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ODE TO THE P-LAPLACIAN

“I used to be in love with the Laplacian so worked hard to
please her with beautiful theorems. However she often scorned
me for the likes of Björn Dahlberg, Gene Fabes, Carlos Kenig,
and Thomas Wolff. Gradually I became interested in her sister
the p Laplacian, 1 < p <∞, p 6= 2. I did not find her as
pretty as the Laplacian and she was often difficult to handle
because of her nonlinearity. However over many years I took a
shine to her and eventually developed an understanding of her
disposition. Today she is my girl and the Laplacian pales in
comparison to her.”

— John Lewis
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Introduction

Let Ω ⊂ Rn be a bounded domain.

Let N be open neighborhood of ∂Ω.

Fix p, 1 < p <∞ and suppose that u is p-harmonic in Ω ∩ N. That is,
u ∈ W1,p(Ω ∩ N) and∫

〈|∇u|p−2∇u,∇φ〉 dx = 0 for all φ ∈ W1,p
0 (Ω ∩ N).

If u has continuous second partials in Ω ∩ N and ∇u 6= 0 then u is a
classical solution to the p-Laplace equation in Ω ∩ N:

∆pu := ∇·
(
|∇u|p−2∇u

)
= |∇u|p−4[(p−2)

n∑
i,j=1

uxiuxjuxixj +|∇u|2∆u] = 0.

This is a degenerate/singular quasilinear elliptic PDE.
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Assume that u > 0 in Ω ∩ N.

Assume u = 0 on ∂Ω in the Sobolev sense.

Set u ≡ 0 in N \ Ω. Then u is p-harmonic in N.

By [HKM, Chapter 21] that there exists? a finite, positive, Borel
measure µ associated with u whose support contained in ∂Ω which
satisfies∫
〈|∇u|p−2∇u,∇ψ〉 dx = −

∫
ψ dµ for all nonnegative ψ ∈ C∞0 (N).

µ is called p-harmonic measure.

?: Existence of such a measure follows from the maximum principle and Riesz
representation theorem.

[HKM]: Juha Heinonen, Tero Kilpeläinen, Olli Martio, Nonlinear Potential
Theory of Degenerate Elliptic Equations. Dover Publications Inc (2006).
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Let λ > 0 be a real valued, positive, and increasing function on (0, r0)
with lim

r→0
λ(r) = 0.

Given Borel set E, let

Lδ = {Covers of E with B(zi, ri) such that 0 < ri < δ}.

Hλδ (E) denotes the (λ, δ)−Hausdorff content of E

Hλδ (E) := inf
Lδ

∑
λ(ri)

Hλ(E) denotes the λ−Hausdorff measure of E;

Hλ(E) := lim
δ→0
Hλδ (E).

When λ(r) = rα we write Hα for Hλ.

Define the Hausdorff dimension of a Borel measure ν by

H− dim ν : = inf{α | ∃ a Borel set E ⊂ ∂Ω; Hα(E) = 0, ν(Rn \ E) = 0}

i.e., it is the “smallest dimension” of a set with full ν measure.

When everything is smooth, dµ = |∇u|p−1 dHn−1|∂Ω.
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Results of interest for harmonic measure

When p = 2 and u is the Green’s function with pole at z ∈ Ω then
µ = ω(z, ·) is harmonic measure with respect to z ∈ Ω.

Carleson: H− dim ω = 1 when ∂Ω is snowflake in the plane.
H− dim ω ≤ 1 when ∂Ω is a self similar Cantor set.

Jones-Wolff: H− dim ω ≤ 1.

Wolff: ω is concentrated on a set of σ−finite H1 measure.

Indeed, ω lives on

F =

{
z ∈ ∂Ω : lim sup

r→0

ω(B(z, r))

r
> 0
}
.
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Results of interest for harmonic measure

H− dim ω ≥ n− 2 by an easy computation for any domain Ω ⊂ Rn.

Bourgain: H− dim ω ≤ n− τ(n) whenever Ω ⊂ Rn.

Wolff: ∃ Wolff snowflakes in R3
{
;H− dim ω > 2,
;H− dim ω < 2.

Lewis-Verchota-Vogel: Wolff’s result holds in Rn; Harmonic
measure on both sides of a Wolff snowflake, say ω+, ω− could have

max(H− dim ω+,H− dim ω−) < n− 1,

or

min(H− dim ω+,H− dim ω−) > n− 1.



Results of interest for harmonic measure

H− dim ω ≥ n− 2 by an easy computation for any domain Ω ⊂ Rn.

Bourgain: H− dim ω ≤ n− τ(n) whenever Ω ⊂ Rn.

Wolff: ∃ Wolff snowflakes in R3
{
;H− dim ω > 2,
;H− dim ω < 2.

Lewis-Verchota-Vogel: Wolff’s result holds in Rn; Harmonic
measure on both sides of a Wolff snowflake, say ω+, ω− could have

max(H− dim ω+,H− dim ω−) < n− 1,

or

min(H− dim ω+,H− dim ω−) > n− 1.



Results of interest for harmonic measure

H− dim ω ≥ n− 2 by an easy computation for any domain Ω ⊂ Rn.

Bourgain: H− dim ω ≤ n− τ(n) whenever Ω ⊂ Rn.

Wolff: ∃ Wolff snowflakes in R3
{
;H− dim ω > 2,
;H− dim ω < 2.

Lewis-Verchota-Vogel: Wolff’s result holds in Rn; Harmonic
measure on both sides of a Wolff snowflake, say ω+, ω− could have

max(H− dim ω+,H− dim ω−) < n− 1,

or

min(H− dim ω+,H− dim ω−) > n− 1.



Results of interest for harmonic measure

H− dim ω ≥ n− 2 by an easy computation for any domain Ω ⊂ Rn.

Bourgain: H− dim ω ≤ n− τ(n) whenever Ω ⊂ Rn.

Wolff: ∃ Wolff snowflakes in R3
{
;H− dim ω > 2,
;H− dim ω < 2.

Lewis-Verchota-Vogel: Wolff’s result holds in Rn; Harmonic
measure on both sides of a Wolff snowflake, say ω+, ω− could have

max(H− dim ω+,H− dim ω−) < n− 1,

or

min(H− dim ω+,H− dim ω−) > n− 1.



Results of interest for p-harmonic measure

For general p 6= 2;

Bennewitz-Lewis: If ∂Ω ⊂ R2 is a quasi-circle then{
H− dim µ ≥ 1 when 1 < p < 2,
H− dim µ ≤ 1 when 2 < p <∞.

Strict inequality holds for H− dim µ when ∂Ω is the Von Koch
snowflake.

Lewis-Nyström-Vogel:
1 µ is concentrated on a set of σ−finite Hn−1 measure when ∂Ω is

sufficiently “flat” in the sense of Reifenberg and p ≥ n.

2 All examples produced by Wolff snowflake has H− dim µ < n− 1
when p ≥ n.

3 There is a Wolff snowflake for which H− dim µ > n− 1 when
p > 2, near enough 2.
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Part I: σ−finiteness of p-harmonic measure in space for p ≥ n

To state our recent work we need a notion of n capacity. If K ⊂ B(x, r)
is a compact set, define n−capacity of K as

Cap(K,B(x, 2r)) = inf
∫
Rn

|∇ψ|ndx

where the infimum is taken over all infinitely differentiable ψ with
compact support in B(x, 2r) and ψ ≡ 1 on K.

A compact set E ⊂ Rn is said to be locally (n, r0) uniformly fat or
locally uniformly (n, r0) thick provided there exist r0 and β > 0 such
that whenever x ∈ E, 0 < r ≤ r0

Cap(E ∩ B(x, r),B(x, 2r)) ≥ β.
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Part I: σ−finiteness of p-harmonic measure in space for p ≥ n

Let O ⊂ Rn be an open set and ẑ ∈ ∂O, ρ > 0.

Let u > 0 be p-harmonic in O ∩ B(ẑ, ρ) with continuous zero
boundary values on ∂O ∩ B(ẑ, ρ).

Extend u to all B(ẑ, ρ) by defining u ≡ 0 on B(ẑ, ρ) \ O. Then u is
p-harmonic in B(ẑ, ρ).

Let µ be the p-harmonic measure associated with u.
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New result for p-harmonic measure in space

Theorem A (A.-Lewis-Vogel)

If p > n then µ is concentrated on a set of σ−finite Hn−1 measure.

Same result holds when p = n provided that ∂O ∩ B(ẑ, ρ) is locally
uniformly fat.

Indeed µ lives on P where

P =

{
x ∈ ∂O ∩ B(ẑ, ρ) : lim sup

t→0

µ(B(x, t))
tn−1 > 0

}
which has σ−finite Hn−1 measure.

H− dim µ ≤ n− 1 when p ≥ n.
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Some Remarks

If w ∈ ∂O and B(w, 4r) ⊂ B(ẑ, ρ) then there exists c = c(p, n) ≥ 1
with

1
c

rp−nµ(B(w, r/2)) ≤ max
B(w,r)

up−1 ≤ crp−nµ(B(w, 2r)).

The left-hand side is true for any open set O and p ≥ n.

The right-hand side requires uniform fatness assumption when p = n
and it is the only place this assumption is used.

Conjecture

Theorem A holds without uniform fatness assumption when p = n.
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The tools we have used requires to find a PDE in divergence form for
which u, uxk are both solutions and log |∇u| is a sub solution for p ≥ n
at points where ∇u 6= 0.

It is known that if

Lζ =

n∑
i,j=1

∂

∂xi
(bijζj) where bij = |∇u|p−4[(p− 2)uxiuxj + δij|∇u|2

then

min(p− 1, 1)|ξ|2|∇u|p−2 ≤
n∑

i,j=1

bijξiξj ≤ max(1, p− 1)|∇u|p−2|ξ|2.

ζ = u and ζ = uxk are both solutions for k = 1, . . . , n to Lζ = 0.

ζ = log |∇u| is a sub solution to Lζ = 0 when p ≥ n and ∇u 6= 0.

Is log |∇u| a super solution when p < n and |∇u| 6= 0?

Conjecture

There is p0, 2 < p0 < n, such that if p0 ≤ p then H− dim µ ≤ n− 1.



The tools we have used requires to find a PDE in divergence form for
which u, uxk are both solutions and log |∇u| is a sub solution for p ≥ n
at points where ∇u 6= 0.

It is known that if

Lζ =

n∑
i,j=1

∂

∂xi
(bijζj) where bij = |∇u|p−4[(p− 2)uxiuxj + δij|∇u|2

then

min(p− 1, 1)|ξ|2|∇u|p−2 ≤
n∑

i,j=1

bijξiξj ≤ max(1, p− 1)|∇u|p−2|ξ|2.

ζ = u and ζ = uxk are both solutions for k = 1, . . . , n to Lζ = 0.

ζ = log |∇u| is a sub solution to Lζ = 0 when p ≥ n and ∇u 6= 0.

Is log |∇u| a super solution when p < n and |∇u| 6= 0?

Conjecture

There is p0, 2 < p0 < n, such that if p0 ≤ p then H− dim µ ≤ n− 1.



The tools we have used requires to find a PDE in divergence form for
which u, uxk are both solutions and log |∇u| is a sub solution for p ≥ n
at points where ∇u 6= 0.

It is known that if

Lζ =

n∑
i,j=1

∂

∂xi
(bijζj) where bij = |∇u|p−4[(p− 2)uxiuxj + δij|∇u|2

then

min(p− 1, 1)|ξ|2|∇u|p−2 ≤
n∑

i,j=1

bijξiξj ≤ max(1, p− 1)|∇u|p−2|ξ|2.

ζ = u and ζ = uxk are both solutions for k = 1, . . . , n to Lζ = 0.

ζ = log |∇u| is a sub solution to Lζ = 0 when p ≥ n and ∇u 6= 0.

Is log |∇u| a super solution when p < n and |∇u| 6= 0?

Conjecture

There is p0, 2 < p0 < n, such that if p0 ≤ p then H− dim µ ≤ n− 1.



The tools we have used requires to find a PDE in divergence form for
which u, uxk are both solutions and log |∇u| is a sub solution for p ≥ n
at points where ∇u 6= 0.

It is known that if

Lζ =

n∑
i,j=1

∂

∂xi
(bijζj) where bij = |∇u|p−4[(p− 2)uxiuxj + δij|∇u|2

then

min(p− 1, 1)|ξ|2|∇u|p−2 ≤
n∑

i,j=1

bijξiξj ≤ max(1, p− 1)|∇u|p−2|ξ|2.

ζ = u and ζ = uxk are both solutions for k = 1, . . . , n to Lζ = 0.

ζ = log |∇u| is a sub solution to Lζ = 0 when p ≥ n and ∇u 6= 0.

Is log |∇u| a super solution when p < n and |∇u| 6= 0?

Conjecture

There is p0, 2 < p0 < n, such that if p0 ≤ p then H− dim µ ≤ n− 1.



The tools we have used requires to find a PDE in divergence form for
which u, uxk are both solutions and log |∇u| is a sub solution for p ≥ n
at points where ∇u 6= 0.

It is known that if

Lζ =

n∑
i,j=1

∂

∂xi
(bijζj) where bij = |∇u|p−4[(p− 2)uxiuxj + δij|∇u|2

then

min(p− 1, 1)|ξ|2|∇u|p−2 ≤
n∑

i,j=1

bijξiξj ≤ max(1, p− 1)|∇u|p−2|ξ|2.

ζ = u and ζ = uxk are both solutions for k = 1, . . . , n to Lζ = 0.

ζ = log |∇u| is a sub solution to Lζ = 0 when p ≥ n and ∇u 6= 0.

Is log |∇u| a super solution when p < n and |∇u| 6= 0?

Conjecture

There is p0, 2 < p0 < n, such that if p0 ≤ p then H− dim µ ≤ n− 1.



The tools we have used requires to find a PDE in divergence form for
which u, uxk are both solutions and log |∇u| is a sub solution for p ≥ n
at points where ∇u 6= 0.

It is known that if

Lζ =

n∑
i,j=1

∂

∂xi
(bijζj) where bij = |∇u|p−4[(p− 2)uxiuxj + δij|∇u|2

then

min(p− 1, 1)|ξ|2|∇u|p−2 ≤
n∑

i,j=1

bijξiξj ≤ max(1, p− 1)|∇u|p−2|ξ|2.

ζ = u and ζ = uxk are both solutions for k = 1, . . . , n to Lζ = 0.

ζ = log |∇u| is a sub solution to Lζ = 0 when p ≥ n and ∇u 6= 0.

Is log |∇u| a super solution when p < n and |∇u| 6= 0?

Conjecture

There is p0, 2 < p0 < n, such that if p0 ≤ p then H− dim µ ≤ n− 1.



The tools we have used requires to find a PDE in divergence form for
which u, uxk are both solutions and log |∇u| is a sub solution for p ≥ n
at points where ∇u 6= 0.

It is known that if

Lζ =

n∑
i,j=1

∂

∂xi
(bijζj) where bij = |∇u|p−4[(p− 2)uxiuxj + δij|∇u|2

then

min(p− 1, 1)|ξ|2|∇u|p−2 ≤
n∑

i,j=1

bijξiξj ≤ max(1, p− 1)|∇u|p−2|ξ|2.

ζ = u and ζ = uxk are both solutions for k = 1, . . . , n to Lζ = 0.

ζ = log |∇u| is a sub solution to Lζ = 0 when p ≥ n and ∇u 6= 0.

Is log |∇u| a super solution when p < n and |∇u| 6= 0?

Conjecture

There is p0, 2 < p0 < n, such that if p0 ≤ p then H− dim µ ≤ n− 1.



Sketch of the Proof of Theorem A

Our result follows from this proposition.

Proposition 1

Let λ be a non decreasing function on [0, 1] with

lim
t→0

λ(t)
tn−1 = 0.

There exists c = c(p, n) and a set Q ⊂ ∂O ∩ B(ẑ, ρ) such that

µ(∂O ∩ B(ẑ, ρ) \ Q) = 0

and for every w ∈ Q there exists arbitrarily small r = r(w) > 0 and a
compact set F = F(w, r) such that

Hλ(F) = 0 and
1
c
≤ µ(F).

We first show how our result follows from this proposition.
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µ(∂O ∩ B(ẑ, ρ) \ Q) = 0

and for every w ∈ Q there exists arbitrarily small r = r(w) > 0 and a
compact set F = F(w, r) such that

Hλ(F) = 0 and
1
c
≤ µ(F).

We first show how our result follows from this proposition.



Sketch of the Proof of Theorem A

Our result follows from this proposition.

Proposition 1

Let λ be a non decreasing function on [0, 1] with

lim
t→0

λ(t)
tn−1 = 0.

There exists c = c(p, n) and a set Q ⊂ ∂O ∩ B(ẑ, ρ) such that
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Hn−1(Pm) <∞ for each positive integer m where

Pm :=

{
x ∈ ∂O ∩ B(ẑ, ρ) : lim sup

t→0

µ(B(x, t))
tn−1 >

1
m

}
.

Therefore,

P =

{
x ∈ ∂O ∩ B(ẑ, ρ) : lim sup

t→0

µ(B(x, t))
tn−1 > 0

}
σ−finite Hn−1 measure.

Need to show: µ(Q \ P) = 0.

From Proposition 1 and measure theoretic arguments there exists a
Borel set Q1 ⊂ Q with

µ(∂O ∩ B(ẑ, ρ) \ Q1) = 0 and Hλ(Q1) = 0.
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µ(Q \ P) = 0.

Otherwise, there is a compact set K ⊂ Q \ P and a positive non

decreasing λ0 with lim
t→0

λ0(t)
tn−1 = 0 satisfying

µ(K) > 0 and lim
t→0

µ(B(x, t))
λ0(t)

= 0 uniformly for x ∈ K.

This tells us that µ� Hλ0 on K. Choose Q1 relative to λ0 to conclude
that Hλ0(K ∩ Q1) = 0 which will imply µ(K ∩ Q1) = µ(K) = 0 �.

µ is concentrated on P which has σ−finite Hn−1 measure. This
finishes the proof of our result assuming Proposition 1.
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Sketch of the Proof of Proposition 1

Translation, dilation invariance of the p-Laplacian and a measure
theoretic argument to reduce the proof of Proposition to the situation
when w = 0, B(0, 100) ⊂ B(ẑ, ρ).

There is some c = c(p, n) and 2 ≤ t ≤ 50 such that

1
c
≤ µ(B(0, 1)) ≤ max

B(0,2)
u ≤ max

B(0,t)
u ≤ cµ(B(0, 100)) ≤ c2.

To finish the proof of Proposition 1, it suffices to show for given small
ε, τ > 0 that there exists a Borel set E ⊂ ∂O ∩ B(0, 20) and
c = c(p, n) ≥ 1 with

Hλτ (E) ≤ ε and µ(E) ≥ 1
c
.
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A stopping time argument

Let M a large positive number and s < e−M.
For each z ∈ ∂O ∩ B(0, 15) there is t = t(z), 0 < t < 1 with either

(α) µ(B(z, t)) = Mtn−1, t > s

or

(β) t = s.

Use the Besicovitch covering theorem to get a covering B(zj, tj)
N
1 of

∂O∩ B(0, 15) where tj = t(zj) is the maximal for which either (α) or (β)
holds.
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Ω := O ∩ B(0, 15) \
N⋃

i=1

B(zi, ti) and D := Ω \ B(z̃, 2r1)

B(zi, ti)

4pû = 0

û > 0

Let û be the p-harmonic function in D with continuous boundary
values, û = min

B(̃z,2r1)
u on ∂B(z̃, 2r1) and û = 0 on ∂Ω.

Let µ̂ be the p-harmonic measure associated with û.
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Let A >> 1 be given

{1, . . . ,N} can be divided into disjoint subsets G,B, and U as
G := {j : tj > s},

B := {j : tj = s and |∇û|p−1 ≥ M−A for some x ∈ ∂Ω ∩ ∂B(zj, tj)},

U := {j : j is not inG orB}.

Define
E := ∂O ∩

⋃
j∈G∪B

B(zj, tj).

Easy to show Hλτ (E) ≤ ε.
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Prove that ∫
∂Ω

|∇û|p−1 |log |∇û|| dHn−1 ≤ c′ log M.

Use this to show

µ̂(∂Ω ∩
⋃
j∈U

B(zj, tj)) ≤ µ̂({x ∈ ∂Ω : |∇û(x)|p−1 ≤ M−A})

≤ (p− 1)

(AlogM)

∫
∂Ω

|∇û|p−1 |log |∇û|| dHn−1 ≤ c
A
.

A is ours to choose, and choose it very large to make the measure of
the U set as small as we want.

Use this to prove µ(E) ≥ 1/c.
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Part II: Example of a domain for which H− dim µ < n− 1 for p ≥ n.

There is an unpublished result of Jones-Wolff in [GM, Chapter IX,
Theorem 3.1];

Jones-Wolff: Let Ω = C ∪ {∞} \ C where C is a “Cantor like”
compact set. Then H− dim ω < 1.

Our aim is to generalize this result to p-harmonic measure, µ, in Rn for
p ≥ n ≥ 2 and for a certain domain.

[GM]: John B. Garnett and Donald E. Marshall, Harmonic Measure, volume 2 of
New Mathematical Monographs. Cambridge University Press, Cambridge, 2008.



Part II: Example of a domain for which H− dim µ < n− 1 for p ≥ n.

There is an unpublished result of Jones-Wolff in [GM, Chapter IX,
Theorem 3.1];

Jones-Wolff: Let Ω = C ∪ {∞} \ C where C is a “Cantor like”
compact set. Then H− dim ω < 1.

Our aim is to generalize this result to p-harmonic measure, µ, in Rn for
p ≥ n ≥ 2 and for a certain domain.

[GM]: John B. Garnett and Donald E. Marshall, Harmonic Measure, volume 2 of
New Mathematical Monographs. Cambridge University Press, Cambridge, 2008.



Construction of the domain

Let S′ be the square with side length 1/2 and center 0 in Rn. C0 := S′.

Let Q11, . . . ,Q14 be the squares of the four corners of C0 of side length

a1, 0 < α < a1 < β < 1/4, and let C1 =

4⋃
i=1

Q1i.

Let {Q2j}, j = 1, . . . , 16 be the square of corners of each Q1i,

i = 1, . . . , 4 of side length a1a2, α < a2 < β. Let C2 =

16⋃
j=1

Q2j.

By repeating the process we get C.

C0 C1

a1

C2

a1a2

C
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New Result

Let S = 2S′ ⊂ Rn and let u∞ be a p-harmonic function in S \ C with
boundary values u∞ = 1 on ∂S and u∞ = 0 on C. Let µ∞ be the
p-harmonic measure associated to u∞.

u∞ = 1
∆pu∞ = 0

u∞ > 0

u∞ = 0

Theorem B (A.-Lewis-Vogel)

Then H− dim µ∞ ≤ n− 1− δ for some δ = δ(p, n, α, β) > 0.

Here δ ≥ c−1(p− n) where c ≥ 1 can be chosen to depend only on
n, α, and β when p ∈ [n, n + 1].
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Sketch of Proof of Theorem B

Jones and Wolff used the idea of counting zeros of ∇G.

In higher dimensions and when p 6= 2 we then have a little control
over the zeros of ∇u.

Let
Γ̃ =

{
Q̃k,j; k = 1, . . . , and j = 1, . . . , 2kn} .

Our result essentially follows from this Proposition;

Proposition 2

Let Q̃ ∈ Γ̃ be a given cube. Then there exists δ′ > 0 with the same
dependence as δ in Theorem B, c = c(p, n, α, β) ≥ 1, and a compact
set F ⊂ C ∩ Q̃ with

Hn−1−δ′(F) = 0 and
1
c
≤ µ∞(F).
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Part III: Related Problems; Any other PDE we can study the same problem?

In [HKM, Chapter 21], it was shown that the measure associated with a
positive weak solution u with 0 boundary values for a larger class of
qusailinear elliptic PDEs exists;

div · A(x,∇u) = 0

where A : Rn × Rn → Rn satisfies certain structural assumptions.

The measure is so called A-harmonic measure.

In [BL, Closing remarks 10], the authors pointed out this fact and asked
for what PDE one can obtain dimension estimates on the associated
measure.

If A(ξ) = |ξ|p−2ξ, then the above PDE becomes the usual p-Laplace
equation.

{Laplace} $ {p-Laplace} $ {4f u = 0} $ {A − Harmonic PDEs}.

[BL]: Björn Bennewitz and John Lewis. On the dimension of p-harmonic
measure. Ann. Acad. Sci. Fenn. Math., 30(2):459505, 2005.
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Introduction to ∆f u = 0

Let p be fixed, 1 < p <∞. Let f be a function with following
properties;

1 f : Rn → (0,∞) is homogeneous of degree p.

That is, f (η) = |η|pf (
η

|η|
) > 0 when η ∈ Rn \ {0}.

2 Df = (fη1 , . . . , fηn) has continuous partial derivatives when η 6= 0.

3 f is uniformly convex in B(0, 1) \ B(0, 1/2).

That is, There exists c∗ ≥ 1 such that for a.e. η ∈ Rn, 1/2 < |η| < 1,

and all ξ ∈ Rn we have c−1
∗ |ξ|2 ≤

n∑
j,k=1

∂2f
∂ηj∂ηk

(η)ξjξk ≤ c∗|ξ|2.
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We consider weak solutions, u, to the Euler Lagrange equation;

4f u :=

n∑
i=1

∂

∂xi

(
∂f (∇u)

∂ηi

)
= 0. (1)

in Ω ∩ N where N is an open neighborhood of ∂Ω. Assume also that
u > 0 in N ∩ Ω with continuous boundary values on ∂Ω. Set u ≡ 0 in
N \ Ω to have u ∈ W1,p(N) and 4f u = 0 weakly in N. Then, there
exists a unique finite positive Borel measure µf associated with u having
support contained in ∂Ω satisfying∫

〈∇η f (∇u),∇φ〉dx = −
∫
φ dµf whenever φ ∈ C∞0 (N).

When f (η) = |η|2 then (1) ; Laplace equation, 4u = 0.

When f (η) = |η|p, 1 < p <∞, then (1) ; p-Laplace equation,
div(|∇u|p−2∇u) = 0.

∆f u = 0 is invariant under translation and dilation but not
necessarily invariant under rotation for general f .
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New result

If we define

Lζ =
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∂xi

(
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Then

ζ = u is a weak solution to Lζ = 0
ζ = uxk for k = 1, . . . , n is weak solution to Lζ = 0
ζ = log f (∇u) is a weak sub solution and weak solution to Lζ = 0

respectively when p > n and p = n.

Using this sub solution estimate and following arguments we have used
for p harmonic measure we show that

Theorem C (A.-Lewis-Vogel)

Theorem A and Theorem B hold for µf .
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More results in the plane for simply connected domains

Let n = 2 and Ω ⊂ R2 be any bounded simply connected domain.

Let

λ(r) := r exp

{
A

√
log

1
r

log log log
1
r

}
.

Makarov: ω � Hλ if A is large enough.

For any small ε > 0,

ω � H1−ε and ω ⊥ H1+ε.

Hence
H− dim ω = 1.
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Lewis-Nyström-Poggi Corradini:

1 µp � Hλ̂ when 1 < p < 2 for some A = A(p) ≥ 1.

2 µp is concentrated on a set of σ−finite Hλ̂ when 2 < p <∞ for
some A = A(p) ≤ −1.

Lewis:

1 If 1 < p < 2, then µp � Hλ for A = A(p) sufficiently large.

2 If 2 < p <∞, then µp is concentrated on a set of σ−finite H1.

H− dim µp


≥ 1 when 1 < p < 2,
= 1 when p = 2,
≤ 1 when 2 < p <∞.
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let u > 0 be a weak solution to 4f u = 0 in Ω ∩ N. Let µf be the
measure associated with u.

Let û be a capacitary function for D = Ω \ B(z0, d(z0, ∂Ω)/2) for
some fixed z0 ∈ Ω.

Let µ̂f be the associated measure to û.

Then µf � µ̂f � µf .

1 ûz is a K−quasiregular mapping.

2 ûz 6= 0 in D.

3 û satisfies the so called fundamental inequality;

û(z)
d(z, ∂Ω)

≈ |∇û(z)| for all z near ∂Ω.

4 ζ = û, ζ = ûxk , k = 1, 2, are solution to Lζ = 0. Moreover,
log f (∇û) is a super solution when 1 < p < 2, a solution when p = 2,
and a sub solution when 2 < p <∞ to Lζ where

Lζ :=

2∑
i,j=1

(fηiηj ζxj)xi .
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1 ûz is a K−quasiregular mapping.
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û(z)
d(z, ∂Ω)
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Endpoint-type results for H− dim µf

A weaker version of Makarov’s and Lewis’ results;

Theorem D (A.)

1 If 1 < p ≤ 2, there exists A = A(p, f ) ≥ 1 such that µf � Hλ̂.

2 If 2 ≤ p <∞, then µf is concentrated on a set of σ−finite Hλ̂ for
some small A(p, f ) ≤ −1.

Theorem E (A., Work in Progress)

1 If 1 < p ≤ 2, there exists A = A(p, f ) ≥ 1 such that µf � Hλ.

2 If 2 ≤ p <∞, then µf is concentrated on a set of σ−finite H1.

When Ω is simply connected in the plane. Then

H− dim µf


≥ 1 when 1 < p < 2,
= 1 when p = 2,
≤ 1 when 2 < p <∞.
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Some Questions

Let C be the four-corner Cantor set with {ai} where each ai satisfies
α < ai < β ≤ 1/2 in Rn.

Let Ω = C ∪ {∞} \ C.

Batakis: H− dim ω → 1 when α→ 1/2 in the plane.

Let S be the unit cube centered at 0 in Rn and let C be the four-corner
Cantor set. Let u be p-harmonic in S \ C with continuous boundary
values 1 on ∂S and 0 on C. Let µ be the p-harmonic measure
associated with u.

Question 1

α→ 1/2 =⇒ H− dim µp → n− 1 in Rn?
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Batakis: H− dim ω → 1 when α→ 1/2 in the plane.

Let S be the unit cube centered at 0 in Rn and let C be the four-corner
Cantor set. Let u be p-harmonic in S \ C with continuous boundary
values 1 on ∂S and 0 on C. Let µ be the p-harmonic measure
associated with u.

Question 1

α→ 1/2 =⇒ H− dim µp → n− 1 in Rn?



On a conjecture of Øksendal

Conjecture (Øksendal)

H− dim ω < n− 1 for any domain Ω ⊂ Rn.

This conjecture is false due to a result of Wolff; H− dim ω > n− 1 for
some snowflake domains.

Bourgain showed that H− dim ω ≤ n− τ where τ = τ(n).

Question 2

What is the best value of τ?

Conjecture

H− dim ω ≤ n− 1 +
n− 2
n− 1

.

Fact: u is harmonic in the plane then log |∇u| is subharmonic. (This
fails in higher dimensions)

Substitute of the fact: if u is harmonic in Rn then |∇u|q is subharmonic
for q ≥ (n− 2)/(n− 1).
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