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Introduction
Notations and Definitions

Let Q denote a bounded region in the complex plane C. Given p,
1 < p < oo, let z= x; + ixo denote points in C and let W1P(Q)
denote equivalence classes of functions h: C—R with
distributional gradient Vh = h,, + ihy, and Sobolev norm

Illwraqey = ([ (P + [VhP)dA)P < oc
Q

where dA denotes two dimensional Lebesgue measure.
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Notations and Definitions

Let Q denote a bounded region in the complex plane C. Given p,
1 < p < oo, let z= x; + ixo denote points in C and let W1P(Q)
denote equivalence classes of functions h: C—R with
distributional gradient Vh = h,, + ihy, and Sobolev norm

Illwraqey = ([ (P + [VhP)dA)P < oc
Q
where dA denotes two dimensional Lebesgue measure.
Let C5°(€2) denote infinitely differentiable functions with compact

support in Q and let Wol’p(Q) denote the closure of C3°(£2) in the
norm of W1P(Q).
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Notations and Definitions

Let Q denote a bounded region in the complex plane C. Given p,
1 < p < oo, let z= x; + ixo denote points in C and let W1P(Q)
denote equivalence classes of functions h: C—R with
distributional gradient Vh = h,, + ihy, and Sobolev norm

Illwraqey = ([ (P + [VhP)dA)P < oc
Q

where dA denotes two dimensional Lebesgue measure.

Let C5°(€2) denote infinitely differentiable functions with compact
support in Q and let Wol’p(Q) denote the closure of C3°(£2) in the
norm of W1P(Q).

Let £ : C\ {0}—(0, 00) be homogeneous of degree p on C\ {0}.

That is,

f(n) = W’f(%) >0 when 7 € C\ {0}.
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Notations and Definitions

Let Q denote a bounded region in the complex plane C. Given p,
1 < p < oo, let z= x; + ixo denote points in C and let W1P(Q)
denote equivalence classes of functions h: C—R with
distributional gradient Vh = h,, + ihy, and Sobolev norm

Illwraqey = ([ (P + [VhP)dA)P < oc
Q

where dA denotes two dimensional Lebesgue measure.

Let C5°(€2) denote infinitely differentiable functions with compact
support in Q and let Wol’p(Q) denote the closure of C3°(£2) in the
norm of W1P(Q).

Let £ : C\ {0}—(0, 00) be homogeneous of degree p on C\ {0}.

That is,

f(n) = W’f(%) >0 when 7 € C\ {0}.

Assume also that f is strictly convex in C\ {0}.
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Euler Equation

Given h e WLP(Q), let E = {h+ ¢ : ¢ € Wy P(Q)}. It is well
known (see Heinonen, Kilpelainen, Martio, Nonlinear
Potential Theory of Degenerate Elliptic Equations, Chapter
5, Dover Publications, 2006) that Euler equation has unique
minimizer u € E, i.e

infE /f(VW)dA:/f(Vu)dA for some u € E.
we

Q Q
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Euler Equation

Given h e WLP(Q), let E = {h+ ¢ : ¢ € Wy P(Q)}. It is well
known (see Heinonen, Kilpelainen, Martio, Nonlinear
Potential Theory of Degenerate Elliptic Equations, Chapter
5, Dover Publications, 2006) that Euler equation has unique
minimizer u € E, i.e

infE /f(VW)dA:/f(Vu)dA for some u € E.
we
Q Q

Moreover, u is a weak solution at z € Q to the Euler equation

0=V-(VF(Vu(2))) Z Foen (VU(2)) t (2). (1)
kj=1
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Euler Equation
Given h e WLP(Q), let E = {h+ ¢ : ¢ € Wy P(Q)}. It is well
known (see Heinonen, Kilpelainen, Martio, Nonlinear
Potential Theory of Degenerate Elliptic Equations, Chapter
5, Dover Publications, 2006) that Euler equation has unique
minimizer u € E, i.e

infE /f(Vw)dA:/f(Vu)dA for some u € E.
we
Q Q

Moreover, u is a weak solution at z € Q to the Euler equation

0=V -(VFf(Vu(z))) Z foien; (VU(2)) U (2)- (1)
kj=1

That is,

/ (VF(Vu(z)), VO(z))dA = 0 whenever 0 € W, P(Q).
Q
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u, and uy; are both solution L{

Here V- denotes divergence in the z = x; + ixp variable and (-, )
denotes the standard inner product on C.
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u, and uy; are both solution L{

Here V- denotes divergence in the z = x; + ixp variable and (-, )
denotes the standard inner product on C.

Moreover, if f is sufficiently ‘smooth’, it follows from either
Schauder theory or the fact that Vu is a quasiregular mapping of
C that u has continuous third derivatives in a neighborhood of z
whenever Vu(z) # 0.
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u, and uy; are both solution L{

Here V- denotes divergence in the z = x; + ixp variable and (-, )
denotes the standard inner product on C.

Moreover, if f is sufficiently ‘smooth’, it follows from either
Schauder theory or the fact that Vu is a quasiregular mapping of
C that u has continuous third derivatives in a neighborhood of z
whenever Vu(z) # 0. In this case, (1) holds pointwise and we can
differentiate this equation with respect to x;, / = 1,2 to get

0-v. (;XI(Vf(Vu(z)))) - é_jl o ( af;f?j(Vu(z)) )
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u, and uy; are both solution L{

Here V- denotes divergence in the z = x; + ixp variable and (-, )
denotes the standard inner product on C.

Moreover, if f is sufficiently ‘smooth’, it follows from either
Schauder theory or the fact that Vu is a quasiregular mapping of
C that u has continuous third derivatives in a neighborhood of z
whenever Vu(z) # 0. In this case, (1) holds pointwise and we can
differentiate this equation with respect to x;, / = 1,2 to get

0-v. (;XI(Vf(Vu(z)))) - é_jl o ( af;;j(Vu(z» )

From this display we see that if Vu(z) # 0, and u, f are
sufficiently smooth, then ( = u,, satisfies

2

LC=Y)" a(zk (bkj(z)gfj> =0 (2)

kj=1
where byj(z) = f;,,,(Vu(z)) when 1 < k,j < 2.
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u, and uy; are both solution L{

Using the homogeneity of f and Euler's formula for k = 1,2 and if

n # 0, then
> 0 () = (p— Dy (n) and > i fy (n) = pf(n).  (3)
Jj=1 k=1
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u, and uy; are both solution L{

Using the homogeneity of f and Euler's formula for k = 1,2 and if
n # 0, then

2

> 0 () = (p— Dy (n) and > i fy (n) = pf(n).  (3)
j=1

k=1

Putting v in for ¢ in (2) and using (3) and (1), it follows that

2
L= 3 5 (fun (T3 ) - (p—l);(ka(ﬂn(w(z») ~o.

kj=1
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Introduction

u, and uy; are both solution L{

Using the homogeneity of f and Euler's formula for k = 1,2 and if

n # 0, then
2 2
> 0 () = (p— Dy (n) and > i fy (n) = pf(n).  (3)
Jj=1 k=1
Putting v in for ¢ in (2) and using (3) and (1), it follows that
2.9 ou 2.0
=3 5 (fun(Vetn 52 ) = (o-1) > g U (Tute)) =0

Hence, ( = u is also solution to L{ = 0 in a neighborhood of z.
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Main Result
Theorem

Using
2

d ¢
LC=>Y e bkj(z)a—xj =0

kj=1
for(=uy, I=1,2and ( =u
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Theorem
Using
2
B 0 ocy
kj=1

for ( = uy, I =1,2 and ( = u we prove

Theorem (Akman, Lewis, Vogel)

In a neighborhood of z and under the above assumptions,
log f(Vu)) is a sub solution, solution, or super solution to L when
p>2, p=2, p<2, respectively.
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Main Result
Possible Applications of the Theorem

Let B(z,r) ={w € C: |w — z| < r} whenever z € C and r > 0.
Let d(E, F) denote the distance between the sets E, F C C.
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Main Result
Possible Applications of the Theorem

Let B(z,r) ={w € C: |w — z| < r} whenever z € C and r > 0.
Let d(E, F) denote the distance between the sets E, F C C.
Let A > 0 be a positive function on (0, rp) with Ii_r)’n0 A(r) =0.

Define H* Hausdorff measure on C as follows:
For fixed 0 < 0 < rg and E C C, let L(d) = {B(zj, ri)} be such
that EC | B(zj,ri)and 0 < r; <9, i=1,2,... Set

O5(E) = jnf > A(r).
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Main Result
Possible Applications of the Theorem

Let B(z,r) ={w € C: |w — z| < r} whenever z € C and r > 0.
Let d(E, F) denote the distance between the sets E, F C C.
Let A > 0 be a positive function on (0, rp) with Ii_r)n0 A(r) =0.

Define H* Hausdorff measure on C as follows:
For fixed 0 < 0 < rg and E C C, let L(d) = {B(zj, ri)} be such
that EC | B(zj,ri)and 0 < r; <9, i=1,2,... Set

O5(E) = jnf > A(r).

Then
HA(E) = lim 63(E)

In case A\(r) = r® we write H* for H*.
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Possible Applications of the Theorem

Next, suppose D C C is a bounded simply connected domain,
z, € D,Q =D\ B(z, 3d(20,0D)), and u is minimizer for
variational problem in Q

ian/f(Vw)dA:Q/f(Vu)dA

with boundary values u =1 on 9B(zy, 2d(20,0D)) and u =0 on
OD in the W1P(Q) sense. Put u = 0 outside of D.
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Possible Applications of the Theorem

Then it follows from (see Heinonen, Kilpelainen, Martio,
Nonlinear Potential Theory of Degenerate Elliptic Equations,
Chapter 21, Dover Publications, 2006) that there exists a
unique finite positive Borel measure p with support on 9D
satisfying

/ (VF(Vu(z)), V0(2))dA / 0dy (+)

C
whenever § € C§°(C \ B(zo, 3d(z0,0D))).
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Possible Applications of the Theorem

Then it follows from (see Heinonen, Kilpelainen, Martio,
Nonlinear Potential Theory of Degenerate Elliptic Equations,
Chapter 21, Dover Publications, 2006) that there exists a
unique finite positive Borel measure p with support on 9D
satisfying

/ (VF(Vu(z)), V0(2))dA / 0dy (+)
C

whenever § € C§°(C \ B(zo, 3d(z0,0D))).

Define the Hausdorff dimension of i denoted H-dim g, by

H-dim p = inf{c : JE Borel C 0Qwith H*(E) = 0and pu(E) = p(09)}.
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If f(Vu) =|Vul?, i.e, when u is harmonic, and z = w is harmonic
measure with respect to a point in D. In [M], Makarov proved that

Theorem (Makarov)

a) u is concentrated on a set of o finite H' measure.
b) There exists 0 < A < oo, such that p is absolutely continuous
with respect to Hausdorff measure defined relative to \ where

1 1
Ar)=r exp[A\/Iog B log log log 7], 0<r<107°
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If f(Vu) =|Vul?, i.e, when u is harmonic, and z = w is harmonic
measure with respect to a point in D. In [M], Makarov proved that

Theorem (Makarov)

a) u is concentrated on a set of o finite H' measure.
b) There exists 0 < A < oo, such that p is absolutely continuous
with respect to Hausdorff measure defined relative to \ where

1 1
Ar)=r exp[A\/Iog B log log log 7], 0<r<107°

In [BL], Bennewitz and Lewis have attempted to generalize this
result for u defined as in (x) relative to f(Vu) = |VulP.

Theorem (Bennewitz, Lewis)

If 02 is a quasicircle, then H-dim p < 1 for 2 < p < oo while
H-dim n > 1 for 1 < p < 2. Moreover, if 9 is the von Koch
snowflake then strict inequality holds for H-dim .

On the logarithm of the minimizing integrand for certain variational problems in two dimensions Murat Akman



Introduction Main Result Inspired Results Future

In [LNP], Lewis, Nystrém, and Poggi-Corradini proved that

Theorem (Lewis, Nystrom, Poggi-Corradini)

Let D C C be a bounded simply connected domain and
l<p<oo, p#2. Put

1 1
A(r) = r exp[A4/log B log log 7], 0<r<1075.
Then

a) If p > 2, there exists A = A(p) < —1 such that i is
concentrated on a set of o finite H measure.

b) If1 < p < 2, there exists A= A(p) > 1, such that y is
absolutely continuous with respect to H*.
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Future Work
Plausible Theorem 1

Makarov's result corresponds to f(n) = |n|?, which is homogeneous
of degree 2. In the future, we want to generalize this result for f
which is homogeneous of degree 2 on C\ {0} and strictly convex
on C\ {0} and the measure p relative to f defined as

/(Vf(Vu(z)),V@(z))dA = —/Qdu. (*)

C

Murat Akman

On the logarithm of the minimizing integrand for certain variational problems in two dimensions



Introduction Main Result Inspired Results Future Work

Plausible Theorem 1

Makarov's result corresponds to f(n) = |n|?, which is homogeneous
of degree 2. In the future, we want to generalize this result for f
which is homogeneous of degree 2 on C\ {0} and strictly convex
on C\ {0} and the measure p relative to f defined as

/(Vf(Vu(z)),V@(z))dA = —/Qdu. (*)

Plausible Theorem 1

| ﬁ

a) p is concentrated on a set of o finite H! measure.

b) There exists a universal constant 0 < C < oo, for any Jordan
domain , the measure p is absolutely continuous with respect to
the Hausdorff measure defined relative to A where

1 1
A(r) = rexp{C\/Iog7 log log Iog; L,0<t<107°
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Plausible Theorem 2

The result obtained by Bennewitz and Lewis and Lewis, Nystrom,
and Poggi-Corradini corresponds to f(n) = |n|P, which is
homogeneous of degree p. We want to obtain similar result for
general f, where f is homogeneous of degree p on C\ {0} and
strictly convex on C\ {0};

Plausible Theorem 2

Let D C C be bounded simply connected domain and 1 < p < oo,
p # 2. Define

1 1
A(r) = rexp{A\/IogF Ioglog; },0<r<107°
Then

a) If p > 2, there exists A such that u defined as in () is
concentrated on a set of o finite H* measure.

b) If 1 < p < 2, there exists A such that  defined as in () is
absolutely continuous with respect to H*.
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Main Steps

Let v(z) = log f(Vu(z)). For k =1,2 we have at z

2
byjvx, = Z fn (V) by i, x; -
n=1
Summing this over k,j = 1,2, and using L{ = 0 for { = uy,, we get
2
0
Lv = Z ai)q((bkj%)
kj=1

and multiplying this by (f(Vu(z)))? we rewrite this equation in the

form;
(F(Vu))’Lv = f(Vu)T1 — T
where at z,
2
Z bnlbkjux,xk Ux;x, and Ty = Z ka Mn 'r], U xi Uxjxp
nj,k,/=1 ngj,k,/=1
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We now use matrix notation. We write at z,

(b9(2)) = (VD) = (5 2 )
(st = (5 ¢ ) (6

Ug \ cos 0
( Us, > =[Vul < sin 6 )

Observe that if

D= then Ty = tr (D?). (7)
B C b ¢
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Main Steps

To simplify our calculations we choose an orthonormal matrix O

such that
A B A 0
ot 0=
( B C 0o
(8)
a b a v
ot 0=
( b ¢ b
Then,

Ti = tr D? = tr [(0'DO)?] = (& A2 +2(b')2A'C'+(' C')? (9)

cos ¢ ¢+ [ cosf
<sin¢ )ZO (sin@ ) (10)
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Then from with p = 2, we find at z,
f(Vu) = %|Vu|2[a’(cos $)? 4 2b"sin ¢ cos ¢ + ¢'(sin $)?]
Putting everything together we deduce that
V0T = SIVuP[A) +2(BPAC + (¢ CY)
x[a'(cos ¢)? + 2b' sin ¢ cos ¢ + (sin ¢)?].
If we consider T, and follow similar procedure we obtain,
f(Vu)Ty = T,.

So we have shown that Lv = 0 at z when p = 2.

The proof of that Lv > 0for p>2and Lv <0forl<p<2is
essentially same only in these cases we use the fact that f is
homogeneous of degree p.
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