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Motivation

Let Ω be the domain above the graph of a Lipschitz function φ.

t

φ(x) = t

Ω = {(x, t) ∈ Rn × R | t > φ(x)}

−∆u = −div(I∇u) = 0

(x, t) 7→ (x, t − φ(x))
Rn+1

+

Lu = − div(A∇u) = 0

I A depends on the Jacobian of the change of variables, hence are
bounded and measurable, but NOT any more regular.

I A is uniformly elliptic matrix; there exists constant Λ ≥ 1 such that

Λ−1|ξ|2 ≤ A(X)ξ · ξ, |A(X)ξ · η| ≤ Λ|ξ| |η|

for all ξ, η ∈ Rn+1 and for almost every X ∈ Rn+1
+ .
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Elliptic operators

I Let Ω ⊂ Rn+1, n ≥ 2, be an open set.

I Let L be a second order divergence form real elliptic operator
defined in Ω

Lu = −div(A∇u)

Here the coefficient matrix A = A(X) is A = (ai,j(·))n+1
i,j=1 is real,

symmetric, with ai,j ∈ L∞(Ω) and is uniformly elliptic, that is, there
exists a constant Λ ≥ 1 such that

Λ−1|ξ|2 ≤ A(X)ξ · ξ, |A(X)ξ · η| ≤ Λ|ξ| |η|

for all ξ, η ∈ Rn+1 and for almost every X ∈ Ω.

I Lu = 0 in Ω if u ∈ W 1,2
loc (Ω) and∫

〈A∇u,∇ψ〉dX = 0 whenever ψ ∈ C∞
0 (Ω).
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Elliptic measure

I Ω is called regular for the operator L if for every f ∈ Cc(∂Ω), there
exists a (generalized) solution u = uf ∈ C(Ω̄) which solves{

Lu = −div(A∇u) = 0 in Ω,

u = f on ∂Ω.

Representation formula
Elliptic measure {ωX

L }X∈Ω is the unique probability measure s.t.

u(X) =

∫
∂Ω

f (z)dωX
L (z).

I When Ω is the unit ball in Rn+1 and A = I (i.e., Laplace operator)

ωX(E) =

∫
E

1 − |X |2

|X − Y |n+1
dσ(Y )

σ(Sn)
whenever E ⊂ Sn.

E
ω0(E) =

∫
E

1 − |0|2

|0 − Y |2
dσ(Y )

σ(S1)
=
σ(E)

2π
=
arclength(E)

2π
.
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A question of Dahlberg

I Let A0 and A be real and uniformly elliptic.

Consider

“Good” operator
{

L0u = −div(A0∇u) = 0 in Ω,

u = f on ∂Ω.
think of A0 = I → we have Laplacian.

“Perturbed” operator
{

Lu = −div(A∇u) = 0 in Ω,

u = f on ∂Ω.

Question (Dahlberg ’84)
Suppose that we have “good estimates” for the Dirichlet problem for
L0, under what optimal conditions, are those good estimates
transferred to the Dirichlet problem for L?

Good estimates: ωL0 ∈ A∞(σ), ωL0 ∈ RHp(σ), etc...
ωL0 is the elliptic measure of Ω associated to the operator L0 .

ωL is the elliptic measure of Ω associated to the operator L
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Dark side of the linear elliptic operators

I [Littman-Stampacchia-Weinberger ’63] Ω is regular for Laplacian
(i.e., A0 = I ) iff it is regular for any L.

I Fact: If Ω = R1+1
+ and A0 = I so that we have Laplacian, then

harmonic measure ω is mutually absolutely continuous with respect
to surface measure σ (i.e., σ � ω � σ).

I [Caffarelli-Fabes-Kenig ’81] There exists an elliptic operator L, the
pullback of the Laplacian via a quasiconformal mapping of the upper
plane to itself, but ωL 6� σ.

I [Modica-Mortola ’81] There exists elliptic operator L

L =
∂2

∂x2 +
∂

∂y

(
α
∂

∂y

)
where α ∈ C(Ω̄) ∩ C∞(Ω)

where ∂Ω ∈ C∞ in R2 such that ωL 6� σ.

I It is not the domain Ω but the disagreement of A and A0 that we
should have conditions on...
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Reverse Hölder classes

If µ� ν then ∃g, integrable, such that dµ = gdν .

I We say that µ ∈ RHq(ν) for 1 < q <∞ if ∃C > 0 such that(
1

ν(∆)

∫
∆

gqdν
)1/q

≤ C 1
ν(∆)

∫
∆

gdν

for every ∆ = ∆(x, r) centred on ∂Ω with r ∈ (0,diam(∂Ω)).

I The union of the RHq classes is the A∞ class,

A∞(ν) :=
⋃

1<q<∞
RHq(ν).

I µ ∈ RHq(ν), 1 < q <∞, is equivalent to the solvability of the (D)p

Dirichlet problem

(D)p


Lu = −div(A∇u) = 0 in Ω,

u = f ∈ Lp(ν) on ∂Ω,
‖N (u)‖Lp(ν) ≤ C‖f ‖Lp(ν)

where N (u)(X) = sup
X∈Γ(X)

|u(Y )| and 1/p + 1/q = 1.
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Non-tangentially Accessible Domains(NTA)

Ω
∂Ω

X

r
X∆

cr

No interior corkscrew

No Harnack chain

z

I Ω is NTA ≡

{
I Interior Corkscrew and Harnack Chain.
I Exterior Corkscrew.

I Ω is 1-sided NTA ≡ Interior Corkscrew and Harnack Chain.

I ∂Ω is n−Ahlfors-David regular (ADR) if

crn ≤ σ(∆(z, r)) ≤ crn whenever z ∈ ∂Ω and r ∈ (0,diam(∂Ω)).
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Examples of such domains

Smooth Lipschitz NTA Semi-uniform

1-Sided NTA domain.

C0 C1 C2 C

Smooth ( Lipschitz ( NTA ( 1-sided NTA ( Semi-uniform.



Approach I

Let δ(X) = dist(X , ∂Ω), a(X) := supY∈B(X,δ(X)/2) |A(Y )− A0(Y )|.

Theorem (Dahlberg ’77)
Let Ω = B(0, 1). Let x ∈ ∂Ω and ∆ = ∆(x, r) = B(x, r) ∩ ∂Ω and
T(∆) = B(x, r) ∩ Ω. If a2(X)

δ(X) dX satisfies the vanishing Carleson
measure condition, i.e.,

lim
r→0

sup
∆⊂∂Ω

{
1

σ(∆)

∫
T(∆)

a2(X)

δ(X)
dX

}1/2

= 0

then ωL ∈ RHp(σ) whenever ωL0 ∈ RHp(σ).

I [R. Fefferman-Kenig-Pipher ’91] Let Ω be a Lipschitz domain and if
a2(X)
δ(X) dX satisfies a Carleson measure condition then ωL0 ∈ A∞(σ)

whenever ωL ∈ A∞(σ).

I [Milakis-Pipher-Toro ’13] For NTA domains with ADR boundary.

I [Cavero-Hofmann-Martell ’18+ (with T. Toro ’19)] For 1-sided NTA
domains with ADR boundary [They proved more].

I See also the recent work of Mayboroda and Poggi.
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Approach II

Theorem (R. Fefferman-Kenig-Pipher ’91)
Let Ω be a Lipschitz domain. If a2(X)

GL0 (X)

δ2(X) dX satisfies the
vanishing Carleson measure condition

lim
r→0

sup
∆⊆∂Ω

{
1

ωL0(∆)

∫
T(∆)

a2(X)
GL0(X)

δ2(X)
dX

}1/2

= 0

then ωL ∈ RH2(ωL0).

I [Milakis-Pipher-Toro ’13] For NTA domains with ADR boundary.

Question
Can we go beyond NTA domains? Can we relax ADR of the boundary?

Aim: Study perturbation problem by replacing

1. NTA⇒ 1-sided NTA. 2. ADR⇒ Capacity Density Condition.
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Capacity density condition [uniform 2-fatness]

I Newtonian capacity of a compact set E in a domain D is defined by

Cap(E ,D) = inf

{∫
|∇v|2dX : v ∈ C∞

0 (D), v(x) ≥ 1E

}
.

I Capacity of a ball of radius r is approximately rn−1.

I Ω satisfies the capacity density condition (CDC) if there is c > 0 s.t.

Cap((Rn+1 \ Ω) ∩ B̄(w, r),B(w, 2r))
Cap(B̄(w, r),B(w, 2r))

≈ Cap(B̄(w, r) \ Ω,B(w, 2r))
rn−1 ≥ c

for all w ∈ ∂Ω and 0 < r < diam(∂Ω).

I CDC appeared first (?) in Pommerenki’s work as a uniformly perfect.
Later used by Ancona, Aikawa, Lewis, Wannebo, Wu, Jones-Wolff, ...
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CDC⇒ Wiener criterion

I CDC is a quantitative version of the Wiener criterion∫ r0

0

Cap((Rn \ Ω) ∩ B̄(w, r),B(w, 2r))
Cap(B̄(w, r),B(w, 2r))

dr
r

= ∞.

I [Wiener for Laplacian in ’24 and Littman-Stampacchia-Weinberger
’63] Wiener criterion is necessary and sufficient condition for a
bounded domain to be regular for uniformly elliptic operators

I[ CDC (Thickness) implies Fatness] If a closed set Rn+1 \Ω is λ-thick
for some λ > n − 1, i.e., for all 0 < r ≤ r0 and w ∈ Rn+1 \ Ω with

Hλ
∞((Rn+1 \ Ω) ∩ B̄(w, r)) ≥ crλ,

then Ω satisfies the CDC.

I Hence
ADR =⇒ CDC =⇒ Wiener criterion.
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First result

Theorem (Akman-Hofmann-Martell-Toro ’19)
Let Ω be a 1-sided NTA domain satisfying the capacity density
condition. Let

|||a(A,A0)||| := sup
B

sup
B′

1
ωX∆

L0
(∆′)

∫∫
B′∩Ω

a2(X)
GL0(X∆,X)

δ(X)2 dX ,

where ∆ = B ∩ ∂Ω, ∆′ = B′ ∩ ∂Ω, and the sups are taken respectively
over all balls B = B(x, r) with x ∈ ∂Ω and 0 < r < diam(∂Ω), and
B′ = B(x ′, r ′) with x ′ ∈ 2∆ and 0 < r ′ < rc0/4.

(a) If |||a(A,A0)||| <∞, then ωL ∈ A∞(ωL0).
(b) Given p, 1 < p <∞, there exists εp such that if |||a(A,A0)||| ≤ εp,

then ωL ∈ RHp(ωL0).

I If we assume ∂Ω is ADR then we can recover all the previous
related results.

I See recent work of Feneuil-Poggi who also obtained Part (a).
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Approach III

R. Fefferman considered

A(a(A,A0))(x) :=

(∫∫
Γ(x)

a2(X)

δn+1(X)
dX

)1/2

where Γ(x) is the non-tangential cone with vertex at x ∈ ∂Ω.

Theorem (R. Fefferman ’89 and R. Fefferman-Kenig-Pipher ’91)
Let Ω be a Lipschitz domain. If ‖A(a(A,A0))‖L∞(σ) ≤ C0 <∞ then
ωL ∈ A∞(σ) if ωL0 ∈ A∞(σ).

This is sharp: ‖A(a(A,A0))‖L∞(σ) ≤ C0 6⇒ ωL ∈ RHp(σ) if
ωL0 ∈ RHp(σ).

I [R. Fefferman-Kenig-Pipher ’91] Using “Lr-averages” of the
disagreement function a and assuming it satisfies a certain vanishing
Carleson measure condition then the exponent p can be preserved.

I [Milakis-Pipher-Toro ’13] For NTA domains with ADR boundary.
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Second result

Theorem (Akman-Hofmann-Martell-Toro ’19)
Let Ω be a 1-sided NTA domain satisfying the capacity density
condition. Given α > 0, set

Aα(a(A,A0))(x) :=

(∫∫
Γα(x)

a(X)2

δ(X)n+1 dX

) 1
2

, x ∈ ∂Ω,

where Γα(x) = {Y ∈ Ω : |Y − x| < (1 + α)δ(Y )}.

(i) If Aα(a(A,A0)) ∈ L∞(ωL0), then ωL ∈ A∞(ωL0).
(ii) Given p, 1 < p <∞, there exists εp > 0, such that if

Aα(a(A,A0)) ∈ L∞(ωL0) with ‖Aα(a(A,A0))‖L∞(ωL0 )
≤ εp, then

ωL ∈ RHp(ωL0).

Part (ii) is new even in the case of nice domains such as the unit ball,
the upper-half space, or non-tangentially accessible domains.

I If we assume ∂Ω is ADR then we can recover all the previous
related results.
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, x ∈ ∂Ω,

where Γα(x) = {Y ∈ Ω : |Y − x| < (1 + α)δ(Y )}.

(i) If Aα(a(A,A0)) ∈ L∞(ωL0), then ωL ∈ A∞(ωL0).
(ii) Given p, 1 < p <∞, there exists εp > 0, such that if

Aα(a(A,A0)) ∈ L∞(ωL0) with ‖Aα(a(A,A0))‖L∞(ωL0 )
≤ εp, then

ωL ∈ RHp(ωL0).

Part (ii) is new even in the case of nice domains such as the unit ball,
the upper-half space, or non-tangentially accessible domains.

I If we assume ∂Ω is ADR then we can recover all the previous
related results.



Sketch of the proof of second result

I It can be shown that

C
ω0(∆(x, r))

∫∫
T(∆(x,r))

a2(X)
G0(X)

δ2(X)
dX ≤ 1

ω0(∆)

∫
∆(x,2r)

(A(a)(x))2dω0(x).

Hence |||a(A,A0)||| .α ‖Aα(a(A,A0))‖2
L∞(ωL0 )

.

Our first result implies the desired conclusions in the second result.

I A key property: One needs to know elliptic measure is doubling
and Sawtooth domains inherit the good properties of the original
domains. That is, in this regime, all proper sawtooth domains
obtained from the dyadic cubes of Ω should be a 1-sided NTA
domains satisfying Capacity density condition.
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A key identity

I A key identity: Let Ω be a bounded 1-sided NTA domain satisfying
the CDC, and let L0 = −div(A0∇) and L = −div(A∇) be two real
(non-necessarily symmetric) uniformly elliptic operators. Given
g ∈ Lip(∂Ω), consider the solutions uL and uL0 given by

uL0(X) =

∫
∂Ω

g(y) dωX
L0
(y), uL(X) =

∫
∂Ω

g(y) dωX
L (y), X ∈ Ω.

Then,

uL(X)− uL0(X) =

∫∫
Ω

(A0 − A)>(Y )∇Y GL>(Y ,X) · ∇uL0(Y ) dY

for almost every X ∈ Ω.



Some future problems

Question
Can we go beyond 1-sided NTA setting (assuming the CDC)?

Smooth ( Lipschitz ( NTA ( 1-sided NTA ( Semi-uniform

Smooth Lipschitz NTA 1-sided NTA

Semi-uniform

I A domain Ω is called semi-uniform if every x ∈ Ω and y ∈ ∂Ω can
be connected by a cigar curve γ such that γ \ {y} ⊂ Ω and
length(γ) ≤ C |x − y|.

I [Aikawa and Hirata ’08, Azzam ’18] If Ω is a semi-uniform domain
satisfying the CDC then its harmonic measure is doubling.
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Sketch of the proof

Localize the problem. It is enough to show that:

Let Ω be a 1-sided NTA domain satisfying the capacity density
condition. Let a(X) := supY∈B(X,δ(X)/2) |A(Y )− A0(Y )| where
δ(X) := dist(X , ∂Ω). Fix x0 ∈ ∂Ω, and let B0 = B(x0, r0),
0 < r0 < diam(∂Ω), and ∆0 = B0 ∩ ∂Ω. Let

|||a(A,A0)|||B0
:= sup

B

1
ω

X∆0
L0

(∆)

∫∫
B∩Ω

a2(X)
GL0(X∆0 ,X)

δ(X)2 dX ,

where ∆ = B ∩ ∂Ω and the supremum is taken over all balls
B = B(x, r) with x ∈ 2∆0 and 0 < r < r0c0/4, and c0 is the Corkscrew
constant.

(a) If |||a(A,A0)||| <∞, then ωL ∈ A∞(∆0, ωL0).
(b) Given p, 1 < p <∞, there exists εp such that if |||a(A,A0)||| ≤ εp,

then ωL ∈ RHp(∆0, ωL0).



Sketch of the proof

For fixed j ∈ N, let

Ãj(Y ) :=

{
A(Y ) if δ(Y ) ≥ 2−j,

A0(Y ) if δ(Y ) < 2−j.

Aim: If L̃j is the operator associated to L̃ju = −div(Ãju) and ωL̃j
is

the elliptic measure of Ω associated to operator L̃j then it is enough
to show that ωL̃j

∈ A∞( 5
4∆0, ωL0) for part (a) and for part (b) enough

to show that ωL̃j
∈ RHp(

5
4∆0, ωL0) with uniform constants depending

only on the allowable parameters.



Step 1

To this end, we further modify our operator L̃j in Q0, consider

Ā(Y ) :=

{
Ãj(Y ) if Y ∈ ΩF,Q0 ,

A0(Y ) if Y ∈ Ω \ ΩF,Q0 .

where Ãj(Y ) is as above for fixed j , T(∆(x0, r0)) is the Carleson
region associated to Q0 and Q0 is also as above.

x0
∂Ω 2−j

ΩF,Q0

A0

A0A0

A0

A0 A0

A0
A0 A0

AA

For this operator, we prove ω̄ ∈ RHp(ωL0).



Step 2

We now change the operator Ā in the Carleson region to complete
the process.

Â(Y ) :=

{
A1(Y ) if Y ∈ Ω \ (TQ0 \ ΩF,Q0),

Ãj(Y ) if Y ∈ TQ0 \ ΩF,Q0 .

x0
∂Ω 2−j

ΩF,Q0

A0

A0A0
A

A0 A0

A0
A0 A0

AA

For this operator, we prove ω̂ ∈ RHp(ωL0).



Step 3:

In this part, we change the operator outside of TQ0 to complete the
process. To this end, let L3u = −div(A3∇u), where

A3(Y ) :=

{
A2(Y ) if Y ∈ TQ0 ,

Ã(Y ) if Y ∈ Ω \ TQ0 ,

and note that L3 ≡ L̃ in Ω. Let wX0
3 := ωX0

L3
be the elliptic measure of

Ω associated with the operator L3 ≡ L̃ with pole at X0.

x0
∂Ω 2−j

ΩF,Q0

A

AA
A

A0 A0

A0
A0 A0

AA

For this operator, we prove ω3 ∈ RHp(ωL0).



Thank you for your attention!!!



Temporary page!

LATEX was unable to guess the total number of pages correctly. As
there was some unprocessed data that should have been added to
the final page this extra page has been added to receive it.

If you rerun the document (without altering it) this surplus page will
go away, because LATEX now knows how many pages to expect for this
document.


