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Let ACR™, 0<n<o0,0<d < 0.

HY(A) = inf {Z((ham( )" AC U E;, diam(FE;) < ()} .

1=1

H" (1) = lim H (A) = 5111)%“*1)'

6—0 5>0

D H" is a measure.

2 : HY(AE) = \"H"(E) for all A > 0
) H® =0 for s > m.

D) If o > o then H*(E) >0 — H"/( E) = 0.

D If f:R"™ — R’ is a Lipschitz then H"(f(E)) < Lip(f)"H"(E).

6 H™ measure coincides with the Lebesgue measure.
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Let ¥ = f(R") be a Lipschitz image of R".

E CR™is ,nedl, ..., m}, if there exists a family
{>;}i of Lipschitz images of R" such that

/HN L \ U Ez
1=1
i.e. E C U Z/' U Z(] with 7‘[”(2(]) = 0.
1=1

ECR™is 0 < H"(E) < oo and
H" (7w (E)) = 0 for almost every nfdun(%nsmnnl plane L C R™.
»ECR™is
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Rectifiability of a set

Let ¥ = f(R") be a Lipschitz image of R".
o E C R™ is n—rectifiable, n € {1,...,m}, if there exists a family

{X;}; of Lipschitz images of R"™ such that

H" <E\62i) =0,
=1

i.e.

EC (U 2,) UXe  with #"(%) = 0.
=1

o E C R™ is n—purely unrectifiable if 0 < H"(E) < oo and
H" (7 (E)) = 0 for almost every n—dimensional plane L C R™.

@ E C R™ is n—purely unrectifiable if E contains NO n—rectifiable
set F' with H"(F') > 0.

Here 71, denotes the orthogonal projection of R™ onto L.
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o There exists ¢ > 1 such that for each z € Cs and r € (0,/2)
clr <HYCoo N B(z,7)) < cr

o For almost every line L in R?, H!(77(Cs0)) = 0.

o Hence Cy is a purely 1-unrectifiable.

@ Every rectifiable curve intersects Coo in a set of zero H!-measure.
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Characterizing rectifiable sets

One of the main objectives of geometric measure theory consists in
characterizing rectifiable sets in terms of

@ The existence of approximate tangent n-planes.

@ The existence of densities.

© The size of projections.

@ @ + O + © are due to Besicovitch, Federer, Mattila, Preiss, ...

® Any other way? May be in terms of absolute continuity of
harmonic measure w

By using the FORCE of PDE theory?



o Q Cc R n > 2 connected and open.

Harmonic measure {wX } xeq family of probabilities on 0f2 called
harmonic measure of €} with a pole at X € () such that

Lu=01in Q

uw(X) = f(z) dw® (x) solves (D) { u’ e C(o9)
1o T A

J O

Courtesy of Chema Martell

Surface ball
A(z,r) = B(z,r) NN, x € ON.

()':H”|

o’

0N is n—Ahlfors-David regular (ADR) if
cr"<o(A(z,r)) < cr"™ whenever x € 09.

ADR = Lower ADR + ADR.
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Let Q ¢ R"! be a domain and let w be the harmonic measure for €.
Question

Under what conditions, we have

D w < H" |90? and/or B H" oo < w?

(1916): If Q  R? is simply connected,
H(09) < oo then

) <&

_ 741 o
w<<H ‘()gz < w.

(1936): Quantitative version.
(1974): for some topological sphere in R3.

) . ) : - ™3
(1986): for some topological sphere in R”.

(1990): for a connected domain in
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A question in a different direction

Let Q ¢ R"! be a domain and let w be the harmonic measure for €.

Question

Under what conditions, we have

@ w < H"oa? and/or ® H" o0 < w?

o F. and M. Riesz(1916): If Q C R? is simply connected,
H'(92) < oo then

w < "o < w.
o Lavrentiev(1936): Quantitative version.
o Ziemer(1974): "> < w for some topological sphere in R3.
o Wu(1986): w < H? for some topological sphere in R?.

o Bishop and Jones(1990): w < H' for a connected domain in
R2.
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Non-tangentially Accessible Domains(NTA)

@ Openness ~ Corkscrew condition (CS).

o Path-connectedness ~» Harnack chain condition (HC).

Q

B o0

Courtesy of Chema Martell

) o Interior Corkscrew and Harnack Chain.
o Qis NTA =

o Exterior Corkscrew.

o is l-sided NTA = Interior Corkscrew and Harnack Chain.



Examples of such domains

Smooth Domains Lipschitz Domains NTA Domains

@ NTA domains need not be graph domains or of finite perimeter.
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Let £ C R™! be ADR set and let Ag = EN B(z,7), z € E.

Ao, Condition

w € Ax(Ag) with respect to H" if there exist C' and 6 such that for
all A = B(x,’) N E where x, € E and B(z,r") C B(z,r) one has

ﬂ (F> ’ or ever orel se
) < C(Hﬂ(A)) f v Borel set F C A.

A Condition

w e AL™(Ag) with respect to H" if there exist C' and 6 such that
for all A = B(x,r') N E with B(z,2r") C B(z,r) one has

€

n [/
w((QI;)) <C <:"EZ;> for every Borel set F' C A.
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r—0 rn
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graph or curve).
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o Dahlberg(1977): Q is a Lipschitz domain then w € A (H"|sq)-
e David and Jerison(1990); o Semmes(1989):

If Q is NTA and 99 is ADR then w € Ax(H"|90)-



Global results in higher dimension

o Dahlberg(1977): Q is a Lipschitz domain then w € A (H"|sq)-
o David and Jerison(1990); © Semmes(1989):

If Q is NTA and 09 is ADR then w € As(H"|50)-
o Badger(2012): If @ ¢ R"™ is NTA with H"(9f) < oo then
H" o0 < w and w < H" |4

where

r—0 rn

A= {:c € 0Q; lim inf H" (00N B(z, 7)) < oo} )



Global results in higher dimension

o Dahlberg(1977): Q is a Lipschitz domain then w € A (H"|sq)-
o David and Jerison(1990); © Semmes(1989):

If Q is NTA and 09 is ADR then w € As(H"|50)-
o Badger(2012): If @ ¢ R"™ is NTA with H"(9f) < oo then

H" o0 < w and w < H" |4

where

r—0 rn

A= {:c € 0Q; lim inf H" (00N B(z, 7)) < oo} )

@ Portions of the boundary should be contained in a nice set(like a

graph or curve).
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o Dahlberg(1977): Q is a Lipschitz domain then w € A (H"|sq)-
o David and Jerison(1990); © Semmes(1989):

If Q is NTA and 09 is ADR then w € As(H"|50)-
o Badger(2012): If @ ¢ R"™ is NTA with H"(9f) < oo then

H" o0 < w and w < H" |4

where

r—0 rn

A= {:c € 0Q; lim inf H" (00N B(z, 7)) < oo} )

@ Portions of the boundary should be contained in a nice set(like a
graph or curve).

o Azzam, Mourgoglou, and Tolsa(2015): 3 NTA domain 2 with
H™(0€2) < oo such that w &€ H"|sq.
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Let 2 be and 0f2 . TFAE

@ 09 is Uniformly Rectifiablel=ADR+Big Pieces of Lipschitz Images]
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@ w e A (H"aq)-

2 — @ by David and Jerison and independently by Semmes.
D — @ by Hofmann, Martell, and Uriarte-Tuero.
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Where is Rectifiability? The Force Awakens

Theorem
Let Q be 1-sided NTA and 02 ADR. TFAE

@ 99 is Uniformly Rectifiable|=ADR+Big Pieces of Lipschitz Images]
@ Q is NTA domain (and therefore it is chord-arc domain).

@ w e A (H"|aq).
@ w e Agak(}lnbg).

@ — @ by David and Jerison and independently by Semmes.
@ — @ by Hofmann, Martell, and Uriarte-Tuero.
@ — @ is trivial.

@ — @ by Azzam, Hofmann, Martell, Nystrom, and Toro.
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Theorem A (A., Badger, Hofmann, Martell)

Let Q) be 1-sided NTA and 02 be ADR. TFAE;
@ 09 is Rectifiable.
@ Weak Ezistence of Ext. Corkscrew: for o a.e. x € 952

A(z,r), 0 <1 <1y, there erists Xg%:f ry Ezt. Corkscrew.

@ o < w on 0N.
@on=E UFN where Fy = 0Qx N O, Qn C Q is chord-arc.
N

@ on*= U Fyn such that
N

o(F)v <y w(F) <y o(F)’N, VF C Fy.

@ Mourgoglou: (lower ADR + H"|sq is locally finite) @ — @.
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Let Q) be 1-sided NTA and 02 be ADR. TFAE;

@ 09 is Rectifiable.

@ Weak Ewxistence of Ext. Corkscrew

@ o < wondN.

@ o= UFN where Fy = 0Qx NOQ, Qn C Q is chord-arc.
N

@ 00 = | JFv st o(F)'N Sy w(F) Sy o(F)™, VF C Fy.
N

® — @ obvious.
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@00 | JFy st o(F)N Sy w(F) Sy o(F)’N, VF C Fy.
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@ — @ by existence of approximate tangent planes.
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Sketch of the Proof

Theorem B (A., Badger, Hofmann, Martell)

Let Q) be 1-sided NTA and 02 be ADR. TFAE;
@ 09 is Rectifiable.

@ Weak Ezistence of Ext. Corkscrew

@ o < w on IN.

@ o0 = UFN where Fry = 0Qx N O, Qn C Q is chord-arc.
N

@00 | JFy st o(F)N Sy w(F) Sy o(F)’N, VF C Fy.
N

@ — @ straightforward use of the maximum principle.



Sketch of the Proof

Theorem B (A., Badger, Hofmann, Martell)

Let Q) be 1-sided NTA and 02 be ADR. TFAE;

@ 09 is Rectifiable.

@ Weak Ewistence of Ext. Corkscrew

@ o < w on .

@ on“= UFN where Fiy = 0Qn N0, Qn C Q is chord-arc.
N

@ 00 % | JFy 5.t o(F)’N Sy w(F) Sy o(F)™, VF C Fy.
N

@ — @ by showing that some family of bad cubes (for which the
exterior corkscrew condition fails) satisfies a Carleson packing
condition. From there, we obtain that another suitable family of
sawtooth domains are chord-arc domains.



Sketch of the Proof

Theorem B (A., Badger, Hofmann, Martell)

Let Q be 1-sided NTA and 02 be ADR. TFAFE;

@ 09 is Rectifiable.

@ Weak Ezistence of Ext. Corkscrew

@ o < w on dN.

@on=E UFN where Fy = 0Qx N O, Qn C Q is chord-arc.
N

@ 00 = | JFy st o(F)N Sy w(F) Sy o(F)’N, VF C Fy.
N

@ = @ by using a variant of the Dahlberg-Jerison-Kenig sawtooth
lemma and a certain projection operator.



o Lu(X) = div(AVu)(X), X € Q.

A<)&7> = ((15./'()())
A(X)E - € > ATHEP and [A(X)E -7 < Af¢][n].

A € Lip)(9).

V A satisfies a natural qualitative

sup — ” sup IVA(Z)| | dx < oc.
aca 0(A) % \ zeB(x.6(x)/2)

Let wy, be the elliptic measure of {2 associated to L.
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Elliptic Operators

©

Lu(X) =div(AVu)(X), X € Q.

o A(X) = (a;j(X)) Real, Bounded, Symmetric, Uniformly Elliptic;

A(X)E - € > AHEP and [A(X)E - | < Alg]|n].

©

A€ LiplOC(Q)‘

©

V A satisfies a natural qualitative Carleson condition;

1
sup sup VAZ dx < .
acon o(A) IAJ (ZGB(X,J(X)/2)| ( )|>

Let wy, be the elliptic measure of {2 associated to L.

©



Let Q be 1-sided NTA and 00 ADR. TFAE

D 0f) is Rectifiable.

2 : for o a.e. x € 0F)
A(z,r), 0 <1 <1y, there exists ‘X(A(I{,) Ext. Corkscrew.

D 0 K wr, on OS).

D 00 = Ulf\' where Fyy = 0Qn N0, Qn C Q is a chord-arc.

Oy

o0 = U Fn such that
N

(T(F)Uf\ SA\'(,U[‘(F\)<\' (T( )0\ VF C Fy.

~ol



Elliptic Operators

Theorem C (A., Badger, Hofmann, Martell)

Let Q be 1-sided NTA and 00 ADR. TFAE

@ 09 is Rectifiable.

@ Weak FEzistence of Ext. Corkscrew: for or, a.e. x € OS2
A(z,r), 0 <71 < ry, there exists Xg%gir) Ext. Corkscrew.

@ o < wyp, on ON.

@ o= UFN where Fy = 0Qn N OQ, Qn C Q is a chord-arc.
N

@ on= U Fy such that
N

o(F)'N <y wi(F) <y o(F)’N, VF C Fy.
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@ R?\ C,, is 1-sided NTA domain with 1—ADR boundary.

® Let C* = Co x Rand Q = R3\ C*.
© Q is a 1-sided NTA domain with 2—ADR boundary.
© But 09 is NOT rectifiable (Co is purely 1—unrectifiable).

@ Hence H" |90 € w! (As Qo = O).
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@ Simply Connected or @ Harnack Chain or @ Corkscrew

Let E be n—ADR and let Q@ = R""1 \ E. Then
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Is Connectivity really required?
All results requires some strong connectivity hypothesis;
@ Simply Connected or @ Harnack Chain or @ Corkscrew
Theorem

Let E be n—ADR and let Q = R"™!\ E. Then

FE is Uniformly Rectifiable <= E has BPGHME.

BPGHME= Big Pieces of Good Harmonic Measure Estimates:
@ Q € D(E) then 3Qg C Q.

® 09 is n—ADR.

© Qg satisfies interior corkscrew condition.

O 09 and 0€g have a big overlap; o(0Q2N Q) 2 o(Q).

® wQQ € A‘ggak('}'{anQ).
o = by Bortz and Hofmann. ¢ <« by Hofmann and Martell.
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Theorem[AHM?TV]

o Let Q c R™!, n > 1, open and connected.
o Let FF C 99 with 0 < H"(F) < oo.

@D If wg < H" on F = wql|F is n—rectifiable.
QIf H" < wg on FF = F is n—rectifiable.

AHM3TV=Azzam, Hofmann, Martell, Mayboroda, Mourgoglou,
Tolsa, and Volberg.



Is ADR really required?

A Radon measure 1 on R"™ is n-rectifiable if its (any) Borel

support can be covered by countably many (rotated) graphs of
scalar Lipschitz functions on R™ up to zero y—measure.

Theorem[AHM?TV]
o Let Q c R™!, n > 1, open and connected.

o Let FF C 99 with 0 < H"(F) < oo.

@D If wg < H" on F = wql|F is n—rectifiable.
QIf H" < wqg on FF = F is n—rectifiable.

AHM?TV=Azzam, Hofmann, Martell, Mayboroda, Mourgoglou,
Tolsa, and Volberg.

@ Assuming portion of the boundary contained in a nice rectifiable
set(like a graph or curve) is not an unreasonable assumption!
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o ECR"! n>1, closed set with locally finite "-measure.

Let E, be the realtively open set

HMB(y,7)NE
E.,={z2€eF: inf H'(B(y,r) N E)

yeB(z,p)NE rh
0<r<p

> (, for some p >0

i.e.: For x € F, there exists a small ball B, center at x and a
constant ¢, such that the lower ADR condition holds for all balls
B C B, with constant c,.
WLADR
H"|p satisfies the
if
/Hu (Lw \\ Lk) -0

A WLADR is than Lower ADR.



Weakening the Lower ADR condition

o FC R"'H, n > 1, closed set with locally finite H"-measure.

Let E. be the realtively open set

Bo-decp: i HBWrOE)

yeB(z,p)NE "
0<r<p

> 0, for some p >0



Weakening the Lower ADR condition

o FC R"'H, n > 1, closed set with locally finite H"-measure.

Let E. be the realtively open set

Bo-decp: i HBWrOE)

yeB(z,p)NE "
0<r<p

> 0, for some p >0

i.e.: For ¢ € FE, there exists a small ball B, center at x and a
constant ¢, such that the lower ADR condition holds for all balls
B C B, with constant c,.



Weakening the Lower ADR condition

o FC R"'H, n > 1, closed set with locally finite H"-measure.

Let E. be the realtively open set

Bo-decp: i HBWrOE)

yeB(z,p)NE "
0<r<p

> 0, for some p >0

i.e.: For ¢ € FE, there exists a small ball B, center at x and a
constant ¢, such that the lower ADR condition holds for all balls
B C B, with constant c,.

WLADR
H"|g satisfies the Weak Lower Ahlfors-David regular condition
(WLADR) if

H'(E\E:) =0



Weakening the Lower ADR condition

o FC R"'H, n > 1, closed set with locally finite H"-measure.

Let E. be the realtively open set

Bo-decp: i HBWrOE)

yeB(z,p)NE "
0<r<p

> 0, for some p >0

i.e.: For ¢ € FE, there exists a small ball B, center at x and a
constant ¢, such that the lower ADR condition holds for all balls
B C B, with constant c,.

WLADR

H"|g satisfies the Weak Lower Ahlfors-David regular condition
(WLADR) if
H'(E\E:) =0

@ WLADR is weaker than Lower ADR.



Let Q@ ¢ R be a set, n > 1.

Interior Measure Theoretic Boundary

The 0,0 is defined as

, B(x,r)NQ
0.0 = {.1‘ € 0N : limsup % > ()} !
o+ |Bla,7)|

If x € 0f) satisfies interior corkecscrew condition then x € 0.€).
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The Interior Measure Theoretic Boundary 0,2 is defined as
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i root |[B(z,7)]




Let Q@ ¢ R be a set, n > 1.

The Interior Measure Theoretic Boundary 0,2 is defined as

: |B(z,7) N Q| }
09:={x€89:hmsup—>0 .
i root |[B(z,7)]

@ If z € 99 satisfies interior corkescrew condition then x € 9,.
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Let 2, be the domain above the graph of the function |- |,
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Let 2, be the domain above the graph of the function |- |,
a € (0,00) \ {1};

Qo == {(2/, 2n41) ER" X R; @ppq > |z|*, a € (0,00) \ {1}}.

0,7) NN,

Qq when a > 1 for r large

® (00%), = 000,
@ 9, Q0 = 0.

Qn when a < 1 for r small
@ (09Q4)« = 004 \ {0}.
@ 0.0y =00, \ {0}.



The Truncated cone I'j, ,(2) is defined as
Ihaol(z) ={z: |z —2| <a(l-—|z|]) < ah}.

K is a Borel set with o—finite H! measure,
For F C K,
w(F) =0 <= H'(E) =0.
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A point z € 99 is called a Cone point if there is a truncated open
cone I'y, () with vertex at z such that 'y, ,(z) C Q.
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The Truncated cone I', (%) is defined as
Ihao(z) ={z: |z —z| <a(l—|z]) < ah}.
A point z € 99 is called a Cone point if there is a truncated open
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o K = K(2) = {Cone points for Q}.

Theorem|[McMillan]

Let 2 be a bounded simply connected domain in the plane. Then
o K is a Borel set with o—finite ' measure,

o For F C K,
w(E) =0+ H'(E) =0.



A Theorem of McMillan in the plane

The Truncated cone I', (%) is defined as
Ihao(z) ={z: |z —z| <a(l—|z]) < ah}.

A point z € 99 is called a Cone point if there is a truncated open
cone I'y, () with vertex at z such that 'y, ,(z) C Q.

o K = K(2) = {Cone points for Q}.
Theorem|[McMillan]

Let 2 be a bounded simply connected domain in the plane. Then
o K is a Borel set with o—finite ' measure,

o For F C K,
w(E) =0+ H'(E) =0.

@ At almost every w € K, 992 has an inner tangent.



A Theorem of McMillan in the plane

The Truncated cone I', (%) is defined as
Ihao(z) ={z: |z —z| <a(l—|z]) < ah}.

A point z € 99 is called a Cone point if there is a truncated open
cone I'y, () with vertex at z such that 'y, ,(z) C Q.

o K = K(2) = {Cone points for Q}.

Theorem|[McMillan]

Let 2 be a bounded simply connected domain in the plane. Then
o K is a Borel set with o—finite ' measure,

o For F C K,
w(E) =0+ H'(E) =0.

@ At almost every w € K, 992 has an inner tangent.
® One can construct Q' C Q with a rectifiable boundary such that

oV NN =E, forany E C K.



o Let EC R n>1, be a closed set,

E have H" -measure,
E satisfy the condition.
Then

E is n—rectifiable <= E C ZU (Uzm_,).

J

D {Q}; is a countable collection of bounded
B for every 7,

Q 7 C E with H"(Z) = 0.



o Let EC R n>1, be a closed set,

o E have locally finite H"™-measure,
E satisfy the condition.
Then
E is n—rectifiable <—= E C Z U (UK)Q_,-)

J

D {Q}; is a countable collection of bounded
B for every 7,

Q Z C E with H"(Z) = 0.



o Let EC R n>1, be a closed set,

o E have locally finite H"™-measure,

o FE satisfy the WLADR condition.



Covering of E with boundaries of bounded Lipschitz domains

Theorem D (A., Bortz, Hofmann, Martell)
o Let ECR™! n>1, be a closed set,

o E have locally finite H"-measure,

o F satisfy the WLADR condition.

Then

E is n—rectifiable <— E C Z U (U@Qj>.
J



Covering of E with boundaries of bounded Lipschitz domains

Theorem D (A., Bortz, Hofmann, Martell)
o Let ECR™! n>1, be a closed set,

o E have locally finite H"-measure,

o F satisfy the WLADR condition.

Then

E is n—rectifiable <— E C Z U (U@Qj>.
J

@ {Q;}; is a countable collection of bounded Lipschitz domains,



Covering of E with boundaries of bounded Lipschitz domains

Theorem D (A., Bortz, Hofmann, Martell)
o Let ECR™! n>1, be a closed set,

o E have locally finite H"-measure,

o F satisfy the WLADR condition.

Then

E is n—rectifiable <— E C Z U (U@Qj>.
J

@ {Q;}; is a countable collection of bounded Lipschitz domains,

@ C R\ E for every j,



Covering of E with boundaries of bounded Lipschitz domains

Theorem D (A., Bortz, Hofmann, Martell)
o Let ECR™! n>1, be a closed set,

o E have locally finite H"-measure,

o F satisfy the WLADR condition.

Then

E is n—rectifiable <— E C Z U (U@Qj>.
J

@ {Q;}; is a countable collection of bounded Lipschitz domains,
@ C R\ E for every j,

@ Z C E with H'(Z) = 0.



Covering of E with boundaries of bounded Lipschitz domains

Theorem D (A., Bortz, Hofmann, Martell)
o Let ECR™! n>1, be a closed set,

o E have locally finite H"-measure,

o F satisfy the WLADR condition.

Then

E is n—rectifiable <— E C Z U (U@Qj>.
J

@ {Q;}; is a countable collection of bounded Lipschitz domains,
@ C R\ E for every j,
@ Z C E with H"(Z) = 0.

@ Novelty here is the fact that the Lipschitz domains §2; are
subdomains of R*1\ E.



o Let ECR™ n>1, be a closed set,
o E have locally finite H"-measure,
o FE satisfy the WLADR condition.

Then
E is n—rectifiable — H"|p < w.

Absolute continuity should be understood in the following sense;

H' g < 0= 22 ok,

k>1

X1

O wi = wp, is the harmonic measure for the domain Dy, X} € Dy,

D { Dy} is an enumeration of the connected components of R"" : \ E.



Rectifiability implies absolute continuity

Theorem E (A., Bortz, Hofmann, Martell)
o Let EC R n>1, be a closed set,

o E have locally finite H"-measure,
o FE satisfy the WLADR condition.
Then
E is n—rectifiable — H"|p < w.

Absolute continuity should be understood in the following sense;

H'p < @ = 22—’%%,
k>1

@ w, = w)D(: is the harmonic measure for the domain Dy, X € Dy,

® {D;} is an enumeration of the connected components of R"*1\ E.



o Let {£2;} be the bounded Lipschitz domains by Theorem ?? for E.
Let F' C E be such that H"(F) > 0.
Then there exists €2; such that H"(F N 0Q;) > 0.
Pick X € Q; c R™ '\ E; ;ug\zt/ be the harmonic measure for €2;.

Let w”™ be the harmonic measure for R"™1\ E with pole at X.



o Let {£2;} be the bounded Lipschitz domains by Theorem ?? for E.

o Let F' C E be such that H"(F) > 0. Need to show w(F') > 0.



o Let {£2;} be the bounded Lipschitz domains by Theorem ?? for E.
o Let F' C E be such that H"(F) > 0. Need to show w(F') > 0.

o Then there exists 2; such that H"(F N 0§Q;) > 0.



Proof of Theorem ?? assuming Theorem ?7?

©

Let {£2;} be the bounded Lipschitz domains by Theorem ?? for E.

©

Let F' C E be such that H"(F') > 0. Need to show w(F') > 0.

©

Then there exists €; such that H"(F N 0€2;) > 0.

©

Pick X € Q; c R"™\ F; w{fj be the harmonic measure for €2;.

©

Let w” be the harmonic measure for R**!\ E with pole at X.



Proof of Theorem ?? assuming Theorem 77

©

Let {£2;} be the bounded Lipschitz domains by Theorem ?? for E.

©

Let F' C E be such that H"(F') > 0. Need to show w(F') > 0.

©

Then there exists €; such that H"(F N 0€2;) > 0.

©

Pick X € Q; c R"™\ F; w{fj be the harmonic measure for €2;.

©

Let w” be the harmonic measure for R**!\ E with pole at X.

©

By the maximum principle it follows that

WX (F) > ng(FDOQj)



Proof of Theorem ?? assuming Theorem 77

©

Let {£2;} be the bounded Lipschitz domains by Theorem ?? for E.

©

Let F' C E be such that H"(F') > 0. Need to show w(F') > 0.

©

Then there exists €; such that H"(F N 0€2;) > 0.

©

Pick X € Q; c R"™\ F; w{fj be the harmonic measure for €2;.

©

Let w” be the harmonic measure for R**!\ E with pole at X.

©

By the maximum principle and Dahlberg’s result it follows that

WX (F) ngj(FDOQj) > 0.



Let Q c R™ n > 1, be an open and connected set. Let

o0 has H"™ -measure,
0N satisfies the condition,
H"(0+Q2\ 0Q) = 0.

Then,

02 is n—rectifiable <— 0 C Z U UZ)SZ’/-”'

J

D {2} is a countable collection of bounded Lipschitz domains,
B SZTJ-"’ C Q for every j,

Q 7 C 00 with H"(Z) = 0.



Let Q c R"M n > 1, be an open and connected set. Let

o 90N has locally finite H"™-measure,

0S) satisfies the condition,

H"(0+02\ 00) = 0.
Then

09 is n—rectifiable < 0 C ZU || Joay
J

D {Q"'}; is a countable collection of bounded Lipschitz domains,
B 52//-"’ C Q for every j,
Q Z C 09 with H"(Z) = 0.



Let Q c R"M n > 1, be an open and connected set. Let

o 90N has locally finite H"™-measure,
o 0N) satisfies the WLADR condition,
HM(D,0\ Q) =

Then
09 is n—rectifiable < 0 C ZU || JoQi"
J
D {Q"}; is a countable collection of bounded Lipschitz domains,
D Q" C Q for every j,

D Z 09 with H™(Z) = 0.



Let Q c R"M n > 1, be an open and connected set. Let
o 90N has locally finite H"™-measure,

o 0N) satisfies the WLADR condition,

o H"(0+0)\ 0) = 0.

Then
0% is n—rectifiable < 0Q c ZU || Joay"
J
A {Q/f‘”‘}»‘/ is a countable collection of bounded Lipschitz domains,

D Q" C Q for every j,
Q Z C 002 with H™"(Z) = 0.



Reslult for domains; Q = R**'\ F

Theorem F (A., Bortz, Hofmann, Martell)

Let Q C R n > 1, be an open and connected set. Let
o 90 has locally finite H"™-measure,

o 0N satisfies the WLADR condition,

o H"(0+02\ 00) = 0.

Then

0N is n—rectifiable <= 00) C Z U U(?Q;l"f

J



Reslult for domains; Q = R**'\ F

Theorem F (A., Bortz, Hofmann, Martell)

Let Q C R n > 1, be an open and connected set. Let
o 90 has locally finite H"™-measure,

o 0N satisfies the WLADR condition,

o H"(0+02\ 00) = 0.

Then

0N is n—rectifiable < 0Q C Z U U@Qg’” ,
J

@ {Q"}; is a countable collection of bounded Lipschitz domains,



Reslult for domains; Q = R**'\ F

Theorem F (A., Bortz, Hofmann, Martell)

Let Q C R n > 1, be an open and connected set. Let
o 90 has locally finite H"™-measure,

o 0N satisfies the WLADR condition,

o H"(0+02\ 00) = 0.

Then

0N is n—rectifiable < 0Q C Z U U@Q;"t ,
J

@ {Q"}; is a countable collection of bounded Lipschitz domains,
@ Q" C Q for every j,



Reslult for domains; Q = R**'\ F

Theorem F (A., Bortz, Hofmann, Martell)

Let Q C R n > 1, be an open and connected set. Let
o 90 has locally finite H"-measure,

o 0N satisfies the WLADR condition,

o H"(0:02\ 00) =0.

Then

0N is n—rectifiable < 0Q C Z U U@Q;"t ,
J

@ {Q"}; is a countable collection of bounded Lipschitz domains,
@ Q" C Q for every j,

@ Z C 99 with H™(Z) = 0.



Reslult for domains; Q = R**'\ F

Theorem F (A., Bortz, Hofmann, Martell)

Let Q C R n > 1, be an open and connected set. Let
o 90 has locally finite H"™-measure,

o 0N satisfies the WLADR condition,

o H"(0+02\ 00) = 0.

Then

0N is n—rectifiable <= 00) C Z U U(?Q;l"f
J

@ {Q"}; is a countable collection of bounded Lipschitz domains,
@ Q" C Q for every j,
@ Z C 09 with H"(Z) = 0.

@ Connectivity is cosmetic. (Work on connected components)



By combining the result from [AHM?*TV];

Then
00 is n—rectifiable <= H"|sn < w.



By combining the result from [AHM3TV];

“Theorem G (A, Bortz, Hofmann, Martel)
Let Q C R™ n > 1, be an open and connected set. Let
o 90 has locally finite H™-measure,

o 0N} satisfies the WLADR condition,

o H"(0+02\ 900) = 0.




Rectifiability is necessary and sufficient for absolute continuity

By combining the result from [AHM>*TV];

Theorem G (A., Bortz, Hofmann, Martell)
Let Q c R n > 1, be an open and connected set. Let
o 90O has locally finite H™-measure,
o 0N satisfies the WLADR condition,
o H"(0+02\092) =0.
Then
00 is n—rectifiable <— H"|pn < w.

Here w = w™ is the harmonic measure for Q with some (or any)

fixed pole X € Q.



Let Q c R™ n > 1, be an open and connected set.
o Let OQ has locally finite H™-measure,

Let F C 092 with H"(F) < oo,

Let F be

Let F' satisfy the condition.
Then
H'F < wlp < w.



Let Q c R™ n > 1, be an open and connected set.
o Let OQ has locally finite H™-measure,
o Let F C 0Q with H"(F) < oo,

Let F be

Let F satisfy the condition.

Then
H'F < wlp < w.



Let Q c R™ n > 1, be an open and connected set.

o Let 00 has locally finite H™-measure,
o Let F C 0Q with H"(F) < oo,
o Let F' be n—rectifiable.

Let F' satisfy the condition.
Then
H'r € w|lp < w.



Let Q c R™ n > 1, be an open and connected set.
o Let 00 has locally finite H™-measure,
o Let F C 0Q with H"(F) < oo,
o Let F' be n—rectifiable.
o H"(F\0:9Q)=0.
Let F' satisfy the condition.
Then,

H'r € w|lp < w.



Let Q c R™ n > 1, be an open and connected set.
o Let 00 has locally finite H™-measure,

o Let F C 0Q with H"(F) < oo,

o Let F' be n—rectifiable.

o H"(F\0:9Q)=0.

o Let F satisfy the WLADR condition.

Then

H'r € w|lp < w.



Let Q c R™ n > 1, be an open and connected set.
o Let 00 has locally finite H™-measure,

o Let F C 0Q with H"(F) < oo,

o Let F' be n—rectifiable.

o H"(F\0:9Q)=0.

o Let F satisfy the WLADR condition.

Then

H | F € wlF € w.



Let Q c R™ n > 1, be an open and connected set.

o Let 00 has locally finite H™-measure.

o Let 0N satisfies the WLADR condition.
o Let H"(0Q2\ 0+92) = 0.

[)

P is purely n—unrectifiable

w(P)=0.




Higher dimensional version of McMillan’s Theorem

Theorem I (A., Bortz, Hofmann, Martell)
Let Q C R™ n > 1, be an open and connected set.
o Let 9Q has locally finite H"™-measure.

o Let 0N) satisfies the WLADR condition.
o Let H"(002\ 0,9Q) = 0.
Then

0N=RUP
where



Higher dimensional version of McMillan’s Theorem

Theorem I (A., Bortz, Hofmann, Martell)
Let Q C R™, n > 1, be an open and connected set.
o Let 9Q has locally finite H"™-measure.

o Let 0N) satisfies the WLADR condition.
o Let H"(002\ 0,9Q) = 0.
Then

0N=RUP
where

@ R is n—rectifiable such that H"|p < w.



Higher dimensional version of McMillan’s Theorem

Theorem I (A., Bortz, Hofmann, Martell)
Let Q C R™, n > 1, be an open and connected set.
o Let 9Q has locally finite H"™-measure.

o Let 0N) satisfies the WLADR condition.
o Let H"(002\ 0,9Q) = 0.
Then

0N=RUP
where

@ R is n—rectifiable such that H"|p < w.
@ P is purely n—unrectifiable and w(P) = 0.



By Lebesgue decomposition theorem for w and H™|gq there is a
Borel set F' C 02 such that

Hnlag ZHn|a,c+Hn|s =H" JFIHH‘

with the property that
and

(Si]l('(‘ /H”‘g o H”‘(‘)Q\[: 1 w‘)

As Fis by [AHM?TV] (As H" < w on 99).
Need to show 0\ F' is
Suppose 3 n—rectifiable Borel set F' with H"(F' N (0Q\ F) > 0.

Apply Theorem ?7? to rectifiable set F' N (92 \ F) to get
w(F' N (092 \ F) > 0 which contradicts with w(9Q \ F) = 0.



By Lebesgue decomposition theorem for w and H™|gq there is a
Borel set F' C 02 such that

H" oo = H"|ac + H"[s = H"|r + H"[o0\F

with the property that
and
(since H"|s = H"|po\r L w).
As F'is by [AHM?>TV] (As H" < w on 99).
Need to show 02\ F' is
Suppose 3 n—rectifiable Borel set F' with H"(F' N (0Q\ F) > 0.

Apply Theorem ?7? to rectifiable set F' N (92 \ F) to get
w(F' N (092 \ F) > 0 which contradicts with w(9Q \ F) = 0.



By Lebesgue decomposition theorem for w and H™|gq there is a
Borel set F' C 02 such that

H" oo = H"|ac + H"[s = H"|r + H"[o0\F
with the property that

H'ac = H"|p < w and H"|s = H"|po\r L w.



By Lebesgue decomposition theorem for w and H™|gq there is a
Borel set F' C 02 such that

H" oo = H"|ac + H"[s = H"|r + H"[o0\F
with the property that
Hn|ac = Hn|F < w and Hn|s = Hn|g)g\p 1 w.

° w(OQ\ F) =0 (since H"|s = H"|so\r L w).



By Lebesgue decomposition theorem for w and H™|gq there is a
Borel set F' C 02 such that

H' oo = H"[ac + H"|s = H"|r + H"|oo\r
with the property that
H"ac = H"| < w and H's = H" g pr L w.
° w(OQ\ F) =0 (since H"|s = H"|so\r L w).
o As Fis n—rectifiable by [AHM3TV] (As H" < w on 99).



A proof of Theorem 77

By for w and H"|sq there is a
Borel set F' C 02 such that

H" oo = H"[ac + H"|s = H"[r + H"|oo\r
with the property that
H'|ac = H"|r < w and H"|s = H"[po\p L w.
° w(IN\ F) =0 (since H"|s = H"|ga\r L w).
o As Fis n—rectifiable by [AHM3TV] (As H" < w on 99).

@ Need to show 09 \ F' is purely n—unrectifiable.



A proof of Theorem 77

By for w and H"|sq there is a
Borel set F' C 02 such that

H" oo = H"|ac + H"[s = H"|r + H"[o0\F
with the property that

7’[”’&(; = H”‘F < w and 7‘[”’3 = H”|aQ\F 1 w.

©

w(OQ\ F) = 0 (since H"[s = H"|go\r L w).

©

As F is n—rectifiable by [AHM3TV] (As H" < w on 99).

©

Need to show 9\ F is purely n—unrectifiable.

©

Suppose 3 n—rectifiable Borel set F' with H"(F' N (02 \ F) > 0.



A proof of Theorem 77

By for w and H"|sq there is a
Borel set F' C 02 such that

H" oo = H"|ac + H"[s = H"|r + H"[o0\F
with the property that

Hn'la(; = H”‘F < w and 7‘[”’3 = H”|BQ\F 1 w.

©

w(OQ\ F) = 0 (since H"[s = H"|go\r L w).

©

As F is n—rectifiable by [AHM3TV] (As H" < w on 99).

©

Need to show 9\ F is purely n—unrectifiable.
o Suppose 3 n—rectifiable Borel set F’ with H"(F' N (0Q\ F) > 0.

o Apply Theorem ?? to rectifiable set F' N (9 \ F) to get
W(F'N(OQ\F) >0



A proof of Theorem 77

By for w and H"|sq there is a
Borel set F' C 02 such that

H" oo = H"[ac + H"|s = H"[r + H"|oo\r
with the property that
H'|ac = H"|r < w and H"|s = H"[po\p L w.
° w(ON\ F) =0 (since H"[s = H"|ga\r L w).
o As F is n—rectifiable by [AHM3TV] (As H™ < w on 99).
o Need to show 9\ F is purely n—unrectifiable.

o Suppose 3 n—rectifiable Borel set F’ with H"(F' N (9Q\ F) > 0.

o Apply Theorem ?? to rectifiable set F' N (90 \ F) to get
w(F' N (02 \ F) > 0 which contradicts with w(9Q\ F) =0. %



For k> 1, and n > 1, set

Y= {(z,t) e R t=27F |z| > 2%}

Let

Q=R (O ZA) .

=l



For k> 1, and n > 1, set

Sp={(z,t) € RT'I ct =27 |z| > 2"“}.

Let

Q=R (G 2k> .

k=1



For k > 1, and n > 1, set

Y= {(z,t) e R t=27F |z| > 2%}

Let

Q=R (G z:k) }
k=1

o () is open and connected domain.



Example 1
For k> 1, and n > 1, set

D= {(r,t) € R =27 Jaf 275,

Let

Q:=R7TH\ (G zk> .

k=1

o ) is open and connected domain.
o 00 = (R" x {0} U (U2, 3k) is n—rectifiable.
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o ) is open and connected domain.
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o 9,0 = 90 as Q satisfies interior Corkscrew ( X, are 27% apart).
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k=1
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o 00 = (R" x {0} U (U2, 3k) is n—rectifiable.
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o 00 does NOT have a locally finite H" —measure(any surface ball
centered at R™ x {0} contains infinitely many n — dimensional balls
of fixed radius).



Example 1
For k> 1, and n > 1, set

D= {(r,t) € R =27 Jaf 275,

Let

o0

Q:=RTH\ (U zk> .

k=1
o ) is open and connected domain.
o 00 = (R" x {0} U (U2, 3k) is n—rectifiable.
o ) satisfies the WLADR.
o 9,0 = 90 as Q satisfies interior Corkscrew ( X, are 27% apart).

o 00 does NOT have a locally finite H" —measure(any surface ball
centered at R™ x {0} contains infinitely many n — dimensional balls
of fixed radius).

o H’H, %w'



Let A(z,r) :={y € R" |z — y| < r} is the usual n-disk.



Let A(z,r) :={y € R" |z — y| < r} is the usual n-disk.
Example 2
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Let A(z,r) :={y € R" |z — y| < r} is the usual n-disk.
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Let A(z,r) :={y € R" |z — y| < r} is the usual n-disk.
Example 2
For k > 1, and n > 2, set

Y = {(m,t) eRM: t=27% 1€ A(0,2F¢;) + can}
where ¢ | 0 has certain properties. Let

Q:=RTH\ (fj zk> .

k=1

o ) is open and connected domain.
o 0,0 = 00 as (2 satisfies the interior Corkscrew condition.
o 0f) is n—rectifiable.

o 90 is locally finite H" —measure.



Let A(z,r) :={y € R" |z — y| < r} is the usual n-disk.
Example 2
For k > 1, and n > 2, set

Y = {(a:,t) eRM: t=27% 1€ A(0,2F¢;) + ckZ"}

where ¢ | 0 has certain properties. Let

Q:=RTH\ (G zk> .

k=1

o ) is open and connected domain.

o 0,0 = 00 as (2 satisfies the interior Corkscrew condition.
o 0N is n—rectifiable.

o 90 is locally finite H" —measure.

o 0 does NOT satisfy WLADR condition.



Let A(z,r) :={y € R" |z — y| < r} is the usual n-disk.
Example 2
For k > 1, and n > 2, set

Y = {(a:,t) eRM: t=27% 1€ A(0,2F¢;) + ckZ"}

where ¢ | 0 has certain properties. Let

Q:=RTH\ (G zk> .

k=1

o ) is open and connected domain.

o 0,0 = 00 as (2 satisfies the interior Corkscrew condition.
o 0N is n—rectifiable.

o 90 is locally finite H" —measure.

o 0 does NOT satisfy WLADR condition.

o H" L w.



Step @: Rectifiability implies linear approximability:

Then there exists Ey C F with H"(Ep) = 0 such that if z € E \ Ey
the following holds:

For every n > 0 there exist positive numbers r, = r,(n) and
Az = Az(n) and a n-dimensional affine subspace P, = P,(n) such
that for all 0 < r < r,

DH"(ENB(y,nr)) > Agr”™, forye P,NB(x,r)

D H"((EN B(z,r))\ P\™) < nr™.



Step @: Rectifiability implies linear approximability:

Let E C R""! be a n-rectifiable set such that H"| is locally finite.

Then there exists Ey C F with H""(Ep) = 0 such that if z € E \ Ey
the following holds:

For every n > 0 there exist positive numbers r, = r,(n) and
Az = Az(n) and a n-dimensional affine subspace P, = P,(n) such
that for all 0 < r < r,

1

)

Here Pf;”") = {y € R™ L. dist(y, Pz) < nr}.



Proof of covering of E with boundaries of bounded Lipschitz
domains

Step @: Rectifiability implies linear approximability:
Theorem[Mattila]

Let E C R™"! be a n-rectifiable set such that H"|z is locally finite.

Then there exists Ey C E with H"(Ep) = 0 such that if z € E'\ Ey
the following holds:

For every n > 0 there exist positive numbers 7, = 7,(n) and
Az = Az(n) and a n-dimensional affine subspace P, = P,(n) such
that for all 0 < r < r,



Proof of covering of E with boundaries of bounded Lipschitz
domains

Step @: Rectifiability implies linear approximability:

Theorem[Mattila]

Let E C R™"! be a n-rectifiable set such that H"|z is locally finite.
Then there exists Ey C E with H"(Ep) = 0 such that if z € E'\ Ey
the following holds:

For every n > 0 there exist positive numbers r, = r,(n) and
Az = Az(n) and a n-dimensional affine subspace P, = P,(n) such
that for all 0 < r < r,

@ H"(ENB(y,nr)) > A7, fory € PN B(x,r)



Proof of covering of E with boundaries of bounded Lipschitz
domains

Step @: Rectifiability implies linear approximability:
Theorem[Mattila]

Let E C R™"! be a n-rectifiable set such that H"|z is locally finite.

Then there exists Ey C E with H"(Ep) = 0 such that if z € E'\ Ey
the following holds:

For every n > 0 there exist positive numbers r, = r,(n) and
Az = Az(n) and a n-dimensional affine subspace P, = P,(n) such
that for all 0 < r < r,

@ H"(EN B(y,nr)) > A", fory € Pp N B(x,7)
@ H"((E N B(z,r)) \ P{™) < nr".

Here P = {y € R"! : dist(y, Py) < nr}.
T n
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The surface measure of the portions of
in the gray area is smaller than nr"

@ 1" (ENB(y,nr)) > A\, fory € P, N B(z,r).
@ ~~ There is no big hole in E near P, N B(x,r).
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The surface measure of the portions of
in the gray area is smaller than nr"

@ 1" (ENB(y,nr)) > A\, fory € P, N B(z,r).
@ ~~ There is no big hole in E near P, N B(x,r).
Q@ H"((ENB(z,7))\ P < nr™.

@ ~~ Most of E lies near P, in B(x,r).



Step @: Existence of two sided Truncated Cones:

Let x € E \ Ep with constants A\;(n) and r,(n). For every
0 <1 < no(As) :=min{274" A2}

x

there exists a with vertex at x
with,

A height h(n) := 1/ﬁ min{r;(n),r:},

1
B aperture a(n) := 2 arctan (n~ 1 /2) > 7/2,



Step @: Existence of two sided Truncated Cones:

Let z € E'\ Ey with constants A,;(n) and r;(n). For every
0 <n<no(Ag) := min{271", A2},



Step @: Existence of two sided Truncated Cones:

Let z € E'\ Ey with constants A,;(n) and r;(n). For every
0 <n<no(Ag) := min{271", A2},

o there exists a two sided truncated cone I'y, o (x) with vertex at x
with,



Step @: Existence of two sided Truncated Cones:

Let z € E'\ Ey with constants A,;(n) and r;(n). For every
0 <n<no(Ag) := min{271", A2},

o there exists a two sided truncated cone I'y, o (x) with vertex at x
with,

@ height h(n) = nﬁ min{ry(n), rz},



Truncated Cones

Step @: Existence of two sided Truncated Cones:

Let x € E'\ Ey with constants A\;(n) and 7(n). For every
0 <n<no(Ag) := min{274", A2}

o there exists a two sided truncated cone I', o (x) with vertex at x
with,

@ height h(n) := nﬁ min{r,(n),rz},

® aperture a(n) := 2 arctan (n_ﬁ/Q) > /2,



Truncated Cones

Step @: Existence of two sided Truncated Cones:

Let x € E'\ Ey with constants A\;(n) and 7(n). For every
0 <n<no(Ag) := min{274", A2}

o there exists a two sided truncated cone I', o (x) with vertex at x
with,

@ height h(n) := nﬁ min{r;(n), 7z},
® aperture a(n) := 2 arctan (n_ﬁ/Q) > /2,

© DOES NOT meet with E.



Truncated Cones

Step @: Existence of two sided Truncated Cones:

Let x € E'\ Ey with constants A\;(n) and 7(n). For every
0 <n<no(Ag) := min{274", A2}

o there exists a two sided truncated cone I', o (x) with vertex at x
with,

@ height h(n) = nin min{ra(n), 2},
® aperture a(n) := 2 arctan (n_ﬁ/Q) > /2,
© DOES NOT meet with E.

@a(n) »masn—0T.















Step @: One of the cone must be interior:
Consider Q = R"™\ E.

Let x € 002\ Ey = E \ Ep with constants A\, (n) and r,(n) and for
every 0 < 1 < no(Az) :== min{27*" A2} there exist two sided
truncated cone, I'y (z),T;  (z)

Given € > 0 there exists 7 = 7o(€) < no(c;) such that if
0 <n<noand
) |B(x, )N Q|
limsup ————— > ¢
r—0+ | B(z, )]

) Then



Step @: One of the cone must be interior:
o Consider Q = R"™\ E.

Let x € 09\ = E \ Ey with constants A\,(n) and r,(n) and for
every 0 < n < 1 (/\ ) :=min{274", \2} there exist two sided
truncated cone, rﬁ_“(.:’).r‘;‘“(’,r)

Given e > 0 there exists 79 = fo(€) < no(cy) such that if

0<n<noand
Q

B( N
limsup‘ (,7) 7 > €.

r—0T ‘P

2 Then



Interior Truncated Cones

Step @: One of the cone must be interior:
o Consider Q = R""\ E.
o Let x € 002\ Ep = E'\ Ey with constants A\;(n) and r(n) and for

every 0 < 1 < 1o(Ag) := min{274" A2} there exist two sided
truncated cone, T’} (z),T, ()



Interior Truncated Cones

Step @: One of the cone must be interior:
o Consider Q = R""\ E.

o Let x € 002\ Ep = E'\ Ey with constants A\;(n) and r(n) and for
every 0 < 1 < 1o(Ag) := min{274" A2} there exist two sided
truncated cone, T’} (z),T, ()

o Given € > 0 there exists 7jp = 7j9(€) < no(cz) such that if
0<n<ngand
lim sup [B(z,r) 0 Q]
r—0t |B(JZ, T)|



Interior Truncated Cones

Step @: One of the cone must be interior:
o Consider Q = R"™\ E.

o Let x € 00\ Ey = E'\ Ep with constants A\;(n) and r5(n) and for

every 0 < 1 < 1o(Ag) := min{274" A2} there exist two sided

truncated cone, F,‘;a(x), Iy o (@)

o Given € > 0 there exists 779 = 7o(€) < no(c,) such that if

0<n<ngand
|B(z,r) N QY

)
o B, 1]

r—0t

@ Then one of the cones constructed must be in the interior of .



@ a — 7 when  — 0.

Red part |B(2,7)\ (F}—:a(z) U F}:’a(z))l

@ = 1B(z1)] -0
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<
@ a — 7 when  — 0.

Red part |B(2,7)\ (P}—:a(z) U P]:,a(z))l

@ = 1B(z1)| -0




@ a — 7 when  — 0.

Red part |B(2,7)\ (F}—:a(z) U F}:’a(z))l

@ = 1B(z1)] -0




@ a — 7 when  — 0.

Red part |B(2,7)\ (F}—:a(z) U F}:’a(z))l

@ = 1B(z1)] -0




@ o — 7 when n — 0.

. |B(x,r)NQ
® limsup ——————— > €.
root | B(w,7)]
Red part _ |B(Z7T) \ (F}ta(z) U F];a(z))l

0 = B(z7) -0




o Choose {1, }M_; C S™ (the unit sphere in R"*!) such that for
every v € S" there exists vy,, 1 < m < M, such that
angle(v, vpy,) < /8.



o Choose {1, }M_; C S™ (the unit sphere in R"*!) such that for
every v € S" there exists vy,, 1 < m < M, such that

angle(v, vpy,) < /8.

° Seth:=VTJ,‘L, 1<m< M.



o Choose {1, }M_; C S™ (the unit sphere in R"*!) such that for
every v € S" there exists vy,, 1 < m < M, such that

angle(v, vpy,) < /8.

° Seth:=VTJﬁ, 1<m< M.

o E,:={x e E; H'(B(y,m)NE)>cyr", Vy € B(z,pz) NE, 0 <
r < pz.}.



Proof of Theorem 77

o Choose {vy,}M_, € S™ (the unit sphere in R"™!) such that for
every v € S" there exists vy,, 1 < m < M, such that

angle(v,vp,) < /8.

° Se‘c]:’m::y#17 1<m< M.

°o E,:={x € E; H'(B(y,r)NE)>cyr", Yy € B(z,p,) NE, 0 <
r < pz.}.

o Forevery k€ N an 1 <m < M we set

G(k,m) := {m € E\Ey : max{cy, pg, 72} > 2% angle(Pp,, Py) < 7r/8}.



Proof of Theorem 77

o Choose {vy,}M_, € S™ (the unit sphere in R"™!) such that for
every v € S" there exists vy,, 1 < m < M, such that

angle(v,vp,) < /8.

° Se‘c]:’m::y#17 1<m< M.

°o E,:={x € E; H'(B(y,r)NE)>cyr", Yy € B(z,p,) NE, 0 <
r < pz.}.

o Forevery k€ N an 1 <m < M we set

G(k,m) := {m € E\Ey : max{cy, pg, 72} > 2% angle(Pp,, Py) < 7r/8}.

o Notice that setting Z = (F \ E,) U Ey we have that H"(Z) = 0.
Also,

E=2ZU ( Lﬂj U G(k,m)).

m=1keN



Proof of Theorem 77

o Choose {vy,}M_, € S™ (the unit sphere in R"™!) such that for
every v € S" there exists vy,, 1 < m < M, such that

angle(v,vp,) < /8.

° Se‘c]:’m::y#17 1<m< M.

°o E,:={x € E; H'(B(y,r)NE)>cyr", Yy € B(z,p,) NE, 0 <
r < pz.}.

o Forevery k€ N an 1 <m < M we set

G(k,m) := {m € E\Ey : max{cy, pg, 72} > 2% angle(Pp,, Py) < 7r/8}.

o Notice that setting Z = (F \ E,) U Ey we have that H"(Z) = 0.
Also,

E=2ZU ( Lﬂj U G(k,m)).

m=1keN

o Need to show: G(k,m) can be covered by a countable union of
boundaries of bounded Lipschitz domains missing F. O






THANKS!



