathcal{C}_\infty)) = 0$.

• Hence \mathcal{C}_{∞} is a purely 1-unrectifiable.

Every rectifiable curve intersects \mathcal{C}_{∞} in a set of zero \mathcal{H}^1 -measure.

The usual example is 4-corner Cantor set.



• There exists c > 1 such that for each $z \in \mathcal{C}_{\infty}$ and $r \in (0, \sqrt{2})$

$$c^{-1}r \leq \mathcal{H}^1(\mathcal{C}_\infty \cap B(z,r)) \leq cr$$

• For almost every line L in \mathbb{R}^2 , $\mathcal{H}^1(\pi_L(\mathcal{C}_\infty)) = 0$.

• Hence \mathcal{C}_{∞} is a purely 1-unrectifiable.

 \otimes Every rectifiable curve intersects \mathcal{C}_{∞} in a set of zero \mathcal{H}^1 -measure.

Besicovitch (1929-1939)

Suppose $E \subset \mathbb{R}^2$ and $0 < \mathcal{H}^1(E) < \infty$. Then

 $E = \mathbf{R} \cup P;$

• R is 1-rectifiable. • P is 1-purely unrectifiable.

Federer (1947)

Suppose $E \subset \mathbb{R}^m$, $n \in \mathbb{N}$ and $0 < \mathcal{H}^n(E) < \infty$. Then

 $E = R \cup P;$

Besicovitch (1929-1939)

Suppose $E \subset \mathbb{R}^2$ and $0 < \mathcal{H}^1(E) < \infty$. Then

 $E = \mathbf{R} \cup P;$

• R is 1-rectifiable. • P is 1-purely unrectifiable.

Federer (1947)

Suppose $E \subset \mathbb{R}^m$, $n \in \mathbb{N}$ and $0 < \mathcal{H}^n(E) < \infty$. Then

 $E = R \cup P;$

Besicovitch (1929-1939)

Suppose $E \subset \mathbb{R}^2$ and $0 < \mathcal{H}^1(E) < \infty$. Then

 $E = \mathbf{R} \cup P;$

• R is 1-rectifiable. • P is 1-purely unrectifiable.

Federer (1947)

Suppose $E \subset \mathbb{R}^m$, $n \in \mathbb{N}$ and $0 < \mathcal{H}^n(E) < \infty$. Then

 $E = \mathbf{R} \cup \mathbf{P};$

Besicovitch (1929-1939)

Suppose $E \subset \mathbb{R}^2$ and $0 < \mathcal{H}^1(E) < \infty$. Then

 $E = \mathbf{R} \cup P;$

• R is 1-rectifiable. • P is 1-purely unrectifiable.

Federer (1947)

Suppose $E \subset \mathbb{R}^m$, $n \in \mathbb{N}$ and $0 < \mathcal{H}^n(E) < \infty$. Then

 $E = \mathbf{R} \cup P;$

(a) The existence of approximate tangent n-planes.

B The existence of densities.

O The size of projections.

O O + O + O are due to Besicovitch, Federer, Mattila, Preiss, ...

(a) The existence of approximate tangent n-planes.

B The existence of densities.

O The size of projections.

O O + O + O are due to Besicovitch, Federer, Mattila, Preiss, ...

(a) The existence of approximate tangent n-planes.

^B The existence of densities.

O The size of projections.

O (O + O + O are due to Besicovitch, Federer, Mattila, Preiss, ...

0 Any other way? May be in terms of absolute continuity of harmonic measure ω

- (a) The existence of approximate tangent n-planes.
- ^B The existence of densities.
- The size of projections.

O O + O + O are due to Besicovitch, Federer, Mattila, Preiss, ...

- (a) The existence of approximate tangent n-planes.
- ^B The existence of densities.
- O The size of projections.

 ${}\otimes$ ${}\otimes$ + ${}\otimes$ + ${}\otimes$ are due to Besicovitch, Federer, Mattila, Preiss, ...

 Any other way? May be in terms of absolute continuity of harmonic measure ω

- (a) The existence of approximate tangent n-planes.
- ^B The existence of densities.
- **O** The size of projections.
- $\textcircled{\sc 0}$ $\textcircled{\sc 0}$ + $\textcircled{\sc 0}$ are due to Besicovitch, Federer, Mattila, Preiss, ...
- \bigcirc Any other way? May be in terms of absolute continuity of harmonic measure ω

Harmonic measure

• $\Omega \subset \mathbb{R}^{n+1}$, $n \ge 2$, connected and open.

• Harmonic measure $\{\omega^X\}_{X\in\Omega}$ family of probabilities on $\partial\Omega$ called harmonic measure of Ω with a pole at $X \in \Omega$ such that

$$u(X) = \int_{\partial\Omega} f(x) \, d\omega^X(x) \quad \text{solves} \quad (D) \begin{cases} \mathcal{L}u = 0 \text{ in } \Omega \\ u|_{\partial\Omega} = f \in C_c(\partial\Omega). \end{cases}$$

Courtesy of Chema Martell

• $\partial \Omega$ is *n*-Ahlfors-David regular (ADR) if

 $cr^n \leq \sigma(\Delta(x, r)) \leq cr^n$ whenever $x \in \partial \Omega$.

• ADR = Lower ADR + Upper ADR.

Harmonic measure

• $\Omega \subset \mathbb{R}^{n+1}$, $n \ge 2$, connected and open.

• Harmonic measure $\{\omega^X\}_{X \in \Omega}$ family of probabilities on $\partial \Omega$ called harmonic measure of Ω with a pole at $X \in \Omega$ such that

.

$$u(X) = \int_{\partial\Omega} f(x) \, d\omega^X(x) \quad \text{solves} \quad (D) \begin{cases} \mathcal{L}u = 0 \text{ in } \Omega \\ u|_{\partial\Omega} = f \in C_c(\partial\Omega). \end{cases}$$
Courtesy of Chema Martell
$$O \quad O \quad \text{Surface ball} \\ \Delta(x, r) = B(x, r) \cap \partial\Omega, \, x \in \partial\Omega. \end{cases}$$

$$\circ \quad \sigma = \mathcal{H}^n|_{\partial\Omega}.$$

• $\partial \Omega$ is *n*-Ahlfors-David regular (ADR) if

 $cr^n \leq \sigma(\Delta(x, r)) \leq cr^n$ whenever $x \in \partial \Omega$.

• ADR = Lower ADR + Upper ADR.

Harmonic measure

• $\Omega \subset \mathbb{R}^{n+1}$, $n \ge 2$, connected and open.

• Harmonic measure $\{\omega^X\}_{X \in \Omega}$ family of probabilities on $\partial \Omega$ called harmonic measure of Ω with a pole at $X \in \Omega$ such that

1

$$u(X) = \int_{\partial\Omega} f(x) \, d\omega^X(x) \quad \text{solves} \quad (D) \begin{cases} \mathcal{L}u = 0 \text{ in } \Omega \\ u|_{\partial\Omega} = f \in C_c(\partial\Omega). \end{cases}$$
Courtesy of Chema Martell
$$\Omega$$

$$\Omega$$

$$\Delta(x, r) = B(x, r) \cap \partial\Omega, \ x \in \partial\Omega.$$

$$\sigma = \mathcal{H}^n|_{\partial\Omega}.$$

• $\partial \Omega$ is *n*-Ahlfors-David regular (ADR) if

 $cr^n \leq \sigma(\Delta(x, r)) \leq cr^n$ whenever $x \in \partial \Omega$.

• ADR = Lower ADR + Upper ADR.

• $\Omega \subset \mathbb{R}^{n+1}$, $n \ge 2$, connected and open.

• Harmonic measure $\{\omega^X\}_{X \in \Omega}$ family of probabilities on $\partial \Omega$ called harmonic measure of Ω with a pole at $X \in \Omega$ such that

1

• $\partial \Omega$ is *n*-Ahlfors-David regular (ADR) if

 $cr^n \leq \sigma(\Delta(x, r)) \leq cr^n$ whenever $x \in \partial \Omega$.

• $\Omega \subset \mathbb{R}^{n+1}$, $n \ge 2$, connected and open.

• Harmonic measure $\{\omega^X\}_{X \in \Omega}$ family of probabilities on $\partial \Omega$ called harmonic measure of Ω with a pole at $X \in \Omega$ such that

.

• $\partial \Omega$ is *n*-Ahlfors-David regular (ADR) if

 $cr^n \leq \sigma(\Delta(x, r)) \leq cr^n$ whenever $x \in \partial \Omega$.

• $\Omega \subset \mathbb{R}^{n+1}$, $n \ge 2$, connected and open.

• Harmonic measure $\{\omega^X\}_{X \in \Omega}$ family of probabilities on $\partial \Omega$ called harmonic measure of Ω with a pole at $X \in \Omega$ such that

• $\partial \Omega$ is *n*-Ahlfors-David regular (ADR) if

 $cr^n \leq \sigma(\Delta(x, r)) \leq cr^n$ whenever $x \in \partial \Omega$.

• $\Omega \subset \mathbb{R}^{n+1}$, $n \ge 2$, connected and open.

• Harmonic measure $\{\omega^X\}_{X \in \Omega}$ family of probabilities on $\partial \Omega$ called harmonic measure of Ω with a pole at $X \in \Omega$ such that

1

• $\partial \Omega$ is *n*-Ahlfors-David regular (ADR) if

 $cr^n \leq \sigma(\Delta(x, r)) \leq cr^n$ whenever $x \in \partial \Omega$.

Let $\Omega \subset \mathbb{R}^{n+1}$ be a domain and let ω be the harmonic measure for Ω .

Question

Under what conditions, we have

 ${\color{black} \bigtriangleup} \omega \ll \mathcal{H}^n|_{\partial\Omega}? \qquad ext{and/or} \qquad extbf{(}$

• **F. and M. Riesz**(1916): If $\Omega \subset \mathbb{R}^2$ is simply connected, $\mathcal{H}^1(\partial \Omega) < \infty$ then

 $\omega \ll \mathcal{H}^1|_{\partial\Omega} \ll \omega.$

- **Lavrentiev**(1936): Quantitative version.
- **Ziemer**(1974): $\mathcal{H}^2 \not\ll \omega$ for some topological sphere in \mathbb{R}^3 .
- **Wu**(1986): $\omega \ll \mathcal{H}^2$ for some topological sphere in \mathbb{R}^3 .

Let $\Omega \subset \mathbb{R}^{n+1}$ be a domain and let ω be the harmonic measure for Ω .

Question

Under what conditions, we have

(A) $\omega \ll \mathcal{H}^n|_{\partial\Omega}$? and/or (B) $\mathcal{H}^n|_{\partial\Omega} \ll \omega$?

• **F. and M. Riesz**(1916): If $\Omega \subset \mathbb{R}^2$ is simply connected, $\mathcal{H}^1(\partial \Omega) < \infty$ then

 $\omega \ll \mathcal{H}^1|_{\partial\Omega} \ll \omega.$

- **Lavrentiev**(1936): Quantitative version.
- **Ziemer**(1974): $\mathcal{H}^2 \ll \omega$ for some topological sphere in \mathbb{R}^3 .
- **Wu**(1986): $\omega \ll \mathcal{H}^2$ for some topological sphere in \mathbb{R}^3 .

Let $\Omega \subset \mathbb{R}^{n+1}$ be a domain and let ω be the harmonic measure for Ω .

Question

Under what conditions, we have

(A) $\omega \ll \mathcal{H}^n|_{\partial\Omega}$? and/or (B) $\mathcal{H}^n|_{\partial\Omega} \ll \omega$?

• F. and M. Riesz(1916): If $\Omega \subset \mathbb{R}^2$ is simply connected, $\mathcal{H}^1(\partial \Omega) < \infty$ then

 $\omega \ll \mathcal{H}^1|_{\partial\Omega} \ll \omega.$

- **Lavrentiev**(1936): Quantitative version.
- **Ziemer**(1974): $\mathcal{H}^2 \ll \omega$ for some topological sphere in \mathbb{R}^3 .
- **Wu**(1986): $\omega \ll \mathcal{H}^2$ for some topological sphere in \mathbb{R}^3 .

Let $\Omega \subset \mathbb{R}^{n+1}$ be a domain and let ω be the harmonic measure for Ω .

Question

Under what conditions, we have

(A) $\omega \ll \mathcal{H}^n|_{\partial\Omega}$? and/or (B) $\mathcal{H}^n|_{\partial\Omega} \ll \omega$?

• **F.** and **M.** Riesz(1916): If $\Omega \subset \mathbb{R}^2$ is simply connected, $\mathcal{H}^1(\partial \Omega) < \infty$ then

 $\omega \ll \mathcal{H}^1|_{\partial\Omega} \ll \omega.$

- **Lavrentiev**(1936): Quantitative version.
- **Ziemer**(1974): $\mathcal{H}^2 \not\ll \omega$ for some topological sphere in \mathbb{R}^3 .
- **Wu**(1986): $\omega \not\ll \mathcal{H}^2$ for some topological sphere in \mathbb{R}^3 .

Let $\Omega \subset \mathbb{R}^{n+1}$ be a domain and let ω be the harmonic measure for Ω .

Question

Under what conditions, we have

(A) $\omega \ll \mathcal{H}^n|_{\partial\Omega}$? and/or (B) $\mathcal{H}^n|_{\partial\Omega} \ll \omega$?

• **F.** and **M.** Riesz(1916): If $\Omega \subset \mathbb{R}^2$ is simply connected, $\mathcal{H}^1(\partial \Omega) < \infty$ then

 $\omega \ll \mathcal{H}^1|_{\partial\Omega} \ll \omega.$

• **Lavrentiev**(1936): Quantitative version.

• **Ziemer**(1974): $\mathcal{H}^2 \ll \omega$ for some topological sphere in \mathbb{R}^3 .

• **Wu**(1986): $\omega \ll \mathcal{H}^2$ for some topological sphere in \mathbb{R}^3 .

Let $\Omega \subset \mathbb{R}^{n+1}$ be a domain and let ω be the harmonic measure for Ω .

Question

Under what conditions, we have

(A) $\omega \ll \mathcal{H}^n|_{\partial\Omega}$? and/or (B) $\mathcal{H}^n|_{\partial\Omega} \ll \omega$?

• **F. and M. Riesz**(1916): If $\Omega \subset \mathbb{R}^2$ is simply connected, $\mathcal{H}^1(\partial \Omega) < \infty$ then

 $\omega \ll \mathcal{H}^1|_{\partial\Omega} \ll \omega.$

• **Lavrentiev**(1936): Quantitative version.

• **Ziemer**(1974): $\mathcal{H}^2 \not\ll \omega$ for some topological sphere in \mathbb{R}^3 .

• Wu(1986): $\omega \ll \mathcal{H}^2$ for some topological sphere in \mathbb{R}^3 .

Let $\Omega \subset \mathbb{R}^{n+1}$ be a domain and let ω be the harmonic measure for Ω .

Question

Under what conditions, we have

(A) $\omega \ll \mathcal{H}^n|_{\partial\Omega}$? and/or (B) $\mathcal{H}^n|_{\partial\Omega} \ll \omega$?

• **F. and M. Riesz**(1916): If $\Omega \subset \mathbb{R}^2$ is simply connected, $\mathcal{H}^1(\partial \Omega) < \infty$ then

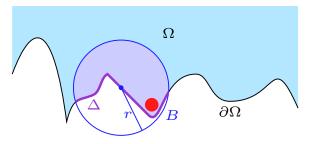
 $\omega \ll \mathcal{H}^1|_{\partial\Omega} \ll \omega.$

• **Lavrentiev**(1936): Quantitative version.

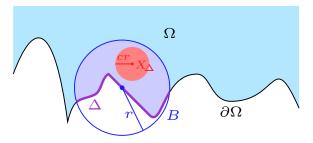
• **Ziemer**(1974): $\mathcal{H}^2 \ll \omega$ for some topological sphere in \mathbb{R}^3 .

• Wu(1986): $\omega \ll \mathcal{H}^2$ for some topological sphere in \mathbb{R}^3 .

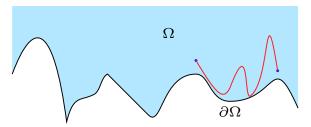
- Openness \sim Corkscrew condition (CS).
- Path-connectedness \rightsquigarrow Harnack chain condition (HC).



- Openness \rightsquigarrow Corkscrew condition (CS).
- Path-connectedness \rightsquigarrow Harnack chain condition (HC).

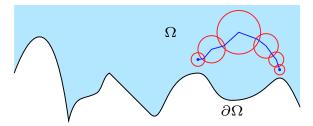


- Openness \rightsquigarrow Corkscrew condition (CS).
- Path-connectedness \sim Harnack chain condition (HC).

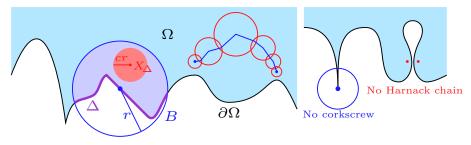


• Openness \sim Corkscrew condition (CS)

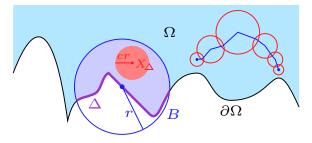
• Path-connectedness \sim Harnack chain condition (HC).



- Openness \rightsquigarrow Corkscrew condition (CS).
- Path-connectedness \sim Harnack chain condition (HC).



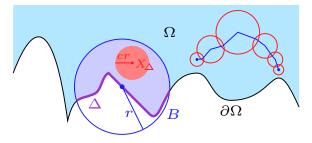
- Openness \rightsquigarrow Corkscrew condition (CS).
- Path-connectedness \sim Harnack chain condition (HC).



Courtesy of Chema Martell

Ω is NTA = {
 Interior Corkscrew and Harnack Chain.
 Exterior Corkscrew.

- Openness \rightsquigarrow Corkscrew condition (CS).
- Path-connectedness \sim Harnack chain condition (HC).

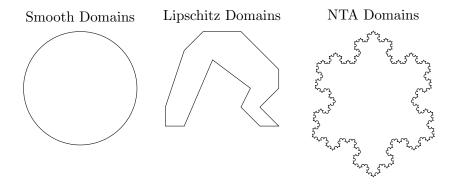


Courtesy of Chema Martell

• Ω is NTA \equiv **• Interior** Corkscrew and Harnack Chain. • Exterior Corkscrew.

• Ω is 1-sided NTA \equiv **Interior** Corkscrew and Harnack Chain.

Examples of such domains



😣 NTA domains need not be graph domains or of finite perimeter.

A_{∞} and A_{∞}^{weak} conditions

Let $E \subset \mathbb{R}^{n+1}$ be ADR set and let $\Delta_0 = E \cap B(z, r), z \in E$.

A_{∞} Condition

 $\omega \in A_{\infty}(\Delta_0)$ with respect to \mathcal{H}^n if there exist C and θ such that for all $\Delta = B(x, r') \cap E$ where $x, \in E$ and $B(x, r') \subset B(z, r)$ one has

$$\frac{\omega(F)}{\omega(\Delta)} \leq C \left(\frac{\mathcal{H}^n(F)}{\mathcal{H}^n(\Delta)}\right)^{\theta} \text{ for every Borel set } F \subset \Delta$$

A_{∞}^{weak} Condition

 $\omega \in A_{\infty}^{\text{weak}}(\Delta_0)$ with respect to \mathcal{H}^n if there exist C and θ such that for all $\Delta = B(x, r') \cap E$ with $B(x, 2r') \subset B(z, r)$ one has

$$\frac{\omega(F)}{\omega(2\Delta)} \le C \left(\frac{\mathcal{H}^n(F)}{\mathcal{H}^n(\Delta)}\right)^{\theta} \text{ for every Borel set } F \subset \Delta.$$

A_{∞} and A_{∞}^{weak} conditions

Let $E \subset \mathbb{R}^{n+1}$ be ADR set and let $\Delta_0 = E \cap B(z, r), z \in E$.

A_{∞} Condition

 $\omega \in A_{\infty}(\Delta_0)$ with respect to \mathcal{H}^n if there exist C and θ such that for all $\Delta = B(x, r') \cap E$ where $x, \in E$ and $B(x, r') \subset B(z, r)$ one has

$$\frac{\omega(F)}{\omega(\Delta)} \leq C \left(\frac{\mathcal{H}^n(F)}{\mathcal{H}^n(\Delta)}\right)^{\theta} \text{ for every Borel set } F \subset \Delta$$

A_{∞}^{weak} Condition

 $\omega \in A_{\infty}^{\text{weak}}(\Delta_0)$ with respect to \mathcal{H}^n if there exist C and θ such that for all $\Delta = B(x, r') \cap E$ with $B(x, 2r') \subset B(z, r)$ one has

$$\frac{\omega(F)}{\omega(2\Delta)} \le C \left(\frac{\mathcal{H}^n(F)}{\mathcal{H}^n(\Delta)}\right)^{\theta} \text{ for every Borel set } F \subset \Delta.$$

Dahlberg(1977): Ω is a Lipschitz domain then ω ∈ A_∞(ℋⁿ|_{∂Ω}).
 David and Jerison(1990):

If Ω is NTA and $\partial \Omega$ is ADR then $\omega \in A_{\infty}(\mathcal{H}^n|_{\partial \Omega})$.

• **Badger**(2012): If $\Omega \subset \mathbb{R}^{n+1}$ is NTA with $\mathcal{H}^n(\partial \Omega) < \infty$ then

 $\mathcal{H}^n|_{\partial\Omega} \ll \omega$ and $\omega \ll \mathcal{H}^n|_A$

where

$$A = \left\{ x \in \partial\Omega; \ \lim \inf_{r \to 0} \frac{\mathcal{H}^n(\partial\Omega \cap B(x,r))}{r^n} < \infty \right\}.$$

Portions of the boundary should be contained in a nice set(like a graph or curve).

- **Dahlberg**(1977): Ω is a Lipschitz domain then $\omega \in A_{\infty}(\mathcal{H}^n|_{\partial\Omega})$.
- David and Jerison(1990); Semmes(1989):

If Ω is NTA and $\partial \Omega$ is ADR then $\omega \in A_{\infty}(\mathcal{H}^n|_{\partial \Omega})$.

• **Badger**(2012): If $\Omega \subset \mathbb{R}^{n+1}$ is NTA with $\mathcal{H}^n(\partial \Omega) < \infty$ then

 $\mathcal{H}^n|_{\partial\Omega} \ll \omega \quad \text{and} \quad \omega \ll \mathcal{H}^n|_A$

where

$$A = \left\{ x \in \partial\Omega; \ \lim \inf_{r \to 0} \frac{\mathcal{H}^n(\partial\Omega \cap B(x, r))}{r^n} < \infty \right\}.$$

Portions of the boundary should be contained in a nice set(like a graph or curve).

- **Dahlberg**(1977): Ω is a Lipschitz domain then $\omega \in A_{\infty}(\mathcal{H}^n|_{\partial\Omega})$.
- David and Jerison(1990); Semmes(1989):

If Ω is NTA and $\partial \Omega$ is ADR then $\omega \in A_{\infty}(\mathcal{H}^n|_{\partial \Omega})$.

• **Badger**(2012): If $\Omega \subset \mathbb{R}^{n+1}$ is NTA with $\mathcal{H}^n(\partial \Omega) < \infty$ then

 $\mathcal{H}^n|_{\partial\Omega} \ll \omega$ and $\omega \ll \mathcal{H}^n|_A$

where

$$A = \left\{ x \in \partial \Omega; \ \lim \inf_{r \to 0} \frac{\mathcal{H}^n(\partial \Omega \cap B(x,r))}{r^n} < \infty \right\}.$$

 \bigotimes Portions of the boundary should be contained in a nice set(like a graph or curve).

- **Dahlberg**(1977): Ω is a Lipschitz domain then $\omega \in A_{\infty}(\mathcal{H}^n|_{\partial\Omega})$.
- David and Jerison(1990); Semmes(1989):

If Ω is NTA and $\partial \Omega$ is ADR then $\omega \in A_{\infty}(\mathcal{H}^n|_{\partial \Omega})$.

• **Badger**(2012): If $\Omega \subset \mathbb{R}^{n+1}$ is NTA with $\mathcal{H}^n(\partial \Omega) < \infty$ then

 $\mathcal{H}^n|_{\partial\Omega} \ll \omega$ and $\omega \ll \mathcal{H}^n|_A$

where

$$A = \left\{ x \in \partial\Omega; \ \lim \inf_{r \to 0} \frac{\mathcal{H}^n(\partial\Omega \cap B(x,r))}{r^n} < \infty \right\}.$$

Portions of the boundary should be contained in a nice set(like a graph or curve).

- **Dahlberg**(1977): Ω is a Lipschitz domain then $\omega \in A_{\infty}(\mathcal{H}^n|_{\partial\Omega})$.
- David and Jerison(1990); Semmes(1989):

If Ω is NTA and $\partial \Omega$ is ADR then $\omega \in A_{\infty}(\mathcal{H}^n|_{\partial \Omega})$.

• **Badger**(2012): If $\Omega \subset \mathbb{R}^{n+1}$ is NTA with $\mathcal{H}^n(\partial \Omega) < \infty$ then

 $\mathcal{H}^n|_{\partial\Omega} \ll \omega$ and $\omega \ll \mathcal{H}^n|_A$

where

$$A = \left\{ x \in \partial \Omega; \ \lim \inf_{r \to 0} \frac{\mathcal{H}^n(\partial \Omega \cap B(x,r))}{r^n} < \infty \right\}.$$

Ortions of the boundary should be contained in a nice set(like a graph or curve).

Let Ω be 1-sided NTA and $\partial \Omega$ ADR. TFAE

- ∂Ω is Uniformly Rectifiable[=ADR+Big Pieces of Lipschitz Images]
 Ω is NTA domain (and therefore it is chord-arc domain).
 w ∈ A_∞(Hⁿ|_{∂Ω}).
 w ∈ A_∞^{weak}(Hⁿ|_{∂Ω}).
- $2 \implies 3$ by David and Jerison and independently by Semmes.
- $@ \implies @$ by Hofmann, Martell, and Uriarte-Tuero.

 $3 \implies 4$ is trivial.

Let Ω be 1-sided NTA and $\partial \Omega$ ADR. TFAE

- ∂Ω is Uniformly Rectifiable[=ADR+Big Pieces of Lipschitz Images]
 Ω is NTA domain (and therefore it is chord-arc domain).
 w ∈ A_∞(Hⁿ|∂Ω).
 w ∈ A_∞^{weak}(Hⁿ|∂Ω).
- $2 \implies 3$ by David and Jerison and independently by Semmes.
- $(4) \implies (1)$ by Hofmann, Martell, and Uriarte-Tuero.

 $3 \implies 4$ is trivial.

- Let Ω be 1-sided NTA and $\partial \Omega$ ADR. TFAE
- ∂Ω is Uniformly Rectifiable[=ADR+Big Pieces of Lipschitz Images]
 Ω is NTA domain (and therefore it is chord-arc domain).
 w ∈ A_∞(Hⁿ|_{∂Ω}).
 w ∈ A_∞^{weak}(Hⁿ|_{∂Ω}).
- $2 \implies 3$ by David and Jerison and independently by Semmes.
- $4 \longrightarrow 1$ by Hofmann, Martell, and Uriarte-Tuero.

 $3 \implies 4$ is trivial.

Let Ω be 1-sided NTA and $\partial \Omega$ ADR. TFAE

∂Ω is Uniformly Rectifiable[=ADR+Big Pieces of Lipschitz Images]
 Ω is NTA domain (and therefore it is chord-arc domain).
 w ∈ A_∞(Hⁿ|_{∂Ω}).

- $2 \implies 3$ by David and Jerison and independently by Semmes.
- $@ \implies 1$ by Hofmann, Martell, and Uriarte-Tuero.

 $3 \implies 4$ is trivial.

Let Ω be 1-sided NTA and $\partial \Omega$ ADR. TFAE

∂Ω is Uniformly Rectifiable[=ADR+Big Pieces of Lipschitz Images]
 Ω is NTA domain (and therefore it is chord-arc domain).
 w ∈ A_∞(Hⁿ|∂Ω).

 $2 \implies 3$ by David and Jerison and independently by Semmes.

 $@ \implies 0$ by Hofmann, Martell, and Uriarte-Tuero.

 $3 \implies 4$ is trivial.

Let Ω be 1-sided NTA and $\partial \Omega$ ADR. TFAE

∂Ω is Uniformly Rectifiable[=ADR+Big Pieces of Lipschitz Images]
 Ω is NTA domain (and therefore it is chord-arc domain).
 w ∈ A_∞(Hⁿ|∂Ω).
 w ∈ A_∞^{weak}(Hⁿ|∂Ω).

 $2 \implies 3$ by David and Jerison and independently by Semmes.

 $4 \implies 1$ by Hofmann, Martell, and Uriarte-Tuero.

 $3 \implies 4$ is trivial.

 $1 \implies 2$ by Azzam, Hofmann, Martell, Nyström, and Toro.

Let Ω be 1-sided NTA and $\partial \Omega$ ADR. TFAE

∂Ω is Uniformly Rectifiable[=ADR+Big Pieces of Lipschitz Images]
 Ω is NTA domain (and therefore it is chord-arc domain).
 w ∈ A_∞(Hⁿ|∂Ω).
 w ∈ A_∞^{weak}(Hⁿ|∂Ω).

$(2) \implies (3)$ by David and Jerison and independently by Semmes.

 $4 \longrightarrow 1$ by Hofmann, Martell, and Uriarte-Tuero.

$3 \implies 4$ is trivial.

Let Ω be 1-sided NTA and $\partial \Omega$ ADR. TFAE

- ∂Ω is Uniformly Rectifiable[=ADR+Big Pieces of Lipschitz Images]
 Ω is NTA domain (and therefore it is chord-arc domain).
 w ∈ A_∞(Hⁿ|∂Ω).
 w ∈ A_∞^{weak}(Hⁿ|∂Ω).
- $(2) \implies (3)$ by David and Jerison and independently by Semmes.
- $(4) \implies (1)$ by Hofmann, Martell, and Uriarte-Tuero.

 $3 \implies 4$ is trivial.

) \implies 2 by Azzam, Hofmann, Martell, Nyström, and Toro.

Let Ω be 1-sided NTA and $\partial \Omega$ ADR. TFAE

- ∂Ω is Uniformly Rectifiable[=ADR+Big Pieces of Lipschitz Images]
 Ω is NTA domain (and therefore it is chord-arc domain).
 w ∈ A_∞(Hⁿ|∂Ω).
 w ∈ A_∞^{weak}(Hⁿ|∂Ω).
- $(2) \implies (3)$ by David and Jerison and independently by Semmes.
- $(4) \implies (1)$ by Hofmann, Martell, and Uriarte-Tuero.

$3 \implies 4 \text{ is trivial.}$

 $) \implies 2$ by Azzam, Hofmann, Martell, Nyström, and Toro.

Let Ω be 1-sided NTA and $\partial \Omega$ ADR. TFAE

- ∂Ω is Uniformly Rectifiable[=ADR+Big Pieces of Lipschitz Images]
 Ω is NTA domain (and therefore it is chord-arc domain).
 w ∈ A_∞(Hⁿ|∂Ω).
 w ∈ A_∞^{weak}(Hⁿ|∂Ω).
- $(2) \implies (3)$ by David and Jerison and independently by Semmes.
- $4 \implies 1$ by Hofmann, Martell, and Uriarte-Tuero.
- $3 \implies 4 \text{ is trivial.}$
- $\mathbb{D} \implies \mathbb{Q}$ by Azzam, Hofmann, Martell, Nyström, and Toro.

Let Ω be 1-sided NTA and $\partial \Omega$ be ADR. TFAE;

(1) $\partial \Omega$ is Rectifiable.

Weak Existence of Ext. Corkscrew: for σ a.e. $x \in \partial \Omega$

 $\Delta(x,r), 0 < r < r_x, \text{ there exists } X^{ext}_{\Delta(x,r)} \text{ Ext. Corkscrew.}$

$\circ \ll \omega \text{ on } \partial\Omega.$ $\circ \otimes \Omega \stackrel{a.e.}{=} \bigcup_{N} F_{N} \text{ where } F_{N} = \partial\Omega_{N} \cap \partial\Omega, \ \Omega_{N} \subset \Omega \text{ is chord-arc.}$ $\circ \partial\Omega \stackrel{a.e.}{=} \bigcup_{N} F_{N} \text{ such that}$ $\sigma(F)^{\theta'_{N}} \leq_{N} \omega(F) \leq_{N} \sigma(F)^{\theta_{N}}, \ \forall F \subset F_{N}.$

• **Mourgoglou**: (lower ADR + $\mathcal{H}^n|_{\partial\Omega}$ is locally finite) **(1**

Let Ω be 1-sided NTA and $\partial \Omega$ be ADR. TFAE; (1) $\partial \Omega$ is Rectifiable.

2 Weak Existence of Ext. Corkscrew: for σ a.e. $x \in \partial \Omega$

 $\Delta(x,r), 0 < r < r_x, \text{ there exists } X^{ext}_{\Delta(x,r)} \text{ Ext. Corkscrew.}$

Image of the second system is a second system of the second system is a second system of the second system is a second system of the second system of the second system is a second system of the second system of the

• Mourgoglou: (lower ADR + $\mathcal{H}^n|_{\partial\Omega}$ is locally finite) (1)

- Let Ω be 1-sided NTA and $\partial \Omega$ be ADR. TFAE; (1) $\partial \Omega$ is Rectifiable.
- **2** Weak Existence of Ext. Corkscrew: for σ a.e. $x \in \partial \Omega$

 $\Delta(x,r), 0 < r < r_x, \text{ there exists } X^{ext}_{\Delta(x,r)} \text{ Ext. Corkscrew.}$

(a)
$$\sigma \ll \omega$$
 on $\partial\Omega$.
(b) $\sigma \ll \omega$ on $\partial\Omega$.
(c) $\partial\Omega \stackrel{a.e.}{=} \bigcup_{N} F_N$ where $F_N = \partial\Omega_N \cap \partial\Omega$, $\Omega_N \subset \Omega$ is chord-arc.
(c) $\partial\Omega \stackrel{a.e.}{=} \bigcup_N F_N$ such that
 $\sigma(F)^{\theta'_N} \lesssim_N \omega(F) \lesssim_N \sigma(F)^{\theta_N}, \forall F \subset F_N.$

• Mourgoglou: (lower ADR + $\mathcal{H}^n|_{\partial\Omega}$ is locally finite) 1 =

Let Ω be 1-sided NTA and $\partial \Omega$ be ADR. TFAE; (2) $\partial \Omega$ is Rectifiable.

2 Weak Existence of Ext. Corkscrew: for σ a.e. $x \in \partial \Omega$

 $\Delta(x,r), 0 < r < r_x, \text{ there exists } X^{ext}_{\Delta(x,r)} \text{ Ext. Corkscrew.}$

(3) $\sigma \ll \omega$ on $\partial\Omega$. (4) $\partial\Omega \stackrel{a.e.}{=} \bigcup_{N} F_{N}$ where $F_{N} = \partial\Omega_{N} \cap \partial\Omega$, $\Omega_{N} \subset \Omega$ is chord-arc. (5) $\partial\Omega \stackrel{a.e.}{=} \bigcup_{N} F_{N}$ such that $\sigma(F)^{\theta'_{N}} \lesssim_{N} \omega(F) \lesssim_{N} \sigma(F)^{\theta_{N}}, \forall F \subset F_{N}.$

• Mourgoglou: (lower ADR + $\mathcal{H}^n|_{\partial\Omega}$ is locally finite) \blacksquare

- Let Ω be 1-sided NTA and $\partial \Omega$ be ADR. TFAE; (1) $\partial \Omega$ is Rectifiable.
- **2** Weak Existence of Ext. Corkscrew: for σ a.e. $x \in \partial \Omega$

 $\Delta(x,r), 0 < r < r_x, \text{ there exists } X^{ext}_{\Delta(x,r)} \text{ Ext. Corkscrew.}$

$$\begin{array}{l} \textcircled{3} \ \sigma \ll \omega \ on \ \partial\Omega. \\ \fbox{3} \ \partial\Omega \stackrel{a.e.}{=} \bigcup_{N} F_{N} \ where \ F_{N} = \partial\Omega_{N} \cap \partial\Omega, \ \Omega_{N} \subset \Omega \ is \ chord-arc. \\ \fbox{3} \ \partial\Omega \stackrel{a.e.}{=} \bigcup_{N} F_{N} \ such \ that \\ \sigma(F)^{\theta'_{N}} \lesssim_{N} \omega(F) \lesssim_{N} \sigma(F)^{\theta_{N}}, \ \forall F \subset F_{N}. \end{array}$$

• **Mourgoglou**: (lower ADR + $\mathcal{H}^n|_{\partial\Omega}$ is locally finite) **(1**

- Let Ω be 1-sided NTA and $\partial \Omega$ be ADR. TFAE; (1) $\partial \Omega$ is Rectifiable.
- **2** Weak Existence of Ext. Corkscrew: for σ a.e. $x \in \partial \Omega$

 $\Delta(x,r), 0 < r < r_x, \text{ there exists } X^{ext}_{\Delta(x,r)} \text{ Ext. Corkscrew.}$

$$\begin{array}{l} \textcircled{3} \ \sigma \ll \omega \ on \ \partial\Omega. \\ \fbox{3} \ \partial\Omega \stackrel{a.e.}{=} \bigcup_{N} F_{N} \ where \ F_{N} = \partial\Omega_{N} \cap \partial\Omega, \ \Omega_{N} \subset \Omega \ is \ chord-arc. \\ \fbox{3} \ \partial\Omega \stackrel{a.e.}{=} \bigcup_{N} F_{N} \ such \ that \end{array}$$

$$\sigma(F)^{\theta'_N} \lesssim_N \omega(F) \lesssim_N \sigma(F)^{\theta_N}, \ \forall F \subset F_N.$$

• Mourgoglou: (lower ADR + $\mathcal{H}^n|_{\partial\Omega}$ is locally finite) (1)

- Let Ω be 1-sided NTA and $\partial \Omega$ be ADR. TFAE; **(1)** $\partial \Omega$ is Rectifiable.
- **(2)** Weak Existence of Ext. Corkscrew: for σ a.e. $x \in \partial \Omega$

 $\Delta(x,r), 0 < r < r_x, \text{ there exists } X_{\Delta(x,r)}^{ext}$ Ext. Corkscrew.

$$\Im \ \sigma \ll \omega \ on \ \partial\Omega.$$

$$\Im \ \partial\Omega \stackrel{a.e.}{=} \bigcup_{N} F_{N} \ where \ F_{N} = \partial\Omega_{N} \cap \partial\Omega, \ \Omega_{N} \subset \Omega \ is \ chord-arc.$$

$$\Im \ \partial\Omega \stackrel{a.e.}{=} \bigcup_{N} F_{N} \ such \ that$$

$$\sigma(F)^{\theta'_{N}} \leq_{N} \omega(F) \leq_{N} \sigma(F)^{\theta_{N}}, \ \forall F \subset F_{N}.$$

• Mourgoglou: (lower ADR + $\mathcal{H}^n|_{\partial\Omega}$ is locally finite) $\square \implies \square$

- Let Ω be 1-sided NTA and $\partial \Omega$ be ADR. TFAE;
- **(1)** $\partial \Omega$ is Rectifiable.
- 2 Weak Existence of Ext. Corkscrew
- $\begin{array}{l} \textcircled{3} \ \sigma \ll \omega \ on \ \partial\Omega. \\ \textcircled{3} \ \partial\Omega \stackrel{a.e.}{=} \bigcup_{N} F_{N} \ where \ F_{N} = \partial\Omega_{N} \cap \partial\Omega, \ \Omega_{N} \subset \Omega \ is \ chord-arc. \\ \textcircled{3} \ \partial\Omega \stackrel{a.e.}{=} \bigcup_{N} F_{N} \ s.t \ \sigma(F)^{\theta'_{N}} \lesssim_{N} \omega(F) \lesssim_{N} \sigma(F)^{\theta_{N}}, \ \forall F \subset F_{N}. \end{array}$

- Let Ω be 1-sided NTA and $\partial \Omega$ be ADR. TFAE;
- **(1)** $\partial \Omega$ is Rectifiable.
- Weak Existence of Ext. Corkscrew
- $\Im \sigma \ll \omega \text{ on } \partial \Omega.$

$$\Im \ \partial \Omega \stackrel{a.e.}{=} \bigcup_{N} F_N \ s.t \ \sigma(F)^{\theta'_N} \lesssim_N \omega(F) \lesssim_N \sigma(F)^{\theta_N}, \ \forall F \subset F_N.$$

- Let Ω be 1-sided NTA and $\partial \Omega$ be ADR. TFAE;
- **(1)** $\partial \Omega$ is Rectifiable.
- Weak Existence of Ext. Corkscrew
- $\bigcirc \sigma \ll \omega \text{ on } \partial \Omega.$

 $(4) \Longrightarrow (1)$ as the boundary of any chord arc domain is rectifiable.

- Let Ω be 1-sided NTA and $\partial \Omega$ be ADR. TFAE;
- **(1)** $\partial \Omega$ is Rectifiable.
- Weak Existence of Ext. Corkscrew
- $\bigcirc \sigma \ll \omega \text{ on } \partial \Omega.$
- $\Im \ \partial \Omega \stackrel{a.e.}{=} \bigcup_{N} F_N \ where \ F_N = \partial \Omega_N \cap \partial \Omega, \ \Omega_N \subset \Omega \ is \ chord-arc.$

 $(1) \Longrightarrow (2)$ by existence of approximate tangent planes.

- Let Ω be 1-sided NTA and $\partial \Omega$ be ADR. TFAE;
- **(1)** $\partial \Omega$ is Rectifiable.
- Weak Existence of Ext. Corkscrew

$$\Im \ \sigma \ll \omega \ on \ \partial\Omega.$$

$$\Im \ \partial\Omega \stackrel{a.e.}{=} \bigcup_{N} F_{N} \ where \ F_{N} = \partial\Omega_{N} \cap \partial\Omega, \ \Omega_{N} \subset \Omega \ is \ chord-arc.$$

$$\Im \ \partial\Omega \stackrel{a.e.}{=} \bigcup_{N} F_{N} \ s.t \ \sigma(F)^{\theta'_{N}} \lesssim_{N} \omega(F) \lesssim_{N} \sigma(F)^{\theta_{N}}, \ \forall F \subset F_{N}.$$

2 \implies **4** by constructing certain sawtooth domains which are bounded chord-arc subdomains of Ω .

- Let Ω be 1-sided NTA and $\partial \Omega$ be ADR. TFAE;
- **(1)** $\partial \Omega$ is Rectifiable.
- Weak Existence of Ext. Corkscrew
- $\bigcirc \sigma \ll \omega$ on $\partial \Omega$.
- $\Im \ \partial \Omega \stackrel{a.e.}{=} \bigcup_{N} F_N \ where \ F_N = \partial \Omega_N \cap \partial \Omega, \ \Omega_N \subset \Omega \ is \ chord-arc.$

 $4 \implies 3$ straightforward use of the maximum principle.

Sketch of the Proof

Theorem B (A., Badger, Hofmann, Martell) Let Ω be 1-sided NTA and $\partial\Omega$ be ADR. TFAE; (1) $\partial\Omega$ is Rectifiable. (2) Weak Existence of Ext. Corkscrew (3) $\sigma \ll \omega$ on $\partial\Omega$. (4) $\partial\Omega \stackrel{a.e.}{=} \bigcup_{N} F_{N}$ where $F_{N} = \partial\Omega_{N} \cap \partial\Omega$, $\Omega_{N} \subset \Omega$ is chord-arc. (5) $\partial\Omega \stackrel{a.e.}{=} \bigcup_{N} F_{N}$ s.t $\sigma(F)^{\theta'_{N}} \lesssim_{N} \omega(F) \lesssim_{N} \sigma(F)^{\theta_{N}}, \forall F \subset F_{N}$.

 $(3) \implies (4)$ by showing that some family of bad cubes (for which the exterior corkscrew condition fails) satisfies a Carleson packing condition. From there, we obtain that another suitable family of sawtooth domains are chord-arc domains.

- Let Ω be 1-sided NTA and $\partial \Omega$ be ADR. TFAE;
- **(1)** $\partial \Omega$ is Rectifiable.
- Weak Existence of Ext. Corkscrew

$$\Im \ \sigma \ll \omega \ on \ \partial\Omega.$$

$$\Im \ \partial\Omega \stackrel{a.e.}{=} \bigcup_{N} F_{N} \ where \ F_{N} = \partial\Omega_{N} \cap \partial\Omega, \ \Omega_{N} \subset \Omega \ is \ chord-arc.$$

$$\Im \ \partial\Omega \stackrel{a.e.}{=} \bigcup_{N} F_{N} \ s.t \ \sigma(F)^{\theta'_{N}} \lesssim_{N} \omega(F) \lesssim_{N} \sigma(F)^{\theta_{N}}, \ \forall F \subset F_{N}.$$

 $2 \implies 5$ by using a variant of the Dahlberg-Jerison-Kenig sawtooth lemma and a certain projection operator.

•
$$Lu(X) = \operatorname{div}(A\nabla u)(X), X \in \Omega.$$

- $A(X) = (a_{ij}(X))$ Real, Bounded, Symmetric, Uniformly Elliptic; $A(X)\xi \cdot \xi \ge \Lambda^{-1}|\xi|^2$ and $|A(X)\xi \cdot \eta| \le \Lambda|\xi||\eta|$.
- $A \in \operatorname{Lip}_{\operatorname{loc}}(\Omega).$
- ∇A satisfies a natural qualitative Carleson condition;

$$\sup_{\Delta \subset \partial \Omega} \frac{1}{\sigma(\Delta)} \iint_{\Delta} \left(\sup_{Z \in B(X, \delta(X)/2)} |\nabla A(Z)| \right) dx < \infty.$$

•
$$Lu(X) = \operatorname{div}(A\nabla u)(X), X \in \Omega.$$

- $A(X) = (a_{ij}(X))$ Real, Bounded, Symmetric, Uniformly Elliptic; $A(X)\xi \cdot \xi \ge \Lambda^{-1}|\xi|^2$ and $|A(X)\xi \cdot \eta| \le \Lambda|\xi||\eta|$.
- $A \in \operatorname{Lip}_{\operatorname{loc}}(\Omega).$
- ∇A satisfies a natural qualitative Carleson condition;

$$\sup_{\Delta \subset \partial \Omega} \frac{1}{\sigma(\Delta)} \iint_{\Delta} \left(\sup_{Z \in B(X, \delta(X)/2)} |\nabla A(Z)| \right) dx < \infty.$$

•
$$Lu(X) = \operatorname{div}(A\nabla u)(X), X \in \Omega.$$

- $A(X) = (a_{ij}(X))$ Real, Bounded, Symmetric, Uniformly Elliptic; $A(X)\xi \cdot \xi \ge \Lambda^{-1}|\xi|^2$ and $|A(X)\xi \cdot \eta| \le \Lambda|\xi||\eta|$.
- $A \in \operatorname{Lip}_{\operatorname{loc}}(\Omega).$

• ∇A satisfies a natural qualitative Carleson condition;

$$\sup_{\Delta \subset \partial \Omega} \frac{1}{\sigma(\Delta)} \iint_{\Delta} \left(\sup_{Z \in B(X, \delta(X)/2)} |\nabla A(Z)| \right) dx < \infty.$$

•
$$Lu(X) = \operatorname{div}(A\nabla u)(X), X \in \Omega.$$

- $A(X) = (a_{ij}(X))$ Real, Bounded, Symmetric, Uniformly Elliptic; $A(X)\xi \cdot \xi \ge \Lambda^{-1}|\xi|^2$ and $|A(X)\xi \cdot \eta| \le \Lambda|\xi||\eta|$.
- $A \in \operatorname{Lip}_{\operatorname{loc}}(\Omega).$
- ∇A satisfies a natural qualitative Carleson condition;

$$\sup_{\Delta\subset\partial\Omega}\frac{1}{\sigma(\Delta)}\iint\limits_{\Delta}\left(\sup_{Z\in B(X,\delta(X)/2)}|\nabla A(Z)|\right)dx<\infty.$$

•
$$Lu(X) = \operatorname{div}(A\nabla u)(X), X \in \Omega.$$

- $A(X) = (a_{ij}(X))$ Real, Bounded, Symmetric, Uniformly Elliptic; $A(X)\xi \cdot \xi \ge \Lambda^{-1}|\xi|^2$ and $|A(X)\xi \cdot \eta| \le \Lambda|\xi||\eta|$.
- $A \in \operatorname{Lip}_{\operatorname{loc}}(\Omega).$
- ∇A satisfies a natural qualitative Carleson condition;

$$\sup_{\Delta\subset\partial\Omega}\frac{1}{\sigma(\Delta)}\iint_{\Delta}\left(\sup_{Z\in B(X,\delta(X)/2)}|\nabla A(Z)|\right)dx<\infty.$$

Theorem C (A., Badger, Hofmann, Martell)

Let Ω be 1-sided NTA and $\partial \Omega$ ADR. TFAE

(1) $\partial \Omega$ is Rectifiable.

Weak Existence of Ext. Corkscrew: for σ_L a.e. $x \in \partial \Omega$

 $\Delta(x,r), 0 < r < r_x, \text{ there exists } X^{ext}_{\Delta(x,r)}$ Ext. Corkscrew.

Solution is a chord-arc. $\sigma \ll \omega_L \text{ on } \partial\Omega.$ $O = \bigcup_N F_N \text{ where } F_N = \partial\Omega_N \cap \partial\Omega, \ \Omega_N \subset \Omega \text{ is a chord-arc.}$ $O = \bigcup_N F_N \text{ such that}$

 $\sigma(F)^{\theta'_N} \lesssim_N \omega_L(F) \lesssim_N \sigma(F)^{\theta_N}, \, \forall F \subset F_N.$

Theorem C (A., Badger, Hofmann, Martell)

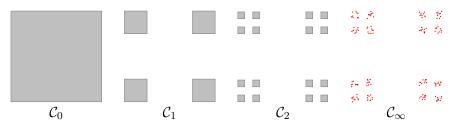
Let Ω be 1-sided NTA and $\partial \Omega$ ADR. TFAE

(1) $\partial \Omega$ is Rectifiable.

2 Weak Existence of Ext. Corkscrew: for σ_L a.e. $x \in \partial \Omega$

 $\Delta(x, r), 0 < r < r_x, \text{ there exists } X_{\Delta(x, r)}^{ext}$ Ext. Corkscrew.

Let \mathcal{C}_{∞} be the "four-corner Cantor Set".



ⓐ $\mathbb{R}^2 \setminus \mathcal{C}_\infty$ is 1-sided NTA domain with 1−ADR boundary.

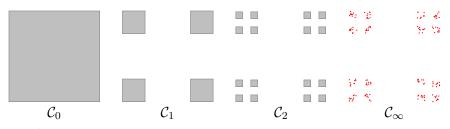
B Let $\mathcal{C}^{\star} = \mathcal{C}_{\infty} \times \mathbb{R}$ and $\Omega = \mathbb{R}^3 \setminus \mathcal{C}^{\star}$.

 $\bigcirc \Omega$ is a 1-sided NTA domain with 2–ADR boundary.

D But $\partial \Omega$ is **NOT rectifiable** (\mathcal{C}_{∞} is purely 1–unrectifiable).

Solution Hence $\mathcal{H}^n|_{\partial\Omega} \not\ll \omega!$ (As $\Omega_{\text{ext}} = \emptyset$).

Let \mathcal{C}_{∞} be the "four-corner Cantor Set".

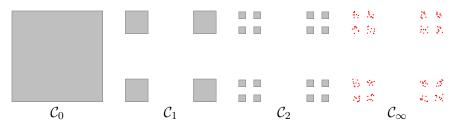


 $\bigotimes \mathbb{R}^2 \setminus \mathcal{C}_{\infty}$ is 1-sided NTA domain with 1-ADR boundary.

- B Let $\mathcal{C}^{\star} = \mathcal{C}_{\infty} \times \mathbb{R}$ and $\Omega = \mathbb{R}^3 \setminus \mathcal{C}^{\star}$.
- $\bigcirc \Omega$ is a 1-sided NTA domain with 2-ADR boundary.
- **D** But $\partial \Omega$ is **NOT rectifiable** (\mathcal{C}_{∞} is purely 1-unrectifiable).

Solution Hence $\mathcal{H}^n|_{\partial\Omega} \ll \omega!$ (As $\Omega_{\text{ext}} = \emptyset$).

Let \mathcal{C}_{∞} be the "four-corner Cantor Set".



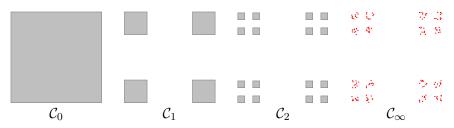
 $\bigotimes \mathbb{R}^2 \setminus \mathcal{C}_{\infty}$ is 1-sided NTA domain with 1-ADR boundary.

B Let $\mathcal{C}^{\star} = \mathcal{C}_{\infty} \times \mathbb{R}$ and $\Omega = \mathbb{R}^3 \setminus \mathcal{C}^{\star}$.

 $\bigcirc \Omega$ is a 1-sided NTA domain with 2-ADR boundary.

D But $\partial \Omega$ is NOT rectifiable (\mathcal{C}_{∞} is purely 1–unrectifiable).

Let \mathcal{C}_{∞} be the "four-corner Cantor Set".



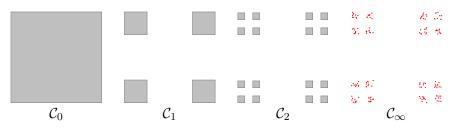
 $\bigotimes \mathbb{R}^2 \setminus \mathcal{C}_{\infty}$ is 1-sided NTA domain with 1-ADR boundary.

B Let $\mathcal{C}^{\star} = \mathcal{C}_{\infty} \times \mathbb{R}$ and $\Omega = \mathbb{R}^3 \setminus \mathcal{C}^{\star}$.

 $\bigcirc \Omega$ is a 1-sided NTA domain with 2-ADR boundary.

D But $\partial \Omega$ is NOT rectifiable (\mathcal{C}_{∞} is purely 1–unrectifiable).

Let \mathcal{C}_{∞} be the "four-corner Cantor Set".



 $\bigotimes \mathbb{R}^2 \setminus \mathcal{C}_{\infty}$ is 1-sided NTA domain with 1-ADR boundary.

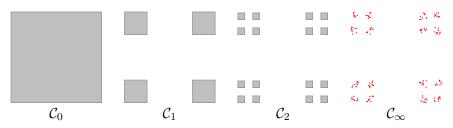
B Let $\mathcal{C}^{\star} = \mathcal{C}_{\infty} \times \mathbb{R}$ and $\Omega = \mathbb{R}^3 \setminus \mathcal{C}^{\star}$.

 $\bigcirc \Omega$ is a 1-sided NTA domain with 2-ADR boundary.

D But $\partial \Omega$ is NOT rectifiable (\mathcal{C}_{∞} is purely 1–unrectifiable).

Hence $\mathcal{H}^n|_{\partial\Omega} \ll \omega!$ (As $\Omega_{\text{ext}} = \emptyset$).

Let \mathcal{C}_{∞} be the "four-corner Cantor Set".



 $\bigotimes \mathbb{R}^2 \setminus \mathcal{C}_{\infty}$ is 1-sided NTA domain with 1-ADR boundary.

B Let $\mathcal{C}^{\star} = \mathcal{C}_{\infty} \times \mathbb{R}$ and $\Omega = \mathbb{R}^3 \setminus \mathcal{C}^{\star}$.

 $\bigcirc \Omega$ is a 1-sided NTA domain with 2-ADR boundary.

D But $\partial \Omega$ is NOT rectifiable (\mathcal{C}_{∞} is purely 1–unrectifiable).

All results requires some strong connectivity hypothesis; **1** Simply Connected or **2** Harnack Chain or **3** Corkscrew

Theorem

Let E be n-ADR and let $\Omega = \mathbb{R}^{n+1} \setminus E$. Then

E is Uniformly Rectifiable $\iff E$ has BPGHME.

BPGHME = Big Pieces of Good Harmonic Measure Estimates:

- $\bigcirc Q \in \mathbb{D}(E)$ then $\exists \Omega_Q \subset \Omega$.
- $\bigcirc \partial \Omega_Q \text{ is } n-\text{ADR.}$
- $\bigcirc \Omega_Q$ satisfies interior corkscrew condition.
- $\bigcirc \partial\Omega \text{ and } \partial\Omega_Q \text{ have a big overlap; } \sigma(\partial\Omega \cap Q) \gtrsim \sigma(Q).$
- $\textcircled{D} \omega_{\Omega_Q} \in A^{\text{weak}}_{\infty}(\mathcal{H}^n|_{\partial\Omega_Q}).$
- \Rightarrow by Bortz and Hofmann. \Leftarrow by Hofmann and Martell.

All results requires some strong connectivity hypothesis;

1 Simply Connected or 2 Harnack Chain or 3 Corkscrew

Theorem

Let E be n-ADR and let $\Omega = \mathbb{R}^{n+1} \setminus E$. Then

E is Uniformly Rectifiable $\iff E$ has BPGHME.

BPGHME= Big Pieces of Good Harmonic Measure Estimates:

- $\bigcirc Q \in \mathbb{D}(E)$ then $\exists \Omega_Q \subset \Omega$.
- $\ \, \textcircled{\tiny{0}} \partial \Omega_Q \text{ is } n-\text{ADR.}$
- $\bigcirc \Omega_Q$ satisfies interior corkscrew condition.
- $\bigcirc \partial\Omega \text{ and } \partial\Omega_Q \text{ have a big overlap; } \sigma(\partial\Omega \cap Q) \gtrsim \sigma(Q).$
- $\square \omega_{\Omega_Q} \in A^{\text{weak}}_{\infty}(\mathcal{H}^n|_{\partial\Omega_Q}).$
- \Rightarrow by Bortz and Hofmann. \Leftarrow by Hofmann and Martell.

All results requires some strong connectivity hypothesis;

1 Simply Connected or 2 Harnack Chain or 3 Corkscrew

Theorem

Let E be n-ADR and let $\Omega = \mathbb{R}^{n+1} \setminus E$. Then

E is Uniformly Rectifiable $\iff E$ has BPGHME.

BPGHME= Big Pieces of Good Harmonic Measure Estimates:

- **B** $\partial \Omega_Q$ is n-ADR.
- $\bigcirc \Omega_Q$ satisfies interior corkscrew condition.
- $\bigcirc \partial \Omega$ and $\partial \Omega_Q$ have a big overlap; $\sigma(\partial \Omega \cap Q) \gtrsim \sigma(Q)$.
- $\textcircled{B} \omega_{\Omega_Q} \in A^{\text{weak}}_{\infty}(\mathcal{H}^n|_{\partial\Omega_Q}).$
- \Rightarrow by Bortz and Hofmann. \Leftarrow by Hofmann and Martell.

All results requires some strong connectivity hypothesis;

1 Simply Connected or 2 Harnack Chain or 3 Corkscrew

Theorem

Let E be n-ADR and let $\Omega = \mathbb{R}^{n+1} \setminus E$. Then

E is Uniformly Rectifiable $\iff E$ has BPGHME.

BPGHME= Big Pieces of Good Harmonic Measure Estimates:

- **B** $\partial \Omega_Q$ is n-ADR.
- $\bigcirc \Omega_Q$ satisfies interior corkscrew condition.
- $\bigcirc \partial \Omega$ and $\partial \Omega_Q$ have a big overlap; $\sigma(\partial \Omega \cap Q) \gtrsim \sigma(Q)$.
- $\textcircled{E} \omega_{\Omega_Q} \in A^{\text{weak}}_{\infty}(\mathcal{H}^n|_{\partial\Omega_Q}).$
- \Rightarrow by Bortz and Hofmann. \Leftarrow by Hofmann and Martell.

A Radon measure μ on \mathbb{R}^{n+1} is *n*-rectifiable if its (any) Borel support can be covered by countably many (rotated) graphs of scalar Lipschitz functions on \mathbb{R}^n up to zero μ -measure.

```
Theorem[AHM<sup>3</sup>TV]

• Let \Omega \subset \mathbb{R}^{n+1}, n \ge 1, open and connected.

• Let F \subset \partial \Omega with 0 < \mathcal{H}^n(F) < \infty.

If \omega_\Omega \ll \mathcal{H}^n on F \implies \omega_\Omega|_F is n-rectif
```

2) If $\mathcal{H}^n \ll \omega_{\Omega}$ on $F \implies F$ is *n*-rectifiable.

AHM³TV=Azzam, Hofmann, Martell, Mayboroda, Mourgoglou, Tolsa, and Volberg.

Assuming portion of the boundary contained in a nice rectifiable set(like a graph or curve) is not an unreasonable assumption!

A Radon measure μ on \mathbb{R}^{n+1} is *n*-rectifiable if its (any) Borel support can be covered by countably many (rotated) graphs of scalar Lipschitz functions on \mathbb{R}^n up to zero μ -measure.

$Theorem[AHM^3TV]$

- Let $\Omega \subset \mathbb{R}^{n+1}$, $n \ge 1$, open and connected.
- Let $F \subset \partial \Omega$ with $0 < \mathcal{H}^n(F) < \infty$.

① If $\omega_{\Omega} \ll \mathcal{H}^n$ on $F \implies \omega_{\Omega}|_F$ is *n*-rectifiable ② If $\mathcal{H}^n \ll \omega_{\Omega}$ on $F \implies F$ is *n*-rectifiable.

AHM³TV=Azzam, Hofmann, Martell, Mayboroda, Mourgoglou, Tolsa, and Volberg.

Assuming portion of the boundary contained in a nice rectifiable set(like a graph or curve) is not an unreasonable assumption!

A Radon measure μ on \mathbb{R}^{n+1} is *n*-rectifiable if its (any) Borel support can be covered by countably many (rotated) graphs of scalar Lipschitz functions on \mathbb{R}^n up to zero μ -measure.

$Theorem[AHM^3TV]$

- Let $\Omega \subset \mathbb{R}^{n+1}$, $n \ge 1$, open and connected.
- Let $F \subset \partial \Omega$ with $0 < \mathcal{H}^n(F) < \infty$.

① If $\omega_{\Omega} \ll \mathcal{H}^n$ on $F \implies \omega_{\Omega}|_F$ is *n*-rectifiable ② If $\mathcal{H}^n \ll \omega_{\Omega}$ on $F \implies F$ is *n*-rectifiable.

AHM³TV=Azzam, Hofmann, Martell, Mayboroda, Mourgoglou, Tolsa, and Volberg.

Assuming portion of the boundary contained in a nice rectifiable set(like a graph or curve) is not an unreasonable assumption!

A Radon measure μ on \mathbb{R}^{n+1} is *n*-rectifiable if its (any) Borel support can be covered by countably many (rotated) graphs of scalar Lipschitz functions on \mathbb{R}^n up to zero μ -measure.

$Theorem[AHM^3TV]$

- Let $\Omega \subset \mathbb{R}^{n+1}$, $n \ge 1$, open and connected.
- Let $F \subset \partial \Omega$ with $0 < \mathcal{H}^n(F) < \infty$.

AHM³TV=Azzam, Hofmann, Martell, Mayboroda, Mourgoglou, Tolsa, and Volberg.

Assuming portion of the boundary contained in a nice rectifiable set(like a graph or curve) is not an unreasonable assumption!

Is ADR really required?

A Radon measure μ on \mathbb{R}^{n+1} is *n*-rectifiable if its (any) Borel support can be covered by countably many (rotated) graphs of scalar Lipschitz functions on \mathbb{R}^n up to zero μ -measure.

Theorem[AHM³TV]

- Let $\Omega \subset \mathbb{R}^{n+1}$, $n \ge 1$, open and connected.
- Let $F \subset \partial \Omega$ with $0 < \mathcal{H}^n(F) < \infty$.

1) If $\omega_{\Omega} \ll \mathcal{H}^n$ on $F \implies \omega_{\Omega}|_F$ is *n*-rectifiable. 2) If $\mathcal{H}^n \ll \omega_{\Omega}$ on $F \implies F$ is *n*-rectifiable.

AHM³TV=Azzam, Hofmann, Martell, Mayboroda, Mourgoglou, Tolsa, and Volberg.

Assuming portion of the boundary contained in a nice rectifiable set(like a graph or curve) is not an unreasonable assumption!

Is ADR really required?

A Radon measure μ on \mathbb{R}^{n+1} is *n*-rectifiable if its (any) Borel support can be covered by countably many (rotated) graphs of scalar Lipschitz functions on \mathbb{R}^n up to zero μ -measure.

Theorem[AHM³TV]

- Let $\Omega \subset \mathbb{R}^{n+1}$, $n \ge 1$, open and connected.
- Let $F \subset \partial \Omega$ with $0 < \mathcal{H}^n(F) < \infty$.

If ω_Ω ≪ Hⁿ on F ⇒ ω_Ω|_F is n-rectifiable.
 If Hⁿ ≪ ω_Ω on F ⇒ F is n-rectifiable.

AHM³TV=Azzam, Hofmann, Martell, Mayboroda, Mourgoglou, Tolsa, and Volberg.

 \bigotimes Assuming portion of the boundary contained in a nice rectifiable set(like a graph or curve) is not an unreasonable assumption!

- Goals ↔
 Weakening ADR condition.
 weakening Corkscrew condition.
 without Connectivity.

• $E \subset \mathbb{R}^{n+1}$, $n \ge 1$, closed set with locally finite \mathcal{H}^n -measure.

Let E_* be the realtively open set

$$E_* = \left\{ x \in E : \inf_{\substack{y \in B(x,\rho) \cap E \\ 0 < r < \rho}} \frac{\mathcal{H}^n(B(y,r) \cap E)}{r^n} > 0, \text{ for some } \rho > 0 \right\}$$

i.e.: For $x \in E_*$ there exists a small ball B_x center at x and a constant c_x such that the lower ADR condition holds for all balls $B \subset B_x$ with constant c_x .

WLADR

 $\mathcal{H}^n|_E$ satisfies the Weak Lower Ahlfors-David regular condition (WLADR) if

 $\mathcal{H}^n(E \setminus E_*) = 0$

WLADR is weaker than Lower ADR.

• $E \subset \mathbb{R}^{n+1}$, $n \ge 1$, closed set with locally finite \mathcal{H}^n -measure.

Let E_* be the realtively open set

$$E_* = \left\{ x \in E : \inf_{\substack{y \in B(x,\rho) \cap E \\ 0 < r < \rho}} \frac{\mathcal{H}^n(B(y,r) \cap E)}{r^n} > 0, \text{ for some } \rho > 0 \right\}.$$

i.e.: For $x \in E_*$ there exists a small ball B_x center at x and a constant c_x such that the lower ADR condition holds for all balls $B \subset B_x$ with constant c_x .

WLADR

 $\mathcal{H}^n|_E$ satisfies the Weak Lower Ahlfors-David regular condition (WLADR) if

 $\mathcal{H}^n(E \setminus E_*) = 0$

Multiple Weaker With the ADR.

• $E \subset \mathbb{R}^{n+1}$, $n \ge 1$, closed set with locally finite \mathcal{H}^n -measure.

Let E_* be the realtively open set

$$E_* = \left\{ x \in E : \inf_{\substack{y \in B(x,\rho) \cap E \\ 0 < r < \rho}} \frac{\mathcal{H}^n(B(y,r) \cap E)}{r^n} > 0, \text{ for some } \rho > 0 \right\}$$

i.e.: For $x \in E_*$ there exists a small ball B_x center at x and a constant c_x such that the lower ADR condition holds for all balls $B \subset B_x$ with constant c_x .

WLADR

 $\mathcal{H}^n|_E$ satisfies the Weak Lower Ahlfors-David regular condition (WLADR) if

 $\mathcal{H}^n(E \setminus E_*) = 0$

A WLADR is weaker than Lower ADR.

• $E \subset \mathbb{R}^{n+1}$, $n \ge 1$, closed set with locally finite \mathcal{H}^n -measure.

Let E_* be the realtively open set

$$E_* = \left\{ x \in E : \inf_{\substack{y \in B(x,\rho) \cap E \\ 0 < r < \rho}} \frac{\mathcal{H}^n(B(y,r) \cap E)}{r^n} > 0, \text{ for some } \rho > 0 \right\}$$

i.e.: For $x \in E_*$ there exists a small ball B_x center at x and a constant c_x such that the lower ADR condition holds for all balls $B \subset B_x$ with constant c_x .

WLADR

 $\mathcal{H}^n|_E$ satisfies the Weak Lower Ahlfors-David regular condition (WLADR) if

 $\mathcal{H}^n(E \setminus E_*) = 0$

A WLADR is weaker than Lower ADR.

• $E \subset \mathbb{R}^{n+1}$, $n \ge 1$, closed set with locally finite \mathcal{H}^n -measure.

Let E_* be the realtively open set

$$E_* = \left\{ x \in E : \inf_{\substack{y \in B(x,\rho) \cap E \\ 0 < r < \rho}} \frac{\mathcal{H}^n(B(y,r) \cap E)}{r^n} > 0, \text{ for some } \rho > 0 \right\}.$$

i.e.: For $x \in E_*$ there exists a small ball B_x center at x and a constant c_x such that the lower ADR condition holds for all balls $B \subset B_x$ with constant c_x .

WLADR

 $\mathcal{H}^n|_E$ satisfies the Weak Lower Ahlfors-David regular condition (WLADR) if

 $\mathcal{H}^n(E \setminus E_*) = 0$

^(A) WLADR is weaker than Lower ADR.

Let $\Omega \subset \mathbb{R}^{n+1}$ be a set, $n \ge 1$.

Interior Measure Theoretic Boundary

The Interior Measure Theoretic Boundary $\partial_+\Omega$ is defined as

$$\partial_+\Omega:=\left\{x\in\partial\Omega:\ \limsup_{r\to 0^+}\frac{|B(x,r)\cap\Omega|}{|B(x,r)|}>0\right\}.$$

Let $\Omega \subset \mathbb{R}^{n+1}$ be a set, $n \ge 1$.

Interior Measure Theoretic Boundary

The Interior Measure Theoretic Boundary $\partial_+\Omega$ is defined as

$$\partial_+\Omega:=\left\{x\in\partial\Omega:\ \limsup_{r\to 0^+}\frac{|B(x,r)\cap\Omega|}{|B(x,r)|}>0\right\}$$

Let $\Omega \subset \mathbb{R}^{n+1}$ be a set, $n \ge 1$.

Interior Measure Theoretic Boundary

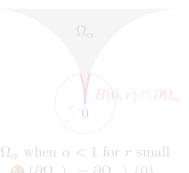
The Interior Measure Theoretic Boundary $\partial_+\Omega$ is defined as

$$\partial_+\Omega:=\left\{x\in\partial\Omega:\ \limsup_{r\to 0^+}\frac{|B(x,r)\cap\Omega|}{|B(x,r)|}>0\right\}$$

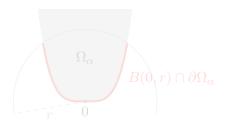
[⊗] If $x \in \partial \Omega$ satisfies interior corkcscrew condition then $x \in \partial_+ \Omega$.

Let Ω_{α} be the domain above the graph of the function $|\cdot|^{\alpha}$, $\alpha \in (0, \infty) \setminus \{1\}$;

 $\Omega_{\alpha} := \left\{ (x', x_{n+1}) \in \mathbb{R}^n \times \mathbb{R}; \ x_{n+1} > |x|^{\alpha}, \, \alpha \in (0, \infty) \setminus \{1\} \right\}.$



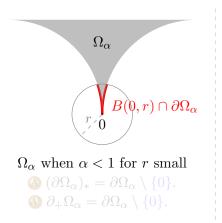
 $(\partial \Omega_{\alpha})_* = \partial \Omega_{\alpha} \setminus \{0\}$ $(\partial \Omega_{\alpha})_* = \partial \Omega_{\alpha} \setminus \{0\}.$

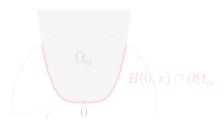


$$\begin{split} \Omega_{\alpha} \text{ when } \alpha > 1 \text{ for } r \text{ large} \\ & \mathbb{B} \ (\partial \Omega_{\alpha})_{*} = \partial \Omega_{\alpha}. \\ & \mathbb{B} \ \partial_{+}\Omega_{\alpha} = \partial \Omega_{\alpha}. \end{split}$$

Let Ω_{α} be the domain above the graph of the function $|\cdot|^{\alpha}$, $\alpha \in (0, \infty) \setminus \{1\}$;

 $\Omega_{\alpha} := \left\{ (x', x_{n+1}) \in \mathbb{R}^n \times \mathbb{R}; \ x_{n+1} > |x|^{\alpha}, \, \alpha \in (0, \infty) \setminus \{1\} \right\}.$

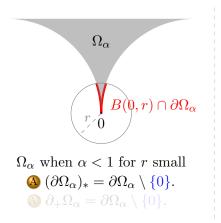


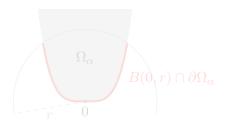


$$\begin{split} \Omega_{\alpha} \text{ when } \alpha > 1 \text{ for } r \text{ large} \\ & \mathbb{B} \ (\partial \Omega_{\alpha})_{*} = \partial \Omega_{\alpha}. \\ & \mathbb{B} \ \partial_{+}\Omega_{\alpha} = \partial \Omega_{\alpha}. \end{split}$$

Let Ω_{α} be the domain above the graph of the function $|\cdot|^{\alpha}$, $\alpha \in (0, \infty) \setminus \{1\}$;

 $\Omega_{\alpha} := \left\{ (x', x_{n+1}) \in \mathbb{R}^n \times \mathbb{R}; \ x_{n+1} > |x|^{\alpha}, \, \alpha \in (0, \infty) \setminus \{1\} \right\}.$

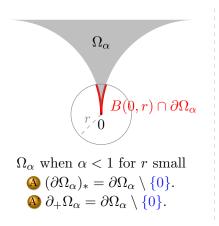


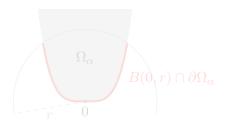


$$\begin{split} \Omega_{\alpha} \text{ when } \alpha > 1 \text{ for } r \text{ large} \\ & \mathbb{B} \ (\partial \Omega_{\alpha})_{*} = \partial \Omega_{\alpha}. \\ & \mathbb{B} \ \partial_{+}\Omega_{\alpha} = \partial \Omega_{\alpha}. \end{split}$$

Let Ω_{α} be the domain above the graph of the function $|\cdot|^{\alpha}$, $\alpha \in (0, \infty) \setminus \{1\}$;

 $\Omega_{\alpha} := \left\{ (x', x_{n+1}) \in \mathbb{R}^n \times \mathbb{R}; \ x_{n+1} > |x|^{\alpha}, \, \alpha \in (0, \infty) \setminus \{1\} \right\}.$

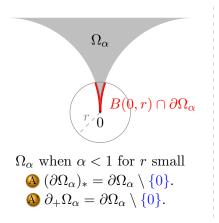


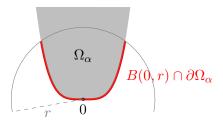


 $\Omega_{\alpha} \text{ when } \alpha > 1 \text{ for } r \text{ large}$ $\textcircled{B} (\partial \Omega_{\alpha})_{*} = \partial \Omega_{\alpha}.$ $\textcircled{B} \partial_{+}\Omega_{\alpha} = \partial \Omega_{\alpha}.$

Let Ω_{α} be the domain above the graph of the function $|\cdot|^{\alpha}$, $\alpha \in (0, \infty) \setminus \{1\}$;

 $\Omega_{\alpha} := \left\{ (x', x_{n+1}) \in \mathbb{R}^n \times \mathbb{R}; \ x_{n+1} > |x|^{\alpha}, \, \alpha \in (0, \infty) \setminus \{1\} \right\}.$

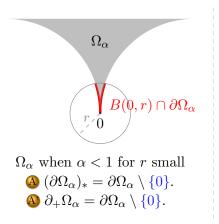


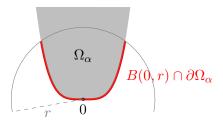


$$\begin{split} \Omega_{\alpha} \ \text{when} \ \alpha > 1 \ \text{for} \ r \ \text{large} \\ & \textcircled{B} \ (\partial \Omega_{\alpha})_{*} = \partial \Omega_{\alpha}. \\ & \textcircled{B} \ \partial_{+}\Omega_{\alpha} = \partial \Omega_{\alpha}. \end{split}$$

Let Ω_{α} be the domain above the graph of the function $|\cdot|^{\alpha}$, $\alpha \in (0, \infty) \setminus \{1\}$;

 $\Omega_{\alpha} := \left\{ (x', x_{n+1}) \in \mathbb{R}^n \times \mathbb{R}; \ x_{n+1} > |x|^{\alpha}, \, \alpha \in (0, \infty) \setminus \{1\} \right\}.$

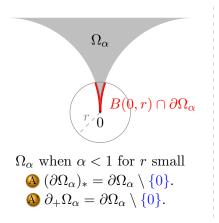


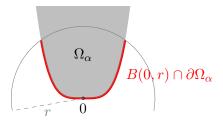


 $\Omega_{\alpha} \text{ when } \alpha > 1 \text{ for } r \text{ large}$ $(\partial \Omega_{\alpha})_{*} = \partial \Omega_{\alpha}.$ $(\partial \Omega_{\alpha})_{*} = \partial \Omega_{\alpha}.$

Let Ω_{α} be the domain above the graph of the function $|\cdot|^{\alpha}$, $\alpha \in (0, \infty) \setminus \{1\}$;

 $\Omega_{\alpha} := \left\{ (x', x_{n+1}) \in \mathbb{R}^n \times \mathbb{R}; \ x_{n+1} > |x|^{\alpha}, \, \alpha \in (0, \infty) \setminus \{1\} \right\}.$





 $\begin{aligned} \Omega_{\alpha} \text{ when } \alpha > 1 \text{ for } r \text{ large} \\ & \textcircled{B} (\partial \Omega_{\alpha})_{*} = \partial \Omega_{\alpha}. \\ & \textcircled{B} \partial_{+} \Omega_{\alpha} = \partial \Omega_{\alpha}. \end{aligned}$

The Truncated cone $\Gamma_{h,\alpha}(z)$ is defined as

$$\Gamma_{h,\alpha}(z) := \{ x : |z - x| < \alpha(1 - |x|) < \alpha h \}.$$

A point $z \in \partial \Omega$ is called a Cone point if there is a truncated open cone $\Gamma_{h,\alpha}(z)$ with vertex at z such that $\Gamma_{h,\alpha}(z) \subset \Omega$.

• $K = K(\Omega) = \{$ Cone points for $\Omega \}.$

Theorem[McMillan]

Let Ω be a bounded simply connected domain in the plane. Then • K is a Borel set with σ -finite \mathcal{H}^1 measure.

• For $E \subset K$,

$$\omega(E) = 0 \Longleftrightarrow \mathcal{H}^1(E) = 0.$$

At almost every $w \in K$, $\partial \Omega$ has an inner tangent.

 ${\ensuremath{\mathbb B}}$ One can construct $\Omega'\subset\Omega$ with a rectifiable boundary such that

The Truncated cone $\Gamma_{h,\alpha}(z)$ is defined as

$$\Gamma_{h,\alpha}(z) := \{x : |z - x| < \alpha(1 - |x|) < \alpha h\}.$$

A point $z \in \partial \Omega$ is called a Cone point if there is a truncated open cone $\Gamma_{h,\alpha}(z)$ with vertex at z such that $\Gamma_{h,\alpha}(z) \subset \Omega$.

• $K = K(\Omega) = \{ \text{Cone points for } \Omega \}.$

Theorem[McMillan]

Let Ω be a bounded simply connected domain in the plane. Then Ω K is a Domal set with Ω Ω with Ω' and Ω'

- K is a Borel set with σ -finite \mathcal{H}^{*} mea
- For $E \subset K$,

$$\omega(E) = 0 \Longleftrightarrow \mathcal{H}^1(E) = 0.$$

At almost every $w \in K$, $\partial \Omega$ has an inner tangent.

 ${\ensuremath{\mathbb B}}$ One can construct $\Omega'\subset\Omega$ with a rectifiable boundary such that

The Truncated cone $\Gamma_{h,\alpha}(z)$ is defined as

$$\Gamma_{h,\alpha}(z) := \{x : |z - x| < \alpha(1 - |x|) < \alpha h\}.$$

A point $z \in \partial \Omega$ is called a Cone point if there is a truncated open cone $\Gamma_{h,\alpha}(z)$ with vertex at z such that $\Gamma_{h,\alpha}(z) \subset \Omega$.

• $K = K(\Omega) = \{$ Cone points for $\Omega \}.$

Theorem [McMillan]

Let Ω be a bounded simply connected domain in the plane. Then • K is a Borel set with σ -finite \mathcal{H}^1 measure

• For $E \subset K$,

$$\omega(E) = 0 \Longleftrightarrow \mathcal{H}^1(E) = 0.$$

(A) At almost every $w \in K$, $\partial \Omega$ has an inner tangent.

B One can construct $\Omega' \subset \Omega$ with a rectifiable boundary such that

The Truncated cone $\Gamma_{h,\alpha}(z)$ is defined as

$$\Gamma_{h,\alpha}(z) := \{x : |z - x| < \alpha(1 - |x|) < \alpha h\}.$$

A point $z \in \partial \Omega$ is called a Cone point if there is a truncated open cone $\Gamma_{h,\alpha}(z)$ with vertex at z such that $\Gamma_{h,\alpha}(z) \subset \Omega$.

• $K = K(\Omega) = \{$ Cone points for $\Omega \}.$

Theorem[McMillan]

Let Ω be a bounded simply connected domain in the plane. Then • K is a Borel set with σ -finite \mathcal{H}^1 measure,

• For $E \subset K$,

$$\omega(E) = 0 \Longleftrightarrow \mathcal{H}^1(E) = 0.$$

At almost every $w \in K$, $\partial \Omega$ has an inner tangent.

B One can construct $\Omega' \subset \Omega$ with a rectifiable boundary such that

The Truncated cone $\Gamma_{h,\alpha}(z)$ is defined as

$$\Gamma_{h,\alpha}(z) := \{x : |z - x| < \alpha(1 - |x|) < \alpha h\}.$$

A point $z \in \partial \Omega$ is called a Cone point if there is a truncated open cone $\Gamma_{h,\alpha}(z)$ with vertex at z such that $\Gamma_{h,\alpha}(z) \subset \Omega$.

• $K = K(\Omega) = \{ \text{Cone points for } \Omega \}.$

Theorem[McMillan]

Let Ω be a bounded simply connected domain in the plane. Then

• K is a Borel set with σ -finite \mathcal{H}^1 measure,

• For $E \subset K$

$$\omega(E) = 0 \Longleftrightarrow \mathcal{H}^1(E) = 0.$$

At almost every $w \in K$, $\partial \Omega$ has an inner tangent.

B One can construct $\Omega' \subset \Omega$ with a rectifiable boundary such that

The Truncated cone $\Gamma_{h,\alpha}(z)$ is defined as

$$\Gamma_{h,\alpha}(z) := \{x : |z - x| < \alpha(1 - |x|) < \alpha h\}.$$

A point $z \in \partial \Omega$ is called a Cone point if there is a truncated open cone $\Gamma_{h,\alpha}(z)$ with vertex at z such that $\Gamma_{h,\alpha}(z) \subset \Omega$.

• $K = K(\Omega) = \{$ Cone points for $\Omega \}.$

Theorem[McMillan]

Let Ω be a bounded simply connected domain in the plane. Then

- K is a Borel set with σ -finite \mathcal{H}^1 measure,
- For $E \subset K$,

$$\omega(E) = 0 \Longleftrightarrow \mathcal{H}^1(E) = 0.$$

At almost every $w \in K$, $\partial \Omega$ has an inner tangent.

B One can construct $\Omega' \subset \Omega$ with a rectifiable boundary such that

The Truncated cone $\Gamma_{h,\alpha}(z)$ is defined as

$$\Gamma_{h,\alpha}(z) := \{x : |z - x| < \alpha(1 - |x|) < \alpha h\}.$$

A point $z \in \partial \Omega$ is called a Cone point if there is a truncated open cone $\Gamma_{h,\alpha}(z)$ with vertex at z such that $\Gamma_{h,\alpha}(z) \subset \Omega$.

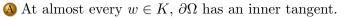
• $K = K(\Omega) = \{$ Cone points for $\Omega \}.$

Theorem[McMillan]

Let Ω be a bounded simply connected domain in the plane. Then

- K is a Borel set with σ -finite \mathcal{H}^1 measure,
- For $E \subset K$,

$$\omega(E) = 0 \Longleftrightarrow \mathcal{H}^1(E) = 0.$$



B One can construct $\Omega' \subset \Omega$ with a rectifiable boundary such that

The Truncated cone $\Gamma_{h,\alpha}(z)$ is defined as

$$\Gamma_{h,\alpha}(z) := \{x : |z - x| < \alpha(1 - |x|) < \alpha h\}.$$

A point $z \in \partial \Omega$ is called a Cone point if there is a truncated open cone $\Gamma_{h,\alpha}(z)$ with vertex at z such that $\Gamma_{h,\alpha}(z) \subset \Omega$.

• $K = K(\Omega) = \{$ Cone points for $\Omega \}.$

Theorem[McMillan]

Let Ω be a bounded simply connected domain in the plane. Then

- K is a Borel set with σ -finite \mathcal{H}^1 measure,
- For $E \subset K$,

$$\omega(E) = 0 \Longleftrightarrow \mathcal{H}^1(E) = 0.$$

(A) At almost every $w \in K$, $\partial \Omega$ has an inner tangent.

B One can construct $\Omega' \subset \Omega$ with a rectifiable boundary such that

Theorem D (A., Bortz, Hofmann, Martell)

- Let $E \subset \mathbb{R}^{n+1}$, $n \ge 1$, be a closed set,
- E have locally finite \mathcal{H}^n -measure,

• E satisfy the WLADR condition. Then

$$E \text{ is } n-rectifiable \iff E \subset Z \cup \left(\bigcup_{j} \partial \Omega_{j}\right).$$

 $\textcircled{O} {\Omega_j}_j$ is a countable collection of bounded Lipschitz domains,

 $\bigcirc Z \subset E \text{ with } \mathcal{H}^n(Z) = 0.$

Theorem D (A., Bortz, Hofmann, Martell)

- Let $E \subset \mathbb{R}^{n+1}$, $n \ge 1$, be a closed set,
- E have locally finite \mathcal{H}^n -measure,

• E satisfy the WLADR condition. Then

$$E \text{ is } n-rectifiable \iff E \subset Z \cup \Big(\bigcup_j \partial \Omega_j\Big).$$

 $\bigcirc Z \subset E \text{ with } \mathcal{H}^n(Z) = 0.$

Theorem D (A., Bortz, Hofmann, Martell)

- Let $E \subset \mathbb{R}^{n+1}$, $n \ge 1$, be a closed set,
- E have locally finite \mathcal{H}^n -measure,
- E satisfy the WLADR condition.

Inen

$$E \text{ is } n-rectifiable \iff E \subset Z \cup \left(\bigcup_{j} \partial \Omega_{j}\right).$$

 $\bigcirc Z \subset E \text{ with } \mathcal{H}^n(Z) = 0.$

Theorem D (A., Bortz, Hofmann, Martell)

- Let $E \subset \mathbb{R}^{n+1}$, $n \ge 1$, be a closed set,
- E have locally finite \mathcal{H}^n -measure,
- E satisfy the WLADR condition. Then

$$E \text{ is } n\text{-rectifiable } \iff E \subset Z \cup \left(\bigcup_{j} \partial \Omega_{j}\right).$$

 $\bigcirc Z \subset E \text{ with } \mathcal{H}^n(Z) = 0.$

Theorem D (A., Bortz, Hofmann, Martell)

- Let $E \subset \mathbb{R}^{n+1}$, $n \ge 1$, be a closed set,
- E have locally finite \mathcal{H}^n -measure,
- E satisfy the WLADR condition. Then

$$E \text{ is } n-rectifiable \iff E \subset Z \cup \left(\bigcup_{j} \partial \Omega_{j}\right).$$

④ {Ω_j}_j is a countable collection of bounded Lipschitz domains,
Ø Ω_j ⊂ ℝⁿ⁺¹ \ E for every j,
Ø Z ⊂ E with Hⁿ(Z) = 0.

Theorem D (A., Bortz, Hofmann, Martell)

- Let $E \subset \mathbb{R}^{n+1}$, $n \ge 1$, be a closed set,
- E have locally finite \mathcal{H}^n -measure,
- E satisfy the WLADR condition. Then

$$E \text{ is } n-rectifiable \iff E \subset Z \cup \left(\bigcup_{j} \partial \Omega_{j}\right).$$

④ {Ω_j}_j is a countable collection of bounded Lipschitz domains,
 ℬ Ω_j ⊂ ℝⁿ⁺¹ \ E for every j,

 $\bigcirc Z \subset E \text{ with } \mathcal{H}^n(Z) = 0.$

Theorem D (A., Bortz, Hofmann, Martell)

- Let $E \subset \mathbb{R}^{n+1}$, $n \ge 1$, be a closed set,
- E have locally finite \mathcal{H}^n -measure,
- E satisfy the WLADR condition. Then

$$E \text{ is } n-rectifiable \iff E \subset Z \cup \left(\bigcup_{j} \partial \Omega_{j}\right).$$

④ {Ω_j}_j is a countable collection of bounded Lipschitz domains,
ℬ Ω_j ⊂ ℝⁿ⁺¹ \ E for every j,
Ø Z ⊂ E with ℋⁿ(Z) = 0.

Covering of E with boundaries of bounded Lipschitz domains

Theorem D (A., Bortz, Hofmann, Martell)

- Let $E \subset \mathbb{R}^{n+1}$, $n \ge 1$, be a closed set,
- E have locally finite \mathcal{H}^n -measure,
- E satisfy the WLADR condition. Then

$$E \text{ is } n-rectifiable \iff E \subset Z \cup \left(\bigcup_{j} \partial \Omega_{j}\right).$$

④ {Ω_j}_j is a countable collection of bounded Lipschitz domains,
 ℬ Ω_j ⊂ ℝⁿ⁺¹ \ E for every j,

 $\bigcirc Z \subset E \text{ with } \mathcal{H}^n(Z) = 0.$

 \bigotimes Novelty here is the fact that the Lipschitz domains Ω_j are subdomains of $\mathbb{R}^{n+1} \setminus E$.

Rectifiability implies absolute continuity

Theorem E (A., Bortz, Hofmann, Martell)

- Let $E \subset \mathbb{R}^{n+1}$, $n \ge 1$, be a closed set,
- E have locally finite \mathcal{H}^n -measure,
- E satisfy the WLADR condition.

Then

$$E \text{ is } n\text{-rectifiable} \implies \mathcal{H}^n|_E \ll \omega.$$

Absolute continuity should be understood in the following sense;

$$\mathcal{H}^n|_E \ll \widetilde{\omega} := \sum_{k\geq 1} 2^{-k} \omega_k,$$

• $\omega_k = \omega_{D_k}^{X_k}$ is the harmonic measure for the domain $D_k, X_k \in D_k$, • $\{D_k\}$ is an enumeration of the connected components of $\mathbb{R}^{n+1} \setminus E$.

Rectifiability implies absolute continuity

Theorem E (A., Bortz, Hofmann, Martell)

- Let $E \subset \mathbb{R}^{n+1}$, $n \ge 1$, be a closed set,
- E have locally finite \mathcal{H}^n -measure,
- E satisfy the WLADR condition.

Then

$$E \text{ is } n\text{-rectifiable} \implies \mathcal{H}^n|_E \ll \omega.$$

Absolute continuity should be understood in the following sense;

$$\mathcal{H}^n|_E \ll \widetilde{\omega} := \sum_{k\geq 1} 2^{-k} \omega_k,$$

(a) $\omega_k = \omega_{D_k}^{X_k}$ is the harmonic measure for the domain D_k , $X_k \in D_k$, (b) $\{D_k\}$ is an enumeration of the connected components of $\mathbb{R}^{n+1} \setminus E$.

- Let $\{\Omega_i\}$ be the bounded Lipschitz domains by Theorem ?? for E.
- Let $F \subset E$ be such that $\mathcal{H}^n(F) > 0$. Need to show $\omega(F) > 0$.
- Then there exists Ω_j such that $\mathcal{H}^n(F \cap \partial \Omega_j) > 0$.
- Pick $X \in \Omega_j \subset \mathbb{R}^{n+1} \setminus E$; $\omega_{\Omega_j}^X$ be the harmonic measure for Ω_j .
- Let ω^X be the harmonic measure for $\mathbb{R}^{n+1} \setminus E$ with pole at X.
- By the maximum principle and Dahlberg's result it follows that

 ω^X(F) ≥ ω^X_{Ωj}(F ∩ ∂Ω_j) > 0.

- Let $\{\Omega_i\}$ be the bounded Lipschitz domains by Theorem ?? for E.
- Let $F \subset E$ be such that $\mathcal{H}^n(F) > 0$. Need to show $\omega(F) > 0$.
- Then there exists Ω_j such that $\mathcal{H}^n(F \cap \partial \Omega_j) > 0$.
- Pick $X \in \Omega_j \subset \mathbb{R}^{n+1} \setminus E$; $\omega_{\Omega_j}^X$ be the harmonic measure for Ω_j .
- Let ω^X be the harmonic measure for $\mathbb{R}^{n+1} \setminus E$ with pole at X.
- By the maximum principle and Dahlberg's result it follows that

 ω^X(F) ≥ ω^X_{Ωj}(F ∩ ∂Ω_j) > 0.

- Let $\{\Omega_i\}$ be the bounded Lipschitz domains by Theorem ?? for E.
- Let $F \subset E$ be such that $\mathcal{H}^n(F) > 0$. Need to show $\omega(F) > 0$.
- Then there exists Ω_j such that $\mathcal{H}^n(F \cap \partial \Omega_j) > 0$.
- Pick $X \in \Omega_j \subset \mathbb{R}^{n+1} \setminus E$; $\omega_{\Omega_j}^X$ be the harmonic measure for Ω_j .
- Let ω^X be the harmonic measure for $\mathbb{R}^{n+1} \setminus E$ with pole at X.
- By the maximum principle and Dahlberg's result it follows that $\omega^X(F) \ge \omega^X_{\Omega_j}(F \cap \partial \Omega_j) > 0.$

- Let $\{\Omega_i\}$ be the bounded Lipschitz domains by Theorem ?? for E.
- Let $F \subset E$ be such that $\mathcal{H}^n(F) > 0$. Need to show $\omega(F) > 0$.
- Then there exists Ω_j such that $\mathcal{H}^n(F \cap \partial \Omega_j) > 0$.
- Pick $X \in \Omega_j \subset \mathbb{R}^{n+1} \setminus E$; $\omega_{\Omega_j}^X$ be the harmonic measure for Ω_j .
- Let ω^X be the harmonic measure for $\mathbb{R}^{n+1} \setminus E$ with pole at X.
- By the maximum principle and Dahlberg's result it follows that $\omega^X(F) \ge \omega^X_{\Omega_j}(F \cap \partial \Omega_j) > 0.$

- Let $\{\Omega_i\}$ be the bounded Lipschitz domains by Theorem ?? for E.
- Let $F \subset E$ be such that $\mathcal{H}^n(F) > 0$. Need to show $\omega(F) > 0$.
- Then there exists Ω_j such that $\mathcal{H}^n(F \cap \partial \Omega_j) > 0$.
- Pick $X \in \Omega_j \subset \mathbb{R}^{n+1} \setminus E$; $\omega_{\Omega_j}^X$ be the harmonic measure for Ω_j .
- Let ω^X be the harmonic measure for $\mathbb{R}^{n+1} \setminus E$ with pole at X.
- By the maximum principle and Dahlberg's result it follows that

$$\omega^X(F) \ge \omega^X_{\Omega_j}(F \cap \partial \Omega_j) > 0.$$

- Let $\{\Omega_i\}$ be the bounded Lipschitz domains by Theorem ?? for E.
- Let $F \subset E$ be such that $\mathcal{H}^n(F) > 0$. Need to show $\omega(F) > 0$.
- Then there exists Ω_j such that $\mathcal{H}^n(F \cap \partial \Omega_j) > 0$.
- Pick $X \in \Omega_j \subset \mathbb{R}^{n+1} \setminus E$; $\omega_{\Omega_j}^X$ be the harmonic measure for Ω_j .
- Let ω^X be the harmonic measure for $\mathbb{R}^{n+1} \setminus E$ with pole at X.
- By the maximum principle and Dahlberg's result it follows that

$$\omega^X(F) \ge \omega^X_{\Omega_j}(F \cap \partial \Omega_j) > 0.$$

Theorem F (A., Bortz, Hofmann, Martell)

Let $\Omega \subset \mathbb{R}^{n+1}$, $n \geq 1$, be an open and connected set. Let

- $\partial \Omega$ has locally finite \mathcal{H}^n -measure,
- $\partial \Omega$ satisfies the WLADR condition,
- $\mathcal{H}^n(\partial_+\Omega \setminus \partial\Omega) = 0.$

```
Then
```

```
\partial \Omega \text{ is } n\text{-rectifiable } \iff \partial \Omega \subset Z \cup \left( \bigcup \partial \Omega_j^{int} \right),
```

\$\lap{\begin{subarray}{c} \Omega_j^{int} \}_j\$ is a countable collection of bounded Lipschitz domains,
\$\Overline{O}_j^{int} \subarray \Overline{O}_j\$ for every \$j\$,
\$\Overline{C}_j \subarray \overline{O}_j\$ with \$\mathcal{H}^n(Z) = 0\$.

Theorem F (A., Bortz, Hofmann, Martell)

Let $\Omega \subset \mathbb{R}^{n+1}$, $n \geq 1$, be an open and connected set. Let

- $\partial \Omega$ has locally finite \mathcal{H}^n -measure,
- $\partial \Omega$ satisfies the WLADR condition,
- $\mathcal{H}^n(\partial_+\Omega \setminus \partial\Omega) = 0.$

Then

 $\partial \Omega \text{ is } n\text{-rectifiable } \iff \partial \Omega \subset Z \cup \left(\bigcup \partial \Omega_j^{int} \right)$

\$\lap{\lap{1}}{0}\$ \$\{\Omega_{j}^{int}\}_{j}\$ is a countable collection of bounded Lipschitz domains,
\$\Omega_{j}^{int} \subset \Omega\$ for every \$j\$,
\$\Tau\$ \$\Car{2}\$ \$\Car{2}\$ \$\Car{2}\$ with \$\mathcal{L}^{n}(\mathcal{Z}) = 0\$.

Theorem F (A., Bortz, Hofmann, Martell)

Let $\Omega \subset \mathbb{R}^{n+1}$, $n \geq 1$, be an open and connected set. Let

- $\partial \Omega$ has locally finite \mathcal{H}^n -measure,
- $\partial \Omega$ satisfies the WLADR condition,
- $\mathcal{H}^n(\partial_+\Omega \setminus \partial\Omega) = 0.$

```
Then
```

```
\partial \Omega \text{ is } n\text{-rectifiable } \iff \partial \Omega \subset Z \cup \left( \bigcup \partial \Omega_j^{int} \right)
```

{Ω_j^{int}}_j is a countable collection of bounded Lipschitz domains,
 Ω_j^{int} ⊂ Ω for every j,
 Z ⊂ ∂Ω with Hⁿ(Z) = 0

Theorem F (A., Bortz, Hofmann, Martell)

Let $\Omega \subset \mathbb{R}^{n+1}$, $n \geq 1$, be an open and connected set. Let

- $\partial \Omega$ has locally finite \mathcal{H}^n -measure,
- $\partial \Omega$ satisfies the WLADR condition,
- $\mathcal{H}^n(\partial_+\Omega \setminus \partial\Omega) = 0.$

Then

 $\partial \Omega \text{ is } n\text{-rectifiable } \iff \partial \Omega \subset Z \cup \left(\bigcup \partial \Omega_j^{int} \right)$

\$\lap{\lap{1}}{0}\$ \$\{\Omega_{j}^{int}\\\\}_{j}\$ is a countable collection of bounded Lipschitz domains,
\$\Omega_{j}^{int} \subset \Omega\$ for every \$j\$,
\$\mathbb{Z}\$ \$\subset \omega\$ \$\mathcal{O}\$ with \$\mathcal{H}^n(Z) = 0\$

Theorem F (A., Bortz, Hofmann, Martell)

Let $\Omega \subset \mathbb{R}^{n+1}$, $n \geq 1$, be an open and connected set. Let

- $\partial \Omega$ has locally finite \mathcal{H}^n -measure,
- $\partial \Omega$ satisfies the WLADR condition,
- $\mathcal{H}^n(\partial_+\Omega \setminus \partial\Omega) = 0.$

Then

$$\partial \Omega \text{ is } n\text{-rectifiable } \iff \partial \Omega \subset Z \cup \left(\bigcup_{j} \partial \Omega_{j}^{\text{int}} \right),$$

(1) {\$\Omega_{j}^{int}\$}_{j}\$ is a countable collection of bounded Lipschitz domains,
 (2) \$\Omega_{j}^{int}\$ \subset \Omega\$ for every \$j\$,
 (3) \$\Omega\$
 (4) \$\Omega\$
 (5) \$\Omega\$
 (6) \$\Omega\$
 (7) \$\Omega\$

Theorem F (A., Bortz, Hofmann, Martell)

Let $\Omega \subset \mathbb{R}^{n+1}$, $n \geq 1$, be an open and connected set. Let

- $\partial \Omega$ has locally finite \mathcal{H}^n -measure,
- $\partial \Omega$ satisfies the WLADR condition,
- $\mathcal{H}^n(\partial_+\Omega \setminus \partial\Omega) = 0.$

Then

$$\partial \Omega \text{ is } n\text{-rectifiable } \iff \partial \Omega \subset Z \cup \left(\bigcup_{j} \partial \Omega_{j}^{\text{int}} \right),$$

(a) $\{\Omega_j^{int}\}_j$ is a countable collection of bounded Lipschitz domains, **(b)** $\Omega_j^{int} \subset \Omega$ for every j,

 $\bigcirc Z \subset \partial \Omega$ with $\mathcal{H}^n(Z) = 0$.

Theorem F (A., Bortz, Hofmann, Martell)

Let $\Omega \subset \mathbb{R}^{n+1}$, $n \geq 1$, be an open and connected set. Let

- $\partial \Omega$ has locally finite \mathcal{H}^n -measure,
- $\partial \Omega$ satisfies the WLADR condition,
- $\mathcal{H}^n(\partial_+\Omega \setminus \partial\Omega) = 0.$

Then

$$\partial \Omega \text{ is } n\text{-rectifiable } \iff \partial \Omega \subset Z \cup \left(\bigcup_{j} \partial \Omega_{j}^{\text{int}} \right),$$

④ {Ω_j^{int}}_j is a countable collection of bounded Lipschitz domains,
 ℬ Ω_j^{int} ⊂ Ω for every j,

 $\bigcirc Z \subset \partial \Omega \ with \ \mathcal{H}^n(Z) = 0.$

Theorem F (A., Bortz, Hofmann, Martell)

Let $\Omega \subset \mathbb{R}^{n+1}$, $n \geq 1$, be an open and connected set. Let

- $\partial \Omega$ has locally finite \mathcal{H}^n -measure,
- $\partial \Omega$ satisfies the WLADR condition,
- $\mathcal{H}^n(\partial_+\Omega \setminus \partial\Omega) = 0.$

Then

$$\partial \Omega \text{ is } n\text{-rectifiable } \iff \partial \Omega \subset Z \cup \left(\bigcup_{j} \partial \Omega_{j}^{\text{int}} \right),$$

④ {Ω_j^{int}}_j is a countable collection of bounded Lipschitz domains,
 ℬ Ω_j^{int} ⊂ Ω for every j,

 $O Z \subset \partial \Omega \ with \ \mathcal{H}^n(Z) = 0.$

Theorem F (A., Bortz, Hofmann, Martell)

Let $\Omega \subset \mathbb{R}^{n+1}$, $n \geq 1$, be an open and connected set. Let

- $\partial \Omega$ has locally finite \mathcal{H}^n -measure,
- $\partial \Omega$ satisfies the WLADR condition,
- $\mathcal{H}^n(\partial_+\Omega \setminus \partial\Omega) = 0.$

Then

$$\partial \Omega \text{ is } n\text{-rectifiable } \iff \partial \Omega \subset Z \cup \left(\bigcup_{j} \partial \Omega_{j}^{\text{int}} \right),$$

④ {Ω_j^{int}}_j is a countable collection of bounded Lipschitz domains,
 ℬ Ω_j^{int} ⊂ Ω for every j,

 $O Z \subset \partial \Omega \ with \ \mathcal{H}^n(Z) = 0.$

By combining the result from $[AHM^{3}TV];$

Theorem G (A., Bortz, Hofmann, Martell)

Let $\Omega \subset \mathbb{R}^{n+1}, n \geq 1$, be an open and connected set. Let

- $\partial \Omega$ has locally finite \mathcal{H}^n -measure,
- \circ $\partial \Omega$ satisfies the WLADR condition
- $\mathcal{H}^n(\partial_+\Omega\setminus\partial\Omega)=0.$

Then

$$\partial \Omega \text{ is } n\text{-rectifiable } \iff \mathcal{H}^n|_{\partial \Omega} \ll \omega$$

Here $\omega = \omega^X$ is the harmonic measure for Ω with some (or any) fixed pole $X \in \Omega$.

By combining the result from [AHM³TV];

Theorem G (A., Bortz, Hofmann, Martell)

Let $\Omega \subset \mathbb{R}^{n+1}$, $n \geq 1$, be an open and connected set. Let

- $\partial \Omega$ has locally finite \mathcal{H}^n -measure,
- $\partial \Omega$ satisfies the WLADR condition,
- $\mathcal{H}^n(\partial_+\Omega\setminus\partial\Omega)=0.$

Then

$$\partial \Omega \text{ is } n\text{-rectifiable } \iff \mathcal{H}^n|_{\partial \Omega} \ll \omega.$$

Here $\omega = \omega^X$ is the harmonic measure for Ω with some (or any) fixed pole $X \in \Omega$.

By combining the result from [AHM³TV];

Theorem G (A., Bortz, Hofmann, Martell)

Let $\Omega \subset \mathbb{R}^{n+1}$, $n \geq 1$, be an open and connected set. Let

- $\partial \Omega$ has locally finite \mathcal{H}^n -measure,
- $\partial \Omega$ satisfies the WLADR condition,
- $\mathcal{H}^n(\partial_+\Omega\setminus\partial\Omega)=0.$

Then

$$\partial \Omega \text{ is } n-\text{rectifiable } \iff \mathcal{H}^n|_{\partial \Omega} \ll \omega.$$

Here $\omega = \omega^X$ is the harmonic measure for Ω with some (or any) fixed pole $X \in \Omega$.

Let $\Omega \subset \mathbb{R}^{n+1}$, $n \geq 1$, be an open and connected set.

- Let $\partial \Omega$ has locally finite \mathcal{H}^n -measure,
- Let $F \subset \partial \Omega$ with $\mathcal{H}^n(F) < \infty$,
- Let F be n-rectifiable.
- $\mathcal{H}^n(F \setminus \partial_+\Omega) = 0.$
- Let F satisfy the WLADR condition.

Then

Let $\Omega \subset \mathbb{R}^{n+1}$, $n \geq 1$, be an open and connected set.

- Let $\partial \Omega$ has locally finite \mathcal{H}^n -measure,
- Let $F \subset \partial \Omega$ with $\mathcal{H}^n(F) < \infty$,
- Let F be n-rectifiable.
- $\mathcal{H}^n(F \setminus \partial_+\Omega) = 0.$
- Let F satisfy the WLADR condition.

Then

Let $\Omega \subset \mathbb{R}^{n+1}$, $n \geq 1$, be an open and connected set.

- Let $\partial \Omega$ has locally finite \mathcal{H}^n -measure,
- Let $F \subset \partial \Omega$ with $\mathcal{H}^n(F) < \infty$,
- Let F be n-rectifiable.
- $\mathcal{H}^n(F \setminus \partial_+\Omega) = 0.$
- Let F satisfy the WLADR condition.

Then

Let $\Omega \subset \mathbb{R}^{n+1}$, $n \geq 1$, be an open and connected set.

- Let $\partial \Omega$ has locally finite \mathcal{H}^n -measure,
- Let $F \subset \partial \Omega$ with $\mathcal{H}^n(F) < \infty$,
- Let F be n-rectifiable.
- $\mathcal{H}^n(F \setminus \partial_+\Omega) = 0.$
- Let F satisfy the WLADR condition.

Then

Let $\Omega \subset \mathbb{R}^{n+1}$, $n \geq 1$, be an open and connected set.

- Let $\partial \Omega$ has locally finite \mathcal{H}^n -measure,
- Let $F \subset \partial \Omega$ with $\mathcal{H}^n(F) < \infty$,
- Let F be n-rectifiable.
- $\mathcal{H}^n(F \setminus \partial_+\Omega) = 0.$
- Let F satisfy the WLADR condition.

Then

Let $\Omega \subset \mathbb{R}^{n+1}$, $n \geq 1$, be an open and connected set.

- Let $\partial \Omega$ has locally finite \mathcal{H}^n -measure,
- Let $F \subset \partial \Omega$ with $\mathcal{H}^n(F) < \infty$,
- Let F be n-rectifiable.
- $\mathcal{H}^n(F \setminus \partial_+\Omega) = 0.$
- Let F satisfy the WLADR condition.

Then

Let $\Omega \subset \mathbb{R}^{n+1}$, $n \geq 1$, be an open and connected set.

- Let $\partial \Omega$ has locally finite \mathcal{H}^n -measure.
- Let $\partial \Omega$ satisfies the WLADR condition.
- Let $\mathcal{H}^n(\partial\Omega\setminus\partial_+\Omega)=0.$

Then

 $\partial \Omega = R \cup P$

where

Q R is n−rectifiable such that Hⁿ|_R ≪ ω.
 Q P is purely n−unrectifiable and ω(P) = 0

Let $\Omega \subset \mathbb{R}^{n+1}$, $n \geq 1$, be an open and connected set.

- Let $\partial \Omega$ has locally finite \mathcal{H}^n -measure.
- Let $\partial \Omega$ satisfies the WLADR condition.
- Let $\mathcal{H}^n(\partial\Omega\setminus\partial_+\Omega)=0.$

Then

 $\partial \Omega = \mathbf{R} \cup \mathbf{P}$

where

Q R is n−rectifiable such that Hⁿ|_R ≪ ω. *Q* P is purely n−unrectifiable and ω(P) = 0

Let $\Omega \subset \mathbb{R}^{n+1}$, $n \geq 1$, be an open and connected set.

- Let $\partial \Omega$ has locally finite \mathcal{H}^n -measure.
- Let $\partial \Omega$ satisfies the WLADR condition.
- Let $\mathcal{H}^n(\partial\Omega\setminus\partial_+\Omega)=0.$

Then

 $\partial \Omega = \mathbf{R} \cup \mathbf{P}$

where

Q R is n-rectifiable such that Hⁿ|_R ≪ ω.
 Q P is purely n-unrectifiable and ω(P) = 0

Let $\Omega \subset \mathbb{R}^{n+1}$, $n \geq 1$, be an open and connected set.

- Let $\partial \Omega$ has locally finite \mathcal{H}^n -measure.
- Let $\partial \Omega$ satisfies the WLADR condition.
- Let $\mathcal{H}^n(\partial\Omega\setminus\partial_+\Omega)=0.$

Then

$$\partial \Omega = \mathbf{R} \cup \mathbf{P}$$

where

Q R is n-rectifiable such that Hⁿ|_R ≪ ω.
Q P is purely n-unrectifiable and ω(P) = 0.

$$\mathcal{H}^{n}|_{\partial\Omega} = \mathcal{H}^{n}|_{\mathbf{ac}} + \mathcal{H}^{n}|_{\mathbf{S}} = \mathcal{H}^{n}|_{F} + \mathcal{H}^{n}|_{\partial\Omega\setminus F}$$

with the property that

 $\mathcal{H}^n|_{\mathrm{ac}} = \mathcal{H}^n|_F \ll \omega \text{ and } \mathcal{H}^n|_{\mathrm{S}} = \mathcal{H}^n|_{\partial\Omega\setminus F} \perp \omega.$

- $\omega(\partial \Omega \setminus F) = 0$ (since $\mathcal{H}^n|_{\mathbf{S}} = \mathcal{H}^n|_{\partial \Omega \setminus F} \perp \omega$).
- As F is n-rectifiable by [AHM³TV] (As $\mathcal{H}^n \ll \omega$ on $\partial \Omega$).
- Need to show $\partial \Omega \setminus F$ is purely *n*-unrectifiable.
- Suppose $\exists n$ -rectifiable Borel set F' with $\mathcal{H}^n(F' \cap (\partial \Omega \setminus F) > 0$.

• Apply Theorem ?? to rectifiable set $F' \cap (\partial \Omega \setminus F)$ to get $\omega(F' \cap (\partial \Omega \setminus F) > 0$ which contradicts with $\omega(\partial \Omega \setminus F) = 0$.

$$\mathcal{H}^{n}|_{\partial\Omega} = \mathcal{H}^{n}|_{\mathbf{ac}} + \mathcal{H}^{n}|_{\mathbf{s}} = \mathcal{H}^{n}|_{\mathbf{F}} + \mathcal{H}^{n}|_{\partial\Omega\setminus F}$$

with the property that

 $\mathcal{H}^n|_{\mathrm{ac}} = \mathcal{H}^n|_F \ll \omega \text{ and } \mathcal{H}^n|_{\mathrm{S}} = \mathcal{H}^n|_{\partial\Omega\setminus F} \perp \omega.$

- $\omega(\partial \Omega \setminus F) = 0$ (since $\mathcal{H}^n|_{\mathbf{S}} = \mathcal{H}^n|_{\partial \Omega \setminus F} \perp \omega$).
- As F is n-rectifiable by [AHM³TV] (As $\mathcal{H}^n \ll \omega$ on $\partial \Omega$).
- Need to show $\partial \Omega \setminus F$ is purely *n*-unrectifiable.
- Suppose $\exists n$ -rectifiable Borel set F' with $\mathcal{H}^n(F' \cap (\partial \Omega \setminus F) > 0$.
- Apply Theorem ?? to rectifiable set $F' \cap (\partial \Omega \setminus F)$ to get $\omega(F' \cap (\partial \Omega \setminus F) > 0$ which contradicts with $\omega(\partial \Omega \setminus F) = 0$.

$$\mathcal{H}^{n}|_{\partial\Omega} = \mathcal{H}^{n}|_{\mathbf{ac}} + \mathcal{H}^{n}|_{\mathbf{S}} = \mathcal{H}^{n}|_{F} + \mathcal{H}^{n}|_{\partial\Omega\setminus F}$$

with the property that

 $\mathcal{H}^n|_{\mathrm{ac}} = \mathcal{H}^n|_F \ll \omega \text{ and } \mathcal{H}^n|_{\mathrm{S}} = \mathcal{H}^n|_{\partial\Omega\setminus F} \perp \omega.$

- $\omega(\partial \Omega \setminus F) = 0$ (since $\mathcal{H}^n|_{\mathbf{S}} = \mathcal{H}^n|_{\partial \Omega \setminus F} \perp \omega$).
- As F is n-rectifiable by [AHM³TV] (As $\mathcal{H}^n \ll \omega$ on $\partial \Omega$).
- Need to show $\partial \Omega \setminus F$ is purely *n*-unrectifiable.
- Suppose $\exists n$ -rectifiable Borel set F' with $\mathcal{H}^n(F' \cap (\partial \Omega \setminus F) > 0$.

• Apply Theorem ?? to rectifiable set $F' \cap (\partial \Omega \setminus F)$ to get $\omega(F' \cap (\partial \Omega \setminus F) > 0$ which contradicts with $\omega(\partial \Omega \setminus F) = 0$.

$$\mathcal{H}^{n}|_{\partial\Omega} = \mathcal{H}^{n}|_{\mathbf{ac}} + \mathcal{H}^{n}|_{\mathbf{S}} = \mathcal{H}^{n}|_{\mathbf{F}} + \mathcal{H}^{n}|_{\partial\Omega\setminus F}$$

with the property that

 $\mathcal{H}^n|_{\mathrm{ac}} = \mathcal{H}^n|_F \ll \omega \text{ and } \mathcal{H}^n|_{\mathrm{S}} = \mathcal{H}^n|_{\partial\Omega\setminus F} \perp \omega.$

- $\omega(\partial \Omega \setminus F) = 0$ (since $\mathcal{H}^n|_{\mathbf{S}} = \mathcal{H}^n|_{\partial \Omega \setminus F} \perp \omega$).
- As F is n-rectifiable by [AHM³TV] (As $\mathcal{H}^n \ll \omega$ on $\partial \Omega$).
- Need to show $\partial \Omega \setminus F$ is purely *n*-unrectifiable.
- Suppose $\exists n$ -rectifiable Borel set F' with $\mathcal{H}^n(F' \cap (\partial \Omega \setminus F) > 0$.
- Apply Theorem ?? to rectifiable set $F' \cap (\partial \Omega \setminus F)$ to get $\omega(F' \cap (\partial \Omega \setminus F) > 0$ which contradicts with $\omega(\partial \Omega \setminus F) = 0$.

$$\mathcal{H}^{n}|_{\partial\Omega} = \mathcal{H}^{n}|_{\mathbf{ac}} + \mathcal{H}^{n}|_{\mathbf{S}} = \mathcal{H}^{n}|_{\mathbf{F}} + \mathcal{H}^{n}|_{\partial\Omega\setminus F}$$

with the property that

 $\mathcal{H}^n|_{\mathrm{ac}} = \mathcal{H}^n|_F \ll \omega \text{ and } \mathcal{H}^n|_{\mathrm{S}} = \mathcal{H}^n|_{\partial\Omega\setminus F} \perp \omega.$

- $\omega(\partial \Omega \setminus F) = 0$ (since $\mathcal{H}^n|_{\mathbf{S}} = \mathcal{H}^n|_{\partial \Omega \setminus F} \perp \omega$).
- As F is *n*-rectifiable by [AHM³TV] (As $\mathcal{H}^n \ll \omega$ on $\partial \Omega$).
- Need to show $\partial \Omega \setminus F$ is purely *n*-unrectifiable.
- Suppose $\exists n$ -rectifiable Borel set F' with $\mathcal{H}^n(F' \cap (\partial \Omega \setminus F) > 0$.
- Apply Theorem ?? to rectifiable set $F' \cap (\partial \Omega \setminus F)$ to get $\omega(F' \cap (\partial \Omega \setminus F) > 0$ which contradicts with $\omega(\partial \Omega \setminus F) = 0$.

$$\mathcal{H}^{n}|_{\partial\Omega} = \mathcal{H}^{n}|_{\mathbf{ac}} + \mathcal{H}^{n}|_{\mathbf{S}} = \mathcal{H}^{n}|_{\mathbf{F}} + \mathcal{H}^{n}|_{\partial\Omega\setminus F}$$

with the property that

 $\mathcal{H}^n|_{\mathrm{ac}} = \mathcal{H}^n|_F \ll \omega \text{ and } \mathcal{H}^n|_{\mathrm{S}} = \mathcal{H}^n|_{\partial\Omega\setminus F} \perp \omega.$

- $\omega(\partial \Omega \setminus F) = 0$ (since $\mathcal{H}^n|_{\mathbf{S}} = \mathcal{H}^n|_{\partial \Omega \setminus F} \perp \omega$).
- As F is n-rectifiable by [AHM³TV] (As $\mathcal{H}^n \ll \omega$ on $\partial \Omega$).
- Need to show $\partial \Omega \setminus F$ is purely *n*-unrectifiable.
- Suppose $\exists n$ -rectifiable Borel set F' with $\mathcal{H}^n(F' \cap (\partial \Omega \setminus F) > 0$.

• Apply Theorem ?? to rectifiable set $F' \cap (\partial \Omega \setminus F)$ to get $\omega(F' \cap (\partial \Omega \setminus F) > 0$ which contradicts with $\omega(\partial \Omega \setminus F) = 0$.

$$\mathcal{H}^{n}|_{\partial\Omega} = \mathcal{H}^{n}|_{\mathbf{ac}} + \mathcal{H}^{n}|_{\mathbf{s}} = \mathcal{H}^{n}|_{\mathbf{F}} + \mathcal{H}^{n}|_{\partial\Omega\setminus F}$$

with the property that

 $\mathcal{H}^n|_{\mathrm{ac}} = \mathcal{H}^n|_F \ll \omega \text{ and } \mathcal{H}^n|_{\mathrm{S}} = \mathcal{H}^n|_{\partial\Omega\setminus F} \perp \omega.$

- $\omega(\partial \Omega \setminus F) = 0$ (since $\mathcal{H}^n|_{\mathbf{S}} = \mathcal{H}^n|_{\partial \Omega \setminus F} \perp \omega$).
- As F is n-rectifiable by [AHM³TV] (As $\mathcal{H}^n \ll \omega$ on $\partial \Omega$).
- Need to show $\partial \Omega \setminus F$ is purely *n*-unrectifiable.
- Suppose $\exists n$ -rectifiable Borel set F' with $\mathcal{H}^n(F' \cap (\partial \Omega \setminus F) > 0$.

• Apply Theorem ?? to rectifiable set $F' \cap (\partial \Omega \setminus F)$ to get $\omega(F' \cap (\partial \Omega \setminus F) > 0$ which contradicts with $\omega(\partial \Omega \setminus F) = 0$.

$$\mathcal{H}^{n}|_{\partial\Omega} = \mathcal{H}^{n}|_{\mathbf{ac}} + \mathcal{H}^{n}|_{\mathbf{S}} = \mathcal{H}^{n}|_{\mathbf{F}} + \mathcal{H}^{n}|_{\partial\Omega\setminus F}$$

with the property that

 $\mathcal{H}^n|_{\mathrm{ac}} = \mathcal{H}^n|_F \ll \omega \text{ and } \mathcal{H}^n|_{\mathrm{S}} = \mathcal{H}^n|_{\partial\Omega\setminus F} \perp \omega.$

- $\omega(\partial \Omega \setminus F) = 0$ (since $\mathcal{H}^n|_{\mathbf{S}} = \mathcal{H}^n|_{\partial \Omega \setminus F} \perp \omega$).
- As F is n-rectifiable by [AHM³TV] (As $\mathcal{H}^n \ll \omega$ on $\partial \Omega$).
- Need to show $\partial \Omega \setminus F$ is purely *n*-unrectifiable.
- Suppose $\exists n$ -rectifiable Borel set F' with $\mathcal{H}^n(F' \cap (\partial \Omega \setminus F) > 0$.
- Apply Theorem ?? to rectifiable set $F' \cap (\partial \Omega \setminus F)$ to get $\omega(F' \cap (\partial \Omega \setminus F) > 0$ which contradicts with $\omega(\partial \Omega \setminus F) = 0$.

$$\mathcal{H}^{n}|_{\partial\Omega} = \mathcal{H}^{n}|_{\mathbf{ac}} + \mathcal{H}^{n}|_{\mathbf{S}} = \mathcal{H}^{n}|_{\mathbf{F}} + \mathcal{H}^{n}|_{\partial\Omega\setminus F}$$

with the property that

 $\mathcal{H}^n|_{\mathrm{ac}} = \mathcal{H}^n|_F \ll \omega \text{ and } \mathcal{H}^n|_{\mathrm{S}} = \mathcal{H}^n|_{\partial\Omega\setminus F} \perp \omega.$

- $\omega(\partial \Omega \setminus F) = 0$ (since $\mathcal{H}^n|_{\mathbf{S}} = \mathcal{H}^n|_{\partial \Omega \setminus F} \perp \omega$).
- As F is n-rectifiable by [AHM³TV] (As $\mathcal{H}^n \ll \omega$ on $\partial \Omega$).
- Need to show $\partial \Omega \setminus F$ is purely *n*-unrectifiable.
- Suppose $\exists n$ -rectifiable Borel set F' with $\mathcal{H}^n(F' \cap (\partial \Omega \setminus F) > 0$.
- Apply Theorem ?? to rectifiable set $F' \cap (\partial \Omega \setminus F)$ to get $\omega(F' \cap (\partial \Omega \setminus F) > 0$ which contradicts with $\omega(\partial \Omega \setminus F) = 0$.

For $k \ge 1$, and $n \ge 1$, set $\Sigma_k = \{(x,t) \in \mathbb{R}^{n+1}_+ : t = 2^{-k}, |x| \ge 2^{-k}\}.$ Let $\Omega := \mathbb{R}^{n+1}_+ \setminus \left(\bigcup_{k=1}^{\infty} \Sigma_k\right).$

- Ω is open and connected domain.
- $\partial \Omega = (\mathbb{R}^n \times \{0\} \cup (\bigcup_{k=1}^{\infty} \Sigma_k) \text{ is } n\text{-rectifiable.}$
- $\partial \Omega$ satisfies the WLADR.
- $\partial_+\Omega = \partial\Omega$ as Ω satisfies interior Corkscrew (Σ_k are 2^{-k} apart).

• $\partial\Omega$ does NOT have a locally finite \mathcal{H}^n -measure(any surface ball centered at $\mathbb{R}^n \times \{0\}$ contains infinitely many n-dimensional balls of fixed radius).

- Ω is open and connected domain.
- $\partial \Omega = (\mathbb{R}^n \times \{0\} \cup (\bigcup_{k=1}^{\infty} \Sigma_k) \text{ is } n\text{-rectifiable.}$
- $\partial \Omega$ satisfies the WLADR.
- $\partial_+\Omega = \partial\Omega$ as Ω satisfies interior Corkscrew (Σ_k are 2^{-k} apart).
- $\partial\Omega$ does NOT have a locally finite \mathcal{H}^n -measure(any surface ball centered at $\mathbb{R}^n \times \{0\}$ contains infinitely many n-dimensional balls of fixed radius).
- $\mathcal{H}^n \not\ll \omega$.

- Ω is open and connected domain.
- $\partial \Omega = (\mathbb{R}^n \times \{0\} \cup (\bigcup_{k=1}^{\infty} \Sigma_k) \text{ is } n\text{-rectifiable.}$
- $\partial \Omega$ satisfies the WLADR.
- $\partial_+\Omega = \partial\Omega$ as Ω satisfies interior Corkscrew (Σ_k are 2^{-k} apart).
- $\partial\Omega$ does NOT have a locally finite \mathcal{H}^n -measure(any surface ball centered at $\mathbb{R}^n \times \{0\}$ contains infinitely many n-dimensional balls of fixed radius).
- $\mathcal{H}^n \not\ll \omega$.

- Ω is open and connected domain.
- $\partial \Omega = (\mathbb{R}^n \times \{0\} \cup (\bigcup_{k=1}^{\infty} \Sigma_k) \text{ is } n\text{-rectifiable.}$
- $\partial \Omega$ satisfies the WLADR.
- $\partial_+\Omega = \partial\Omega$ as Ω satisfies interior Corkscrew (Σ_k are 2^{-k} apart).
- $\partial\Omega$ does NOT have a locally finite \mathcal{H}^n -measure(any surface ball centered at $\mathbb{R}^n \times \{0\}$ contains infinitely many n-dimensional balls of fixed radius).
- $\mathcal{H}^n \not\ll \omega$.

For $k \ge 1$, and $n \ge 1$, set $\Sigma_k = \{(x,t) \in \mathbb{R}^{n+1}_+ : t = 2^{-k}, |x| \ge 2^{-k}\}.$ Let $\Omega := \mathbb{R}^{n+1}_+ \setminus \left(\bigcup_{k=1}^{\infty} \Sigma_k\right).$

- Ω is open and connected domain.
- $\partial \Omega = (\mathbb{R}^n \times \{0\} \cup (\bigcup_{k=1}^{\infty} \Sigma_k) \text{ is } n\text{-rectifiable.}$
- $\partial\Omega$ satisfies the WLADR.
- $\partial_+\Omega = \partial\Omega$ as Ω satisfies interior Corkscrew (Σ_k are 2^{-k} apart).

• $\partial\Omega$ does NOT have a locally finite \mathcal{H}^n -measure(any surface ball centered at $\mathbb{R}^n \times \{0\}$ contains infinitely many n-dimensional balls of fixed radius).

For $k \ge 1$, and $n \ge 1$, set $\Sigma_k = \{(x,t) \in \mathbb{R}^{n+1}_+ : t = 2^{-k}, |x| \ge 2^{-k}\}.$ Let $\Omega := \mathbb{R}^{n+1}_+ \setminus \left(\bigcup_{k=1}^{\infty} \Sigma_k\right).$

- Ω is open and connected domain.
- $\partial \Omega = (\mathbb{R}^n \times \{0\} \cup (\bigcup_{k=1}^{\infty} \Sigma_k) \text{ is } n\text{-rectifiable.}$
- $\partial\Omega$ satisfies the WLADR.
- $\partial_+\Omega = \partial\Omega$ as Ω satisfies interior Corkscrew (Σ_k are 2^{-k} apart).

• $\partial\Omega$ does NOT have a locally finite \mathcal{H}^n -measure(any surface ball centered at $\mathbb{R}^n \times \{0\}$ contains infinitely many n-dimensional balls of fixed radius).

For $k \ge 1$, and $n \ge 1$, set $\Sigma_k = \{(x,t) \in \mathbb{R}^{n+1}_+ : t = 2^{-k}, |x| \ge 2^{-k}\}.$ Let $\Omega := \mathbb{R}^{n+1}_+ \setminus \left(\bigcup_{k=1}^{\infty} \Sigma_k\right).$

- Ω is open and connected domain.
- $\partial \Omega = (\mathbb{R}^n \times \{0\} \cup (\bigcup_{k=1}^{\infty} \Sigma_k) \text{ is } n\text{-rectifiable.}$
- $\partial\Omega$ satisfies the WLADR.
- $\partial_+\Omega = \partial\Omega$ as Ω satisfies interior Corkscrew (Σ_k are 2^{-k} apart).
- $\partial\Omega$ does NOT have a locally finite \mathcal{H}^n -measure(any surface ball centered at $\mathbb{R}^n \times \{0\}$ contains infinitely many n-dimensional balls of fixed radius).

- Ω is open and connected domain.
- $\partial \Omega = (\mathbb{R}^n \times \{0\} \cup (\bigcup_{k=1}^{\infty} \Sigma_k) \text{ is } n\text{-rectifiable.}$
- $\partial\Omega$ satisfies the WLADR.
- $\partial_+\Omega = \partial\Omega$ as Ω satisfies interior Corkscrew (Σ_k are 2^{-k} apart).
- $\partial\Omega$ does NOT have a locally finite \mathcal{H}^n -measure(any surface ball centered at $\mathbb{R}^n \times \{0\}$ contains infinitely many n-dimensional balls of fixed radius).
- $\mathcal{H}^n \not\ll \omega$.

Example 2

For $k \geq 1$, and $n \geq 2$, set

$$\Sigma_k := \left\{ (x,t) \in \mathbb{R}^{n+1}_+ : t = 2^{-k}, x \in \overline{\Delta(0, 2^{-k}c_k)} + c_k \mathbb{Z}^n \right\}$$

where $c_k \downarrow 0$ has certain properties. Let

$$\Omega := \mathbb{R}^{n+1}_+ \setminus \left(\bigcup_{k=1}^{\infty} \Sigma_k\right).$$

- Ω is open and connected domain.
- $\partial_+\Omega = \partial\Omega$ as Ω satisfies the interior Corkscrew condition.
- $\partial \Omega$ is *n*-rectifiable.
- $\partial \Omega$ is locally finite \mathcal{H}^n -measure.
- $\partial \Omega$ does NOT satisfy WLADR condition.

Example 2

For $k \geq 1$, and $n \geq 2$, set

$$\Sigma_k := \left\{ (x,t) \in \mathbb{R}^{n+1}_+ : t = 2^{-k}, x \in \overline{\Delta(0, 2^{-k}c_k)} + c_k \mathbb{Z}^n \right\}$$

where $c_k \downarrow 0$ has certain properties. Let

$$\Omega := \mathbb{R}^{n+1}_+ \setminus \left(\bigcup_{k=1}^{\infty} \Sigma_k\right).$$

- Ω is open and connected domain.
- $\partial_+\Omega = \partial\Omega$ as Ω satisfies the interior Corkscrew condition.
- $\partial \Omega$ is *n*-rectifiable.
- $\partial \Omega$ is locally finite \mathcal{H}^n -measure.
- $\partial \Omega$ does NOT satisfy WLADR condition.

Example 2

For $k \geq 1$, and $n \geq 2$, set

$$\Sigma_k := \left\{ (x,t) \in \mathbb{R}^{n+1}_+ : t = 2^{-k}, x \in \overline{\Delta(0, 2^{-k}c_k)} + c_k \mathbb{Z}^n \right\}$$

where $c_k \downarrow 0$ has certain properties. Let

$$\Omega := \mathbb{R}^{n+1}_+ \setminus \left(\bigcup_{k=1}^{\infty} \Sigma_k\right).$$

- Ω is open and connected domain.
- $\partial_+\Omega = \partial\Omega$ as Ω satisfies the interior Corkscrew condition.
- $\partial \Omega$ is *n*-rectifiable.
- $\partial \Omega$ is locally finite \mathcal{H}^n -measure.
- $\partial \Omega$ does NOT satisfy WLADR condition.

Example 2

For $k \geq 1$, and $n \geq 2$, set

$$\Sigma_k := \left\{ (x,t) \in \mathbb{R}^{n+1}_+ : t = 2^{-k}, x \in \overline{\Delta(0, 2^{-k}c_k)} + c_k \mathbb{Z}^n \right\}$$

where $c_k \downarrow 0$ has certain properties. Let

$$\Omega := \mathbb{R}^{n+1}_+ \setminus \left(\bigcup_{k=1}^{\infty} \Sigma_k\right).$$

- Ω is open and connected domain.
- $\partial_+\Omega = \partial\Omega$ as Ω satisfies the interior Corkscrew condition.
- $\partial \Omega$ is *n*-rectifiable.
- $\partial \Omega$ is locally finite \mathcal{H}^n -measure.
- $\partial \Omega$ does NOT satisfy WLADR condition.

Example 2

For $k \geq 1$, and $n \geq 2$, set

$$\Sigma_k := \left\{ (x,t) \in \mathbb{R}^{n+1}_+ : t = 2^{-k}, x \in \overline{\Delta(0, 2^{-k}c_k)} + c_k \mathbb{Z}^n \right\}$$

where $c_k \downarrow 0$ has certain properties. Let

$$\Omega := \mathbb{R}^{n+1}_+ \setminus \left(\bigcup_{k=1}^{\infty} \Sigma_k\right).$$

- Ω is open and connected domain.
- $\partial_+\Omega = \partial\Omega$ as Ω satisfies the interior Corkscrew condition.
- $\partial \Omega$ is *n*-rectifiable.
- $\partial \Omega$ is locally finite \mathcal{H}^n -measure.
- $\partial \Omega$ does NOT satisfy WLADR condition.

Example 2

For $k \geq 1$, and $n \geq 2$, set

$$\Sigma_k := \left\{ (x,t) \in \mathbb{R}^{n+1}_+ : t = 2^{-k}, x \in \overline{\Delta(0, 2^{-k}c_k)} + c_k \mathbb{Z}^n \right\}$$

where $c_k \downarrow 0$ has certain properties. Let

$$\Omega := \mathbb{R}^{n+1}_+ \setminus \left(\bigcup_{k=1}^{\infty} \Sigma_k\right).$$

- Ω is open and connected domain.
- $\partial_+\Omega = \partial\Omega$ as Ω satisfies the interior Corkscrew condition.
- $\partial \Omega$ is *n*-rectifiable.
- $\partial \Omega$ is locally finite \mathcal{H}^n -measure.
- $\partial \Omega$ does NOT satisfy WLADR condition.

Example 2

For $k \geq 1$, and $n \geq 2$, set

$$\Sigma_k := \left\{ (x,t) \in \mathbb{R}^{n+1}_+ : t = 2^{-k}, x \in \overline{\Delta(0, 2^{-k}c_k)} + c_k \mathbb{Z}^n \right\}$$

where $c_k \downarrow 0$ has certain properties. Let

$$\Omega := \mathbb{R}^{n+1}_+ \setminus \left(\bigcup_{k=1}^{\infty} \Sigma_k\right).$$

- Ω is open and connected domain.
- $\partial_+\Omega = \partial\Omega$ as Ω satisfies the interior Corkscrew condition.
- $\partial \Omega$ is *n*-rectifiable.
- $\partial \Omega$ is locally finite \mathcal{H}^n -measure.
- $\partial \Omega$ does NOT satisfy WLADR condition.

Example 2

For $k \geq 1$, and $n \geq 2$, set

$$\Sigma_k := \left\{ (x,t) \in \mathbb{R}^{n+1}_+ : t = 2^{-k}, x \in \overline{\Delta(0, 2^{-k}c_k)} + c_k \mathbb{Z}^n \right\}$$

where $c_k \downarrow 0$ has certain properties. Let

$$\Omega := \mathbb{R}^{n+1}_+ \setminus \left(\bigcup_{k=1}^{\infty} \Sigma_k\right).$$

- Ω is open and connected domain.
- $\partial_+\Omega = \partial\Omega$ as Ω satisfies the interior Corkscrew condition.
- $\partial \Omega$ is *n*-rectifiable.
- $\partial \Omega$ is locally finite \mathcal{H}^n -measure.
- $\partial \Omega$ does NOT satisfy WLADR condition.
- $\mathcal{H}^n \not\ll \omega$.

Step **(**): Rectifiability implies linear approximability:

Theorem[Mattila]

Let $E \subset \mathbb{R}^{n+1}$ be a *n*-rectifiable set such that $\mathcal{H}^n|_E$ is locally finite. Then there exists $E_0 \subset E$ with $\mathcal{H}^n(E_0) = 0$ such that if $x \in E \setminus E_0$ the following holds:

For every $\eta > 0$ there exist positive numbers $r_x = r_x(\eta)$ and $\lambda_x = \lambda_x(\eta)$ and a *n*-dimensional affine subspace $\mathcal{P}_x = \mathcal{P}_x(\eta)$ such that for all $0 < r < r_x$

Step **(**): Rectifiability implies linear approximability:

Theorem[Mattila]

Let $E \subset \mathbb{R}^{n+1}$ be a *n*-rectifiable set such that $\mathcal{H}^n|_E$ is locally finite. Then there exists $E_0 \subset E$ with $\mathcal{H}^n(E_0) = 0$ such that if $x \in E \setminus E_0$ the following holds:

For every $\eta > 0$ there exist positive numbers $r_x = r_x(\eta)$ and $\lambda_x = \lambda_x(\eta)$ and a *n*-dimensional affine subspace $\mathcal{P}_x = \mathcal{P}_x(\eta)$ such that for all $0 < r < r_x$

 $\mathcal{L}^n(E \cap B(y,\eta r)) \ge \lambda_x r^n, \quad \text{for } y \in \mathcal{P}_x \cap B(x,r)$ $\mathcal{L}^n((E \cap B(x,r)) \setminus P_x^{(\eta r)}) < \eta r^n.$

Step **0**: Rectifiability implies linear approximability:

Theorem[Mattila]

Let $E \subset \mathbb{R}^{n+1}$ be a *n*-rectifiable set such that $\mathcal{H}^n|_E$ is locally finite. Then there exists $E_0 \subset E$ with $\mathcal{H}^n(E_0) = 0$ such that if $x \in E \setminus E_0$ the following holds:

For every $\eta > 0$ there exist positive numbers $r_x = r_x(\eta)$ and $\lambda_x = \lambda_x(\eta)$ and a *n*-dimensional affine subspace $\mathcal{P}_x = \mathcal{P}_x(\eta)$ such that for all $0 < r < r_x$

 $\mathcal{L}^n(E \cap B(y,\eta r)) \ge \lambda_x r^n, \quad \text{for } y \in \mathcal{P}_x \cap B(x,r)$ $\mathcal{L}^n((E \cap B(x,r)) \setminus P_x^{(\eta r)}) < \eta r^n.$

Step **0**: Rectifiability implies linear approximability:

Theorem[Mattila]

Let $E \subset \mathbb{R}^{n+1}$ be a *n*-rectifiable set such that $\mathcal{H}^n|_E$ is locally finite. Then there exists $E_0 \subset E$ with $\mathcal{H}^n(E_0) = 0$ such that if $x \in E \setminus E_0$ the following holds:

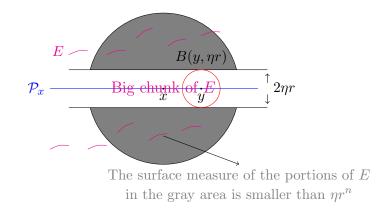
For every $\eta > 0$ there exist positive numbers $r_x = r_x(\eta)$ and $\lambda_x = \lambda_x(\eta)$ and a *n*-dimensional affine subspace $\mathcal{P}_x = \mathcal{P}_x(\eta)$ such that for all $0 < r < r_x$

Step **0**: Rectifiability implies linear approximability:

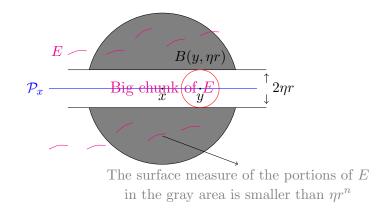
Theorem[Mattila]

Let $E \subset \mathbb{R}^{n+1}$ be a *n*-rectifiable set such that $\mathcal{H}^n|_E$ is locally finite. Then there exists $E_0 \subset E$ with $\mathcal{H}^n(E_0) = 0$ such that if $x \in E \setminus E_0$ the following holds:

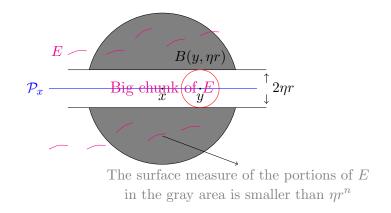
For every $\eta > 0$ there exist positive numbers $r_x = r_x(\eta)$ and $\lambda_x = \lambda_x(\eta)$ and a *n*-dimensional affine subspace $\mathcal{P}_x = \mathcal{P}_x(\eta)$ such that for all $0 < r < r_x$



 $\mathcal{H}^{n}(E \cap B(y,\eta r)) \geq \lambda_{x}r^{n}$, for $y \in \mathcal{P}_{x} \cap B(x,r)$. \rightsquigarrow There is no big hole in E near $\mathcal{P}_{x} \cap B(x,r)$. $\mathcal{H}^{n}((E \cap B(x,r)) \setminus P_{x}^{(\eta r)}) < \eta r^{n}$. \rightsquigarrow Most of E lies near \mathcal{P}_{x} in B(x,r).



- $\begin{array}{l} \textcircled{1} \ \mathcal{H}^n(E \cap B(y,\eta r)) \geq \lambda_x r^n, \quad \text{for } y \in \mathcal{P}_x \cap B(x,r). \\ \hline \end{matrix} \\ \begin{array}{l} \textcircled{1} \ \leadsto \ \text{There is no big hole in } E \ \text{near } \mathcal{P}_x \cap B(x,r). \\ \hline \end{array} \\ \begin{array}{l} \textcircled{2} \ \mathcal{H}^n\big((E \cap B(x,r)) \setminus P_x^{(\eta r)}\big) < \eta r^n. \end{array}$
- $@ \longrightarrow Most of E lies near <math>\mathcal{P}_x$ in B(x, r).



\$\mathcal{H}^n(E ∩ B(y, ηr)) ≥ λ_x r^n\$, for y ∈ \$\mathcal{P}_x ∩ B(x, r)\$.
 \$\lambda\$ There is no big hole in E near \$\mathcal{P}_x ∩ B(x, r)\$.
 \$\mathcal{H}^n((E ∩ B(x, r)) \ P_x^{(ηr)}) < ηr^n\$.
 \$\lambda\$ Most of E lies near \$\mathcal{P}_x\$ in \$B(x, r)\$.

Let $x \in E \setminus E_0$ with constants $\lambda_x(\eta)$ and $r_x(\eta)$. For every $0 < \eta < \eta_0(\lambda_x) := \min\{2^{-4n}, \lambda_x^2\};$

• there exists a two sided truncated cone $\Gamma_{h,\alpha}(x)$ with vertex at x with,

$$A height h(\eta) := \eta^{\frac{1}{4n}} \min\{r_x(\eta), r_x\},$$

B aperture $\alpha(\eta) := 2 \arctan\left(\eta^{-\frac{1}{4n}}/2\right) > \pi/2,$

 \bigcirc DOES NOT meet with E.

Let $x \in E \setminus E_0$ with constants $\lambda_x(\eta)$ and $r_x(\eta)$. For every $0 < \eta < \eta_0(\lambda_x) := \min\{2^{-4n}, \lambda_x^2\};$

• there exists a two sided truncated cone $\Gamma_{h,\alpha}(x)$ with vertex at x with,

$$A height h(\eta) := \eta^{\frac{1}{4n}} \min\{r_x(\eta), r_x\},$$

B aperture $\alpha(\eta) := 2 \arctan\left(\eta^{-\frac{1}{4n}}/2\right) > \pi/2,$

 \bigcirc DOES NOT meet with E.

Let $x \in E \setminus E_0$ with constants $\lambda_x(\eta)$ and $r_x(\eta)$. For every $0 < \eta < \eta_0(\lambda_x) := \min\{2^{-4n}, \lambda_x^2\};$

• there exists a two sided truncated cone $\Gamma_{h,\alpha}(x)$ with vertex at x with,

 $a height h(\eta) := \eta^{\frac{1}{4n}} \min\{r_x(\eta), r_x\},$

B aperture $\alpha(\eta) := 2 \arctan\left(\eta^{-\frac{1}{4n}}/2\right) > \pi/2,$

 \bigcirc DOES NOT meet with E.

Let $x \in E \setminus E_0$ with constants $\lambda_x(\eta)$ and $r_x(\eta)$. For every $0 < \eta < \eta_0(\lambda_x) := \min\{2^{-4n}, \lambda_x^2\};$

• there exists a two sided truncated cone $\Gamma_{h,\alpha}(x)$ with vertex at x with,

(a) height
$$h(\eta) := \eta^{\frac{1}{4n}} \min\{r_x(\eta), r_x\},$$

B aperture $\alpha(\eta) := 2 \arctan\left(\eta^{-\frac{1}{4n}}/2\right) > \pi/2,$

 \bigcirc DOES NOT meet with E.

Let $x \in E \setminus E_0$ with constants $\lambda_x(\eta)$ and $r_x(\eta)$. For every $0 < \eta < \eta_0(\lambda_x) := \min\{2^{-4n}, \lambda_x^2\};$

• there exists a two sided truncated cone $\Gamma_{h,\alpha}(x)$ with vertex at x with,

B aperture $\alpha(\eta) := 2 \arctan\left(\eta^{-\frac{1}{4n}}/2\right) > \pi/2$,

 \bigcirc DOES NOT meet with E.

 $\bigotimes \alpha(\eta) \to \pi \text{ as } \eta \to 0^+.$

Let $x \in E \setminus E_0$ with constants $\lambda_x(\eta)$ and $r_x(\eta)$. For every $0 < \eta < \eta_0(\lambda_x) := \min\{2^{-4n}, \lambda_x^2\};$

• there exists a two sided truncated cone $\Gamma_{h,\alpha}(x)$ with vertex at x with,

$$A height h(\eta) := \eta^{\frac{1}{4n}} \min\{r_x(\eta), r_x\},$$

B aperture $\alpha(\eta) := 2 \arctan\left(\eta^{-\frac{1}{4n}}/2\right) > \pi/2$,

 \bigcirc DOES NOT meet with E.

Let $x \in E \setminus E_0$ with constants $\lambda_x(\eta)$ and $r_x(\eta)$. For every $0 < \eta < \eta_0(\lambda_x) := \min\{2^{-4n}, \lambda_x^2\};$

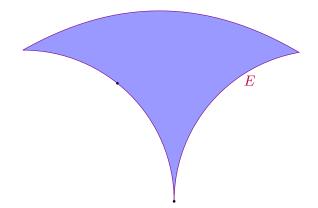
• there exists a two sided truncated cone $\Gamma_{h,\alpha}(x)$ with vertex at x with,

B aperture $\alpha(\eta) := 2 \arctan\left(\eta^{-\frac{1}{4n}}/2\right) > \pi/2$,

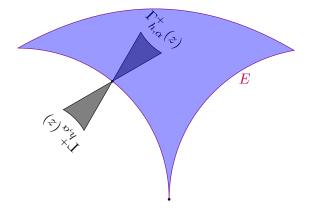
 \bigcirc DOES NOT meet with E.

$$\bigotimes \alpha(\eta) \to \pi \text{ as } \eta \to 0^+.$$

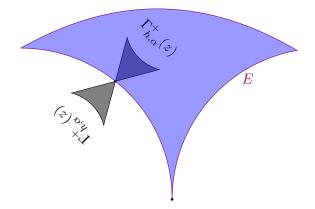
Existence of two sided Truncated Cones



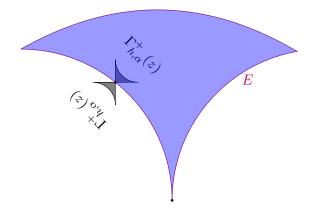
Existence of two sided Truncated Cones



Existence of two sided Truncated Cones



Existence of two sided Truncated Cones



• Consider
$$\Omega = \mathbb{R}^{n+1} \setminus E$$
.

• Let $x \in \partial \Omega \setminus E_0 = E \setminus E_0$ with constants $\lambda_x(\eta)$ and $r_x(\eta)$ and for every $0 < \eta < \eta_0(\lambda_x) := \min\{2^{-4n}, \lambda_x^2\}$ there exist two sided truncated cone, $\Gamma_{h,\alpha}^+(x), \Gamma_{h,\alpha}^-(x)$

• Given $\epsilon > 0$ there exists $\tilde{\eta}_0 = \tilde{\eta}_0(\epsilon) < \eta_0(c_x)$ such that if $0 < \eta < \tilde{\eta}_0$ and

$$\limsup_{r \to 0^+} \frac{|B(x,r) \cap \Omega|}{|B(x,r)|} > \epsilon.$$

• Consider $\Omega = \mathbb{R}^{n+1} \setminus E$.

• Let $x \in \partial \Omega \setminus E_0 = E \setminus E_0$ with constants $\lambda_x(\eta)$ and $r_x(\eta)$ and for every $0 < \eta < \eta_0(\lambda_x) := \min\{2^{-4n}, \lambda_x^2\}$ there exist two sided truncated cone, $\Gamma_{h,\alpha}^+(x), \Gamma_{h,\alpha}^-(x)$

• Given $\epsilon > 0$ there exists $\tilde{\eta}_0 = \tilde{\eta}_0(\epsilon) < \eta_0(c_x)$ such that if $0 < \eta < \tilde{\eta}_0$ and

$$\limsup_{r \to 0^+} \frac{|B(x,r) \cap \Omega|}{|B(x,r)|} > \epsilon.$$

• Consider
$$\Omega = \mathbb{R}^{n+1} \setminus E$$
.

• Let $x \in \partial \Omega \setminus E_0 = E \setminus E_0$ with constants $\lambda_x(\eta)$ and $r_x(\eta)$ and for every $0 < \eta < \eta_0(\lambda_x) := \min\{2^{-4n}, \lambda_x^2\}$ there exist two sided truncated cone, $\Gamma_{h,\alpha}^+(x), \Gamma_{h,\alpha}^-(x)$

• Given $\epsilon > 0$ there exists $\tilde{\eta}_0 = \tilde{\eta}_0(\epsilon) < \eta_0(c_x)$ such that if $0 < \eta < \tilde{\eta}_0$ and

$$\limsup_{r \to 0^+} \frac{|B(x,r) \cap \Omega|}{|B(x,r)|} > \epsilon.$$

• Consider
$$\Omega = \mathbb{R}^{n+1} \setminus E$$
.

• Let $x \in \partial \Omega \setminus E_0 = E \setminus E_0$ with constants $\lambda_x(\eta)$ and $r_x(\eta)$ and for every $0 < \eta < \eta_0(\lambda_x) := \min\{2^{-4n}, \lambda_x^2\}$ there exist two sided truncated cone, $\Gamma_{h,\alpha}^+(x), \Gamma_{h,\alpha}^-(x)$

• Given $\epsilon > 0$ there exists $\tilde{\eta}_0 = \tilde{\eta}_0(\epsilon) < \eta_0(c_x)$ such that if $0 < \eta < \tilde{\eta}_0$ and

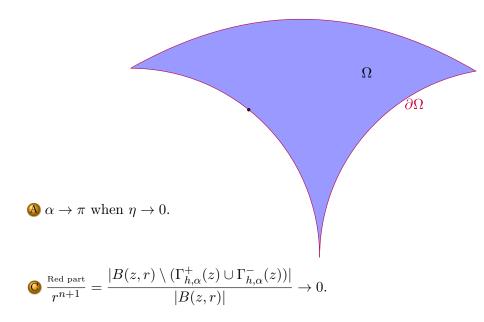
$$\limsup_{r \to 0^+} \frac{|B(x,r) \cap \Omega|}{|B(x,r)|} > \epsilon.$$

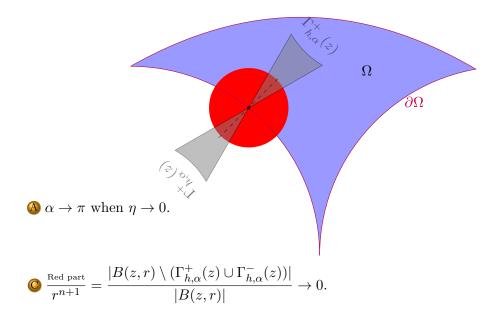
• Consider
$$\Omega = \mathbb{R}^{n+1} \setminus E$$
.

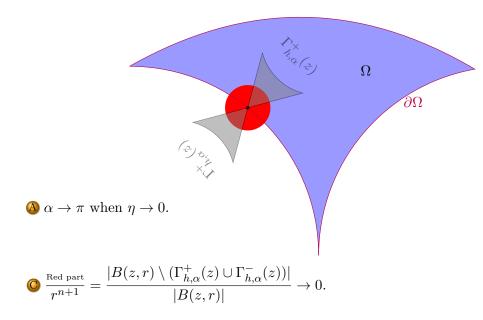
• Let $x \in \partial \Omega \setminus E_0 = E \setminus E_0$ with constants $\lambda_x(\eta)$ and $r_x(\eta)$ and for every $0 < \eta < \eta_0(\lambda_x) := \min\{2^{-4n}, \lambda_x^2\}$ there exist two sided truncated cone, $\Gamma_{h,\alpha}^+(x), \Gamma_{h,\alpha}^-(x)$

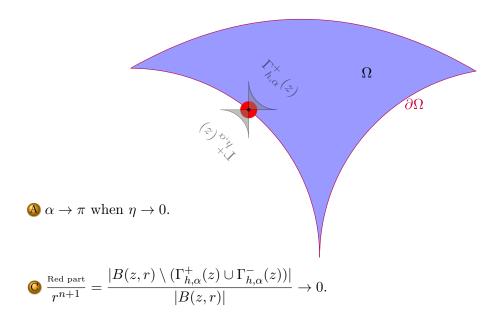
• Given $\epsilon > 0$ there exists $\tilde{\eta}_0 = \tilde{\eta}_0(\epsilon) < \eta_0(c_x)$ such that if $0 < \eta < \tilde{\eta}_0$ and

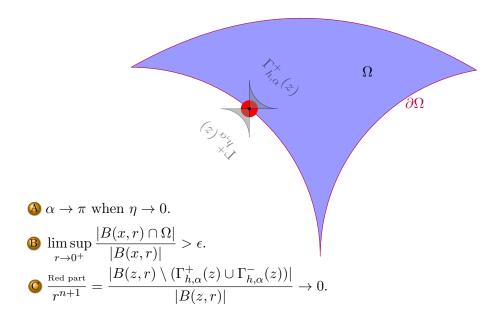
$$\limsup_{r \to 0^+} \frac{|B(x,r) \cap \Omega|}{|B(x,r)|} > \epsilon.$$











• Choose $\{\nu_m\}_{m=1}^M \subset \mathbb{S}^n$ (the unit sphere in \mathbb{R}^{n+1}) such that for every $\nu \in \mathbb{S}^n$ there exists ν_m , $1 \le m \le M$, such that $\operatorname{angle}(\nu, \nu_m) < \pi/8$.

• Set $P_m := \nu_m^{\perp}, 1 \le m \le M$.

• $E_* := \{ x \in E; \ \mathcal{H}^n(B(y,r) \cap E) \ge c_x r^n, \ \forall y \in B(x,\rho_x) \cap E, \ 0 < r \le \rho_x. \}.$

• For every $k \in N$ an $1 \le m \le M$ we set

 $G(k,m) := \{ x \in E_* \setminus E_0 : \max\{c_x, \rho_x, r_x\} > 2^{-k}, \text{ angle}(P_m, P_x) < \pi/8 \}.$

• Notice that setting $Z = (E \setminus E_*) \cup E_0$ we have that $\mathcal{H}^n(Z) = 0$. Also,

$$E = Z \cup \Big(\bigcup_{m=1}^{M} \bigcup_{k \in N} G(k, m)\Big).$$

• Choose $\{\nu_m\}_{m=1}^M \subset \mathbb{S}^n$ (the unit sphere in \mathbb{R}^{n+1}) such that for every $\nu \in \mathbb{S}^n$ there exists ν_m , $1 \le m \le M$, such that $\operatorname{angle}(\nu, \nu_m) < \pi/8$.

• Set $P_m := \nu_m^{\perp}, 1 \le m \le M$.

• $E_* := \{ x \in E; \ \mathcal{H}^n(B(y,r) \cap E) \ge c_x r^n, \ \forall y \in B(x,\rho_x) \cap E, \ 0 < r \le \rho_x. \}.$

• For every $k \in N$ an $1 \le m \le M$ we set

 $G(k,m) := \{ x \in E_* \setminus E_0 : \max\{c_x, \rho_x, r_x\} > 2^{-k}, \text{ angle}(P_m, P_x) < \pi/8 \}.$

• Notice that setting $Z = (E \setminus E_*) \cup E_0$ we have that $\mathcal{H}^n(Z) = 0$. Also,

$$E = Z \cup \Big(\bigcup_{m=1}^{M} \bigcup_{k \in N} G(k, m)\Big).$$

• Choose $\{\nu_m\}_{m=1}^M \subset \mathbb{S}^n$ (the unit sphere in \mathbb{R}^{n+1}) such that for every $\nu \in \mathbb{S}^n$ there exists ν_m , $1 \le m \le M$, such that $\operatorname{angle}(\nu, \nu_m) < \pi/8$.

• Set $P_m := \nu_m^{\perp}, 1 \le m \le M$.

• $E_* := \{x \in E; \ \mathcal{H}^n(B(y,r) \cap E) \ge c_x r^n, \ \forall y \in B(x,\rho_x) \cap E, \ 0 < r \le \rho_x.\}.$

• For every $k \in N$ an $1 \leq m \leq M$ we set

 $G(k,m) := \{ x \in E_* \setminus E_0 : \max\{c_x, \rho_x, r_x\} > 2^{-k}, \text{ angle}(P_m, P_x) < \pi/8 \}.$

• Notice that setting $Z = (E \setminus E_*) \cup E_0$ we have that $\mathcal{H}^n(Z) = 0$. Also,

$$E = Z \cup \Big(\bigcup_{m=1}^{M} \bigcup_{k \in N} G(k, m)\Big).$$

• Choose $\{\nu_m\}_{m=1}^M \subset \mathbb{S}^n$ (the unit sphere in \mathbb{R}^{n+1}) such that for every $\nu \in \mathbb{S}^n$ there exists ν_m , $1 \le m \le M$, such that $\operatorname{angle}(\nu, \nu_m) < \pi/8$.

• Set $P_m := \nu_m^{\perp}, 1 \le m \le M$.

• $E_* := \{x \in E; \ \mathcal{H}^n(B(y,r) \cap E) \ge c_x r^n, \ \forall y \in B(x,\rho_x) \cap E, \ 0 < r \le \rho_x.\}.$

• For every $k \in N$ an $1 \le m \le M$ we set

 $G(k,m) := \{ x \in E_* \setminus E_0 : \max\{c_x, \rho_x, r_x\} > 2^{-k}, \text{ angle}(P_m, P_x) < \pi/8 \}.$

• Notice that setting $Z = (E \setminus E_*) \cup E_0$ we have that $\mathcal{H}^n(Z) = 0$. Also,

$$E = Z \cup \Big(\bigcup_{m=1}^{M} \bigcup_{k \in N} G(k, m)\Big).$$

• Choose $\{\nu_m\}_{m=1}^M \subset \mathbb{S}^n$ (the unit sphere in \mathbb{R}^{n+1}) such that for every $\nu \in \mathbb{S}^n$ there exists ν_m , $1 \le m \le M$, such that $\operatorname{angle}(\nu, \nu_m) < \pi/8$.

• Set $P_m := \nu_m^{\perp}, 1 \le m \le M$.

• $E_* := \{x \in E; \ \mathcal{H}^n(B(y,r) \cap E) \ge c_x r^n, \ \forall y \in B(x,\rho_x) \cap E, \ 0 < r \le \rho_x.\}.$

• For every $k \in N$ an $1 \le m \le M$ we set

 $G(k,m) := \left\{ x \in E_* \setminus E_0 : \max\{c_x, \rho_x, r_x\} > 2^{-k}, \text{ angle}(P_m, P_x) < \pi/8 \right\}.$

• Notice that setting $Z = (E \setminus E_*) \cup E_0$ we have that $\mathcal{H}^n(Z) = 0$. Also,

$$E = Z \cup \Big(\bigcup_{m=1}^{M} \bigcup_{k \in N} G(k, m)\Big).$$

• Choose $\{\nu_m\}_{m=1}^M \subset \mathbb{S}^n$ (the unit sphere in \mathbb{R}^{n+1}) such that for every $\nu \in \mathbb{S}^n$ there exists ν_m , $1 \le m \le M$, such that $\operatorname{angle}(\nu, \nu_m) < \pi/8$.

• Set $P_m := \nu_m^{\perp}, 1 \le m \le M$.

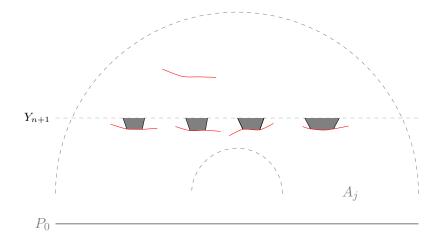
• $E_* := \{x \in E; \ \mathcal{H}^n(B(y,r) \cap E) \ge c_x r^n, \ \forall y \in B(x,\rho_x) \cap E, \ 0 < r \le \rho_x.\}.$

• For every $k \in N$ an $1 \le m \le M$ we set

 $G(k,m) := \left\{ x \in E_* \backslash E_0 : \max\{c_x, \rho_x, r_x\} > 2^{-k}, \text{ angle}(P_m, P_x) < \pi/8 \right\}.$

• Notice that setting $Z = (E \setminus E_*) \cup E_0$ we have that $\mathcal{H}^n(Z) = 0$. Also,

$$E = Z \cup \Big(\bigcup_{m=1}^{M} \bigcup_{k \in N} G(k, m)\Big).$$



 $\mathcal{THANKS}!$