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Part I - Dimension of a certain measure in the plane
Let Ω ⊂ R2 be a bounded domain and let N be a neighborhood of ∂Ω.

Fix p, 1 < p <∞ and suppose that u is p-harmonic in Ω ∩ N. That is,
u ∈W 1,p(Ω ∩ N) and∫

〈|∇u|p−2∇u,∇φ〉 dx = 0 for all φ ∈W 1,p
0 (Ω ∩ N).

Assume that u > 0 in Ω ∩ N and u = 0 on ∂Ω in the Sobolev sense.

Set u ≡ 0 in N \ Ω. Then u ∈W 1,p(N).

It is well know from [HKM, Chapter 21] that there is a finite, positive, Borel
measure µp associated with u satisfying∫

〈|∇u|p−2∇u,∇ψ〉 dx = −
∫
ψ dµp for all nonnegative ψ ∈ C∞0 (N).

µp has support on ∂Ω and is called p-harmonic measure.

[HKM]: Juha Heinonen, Tero Kilpeläinen, Olli Martio, Nonlinear Potential Theory of
Degenerate Elliptic Equations. Dover Publications Inc (2006).
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Let λ > 0 be a real valued, positive, and increasing function on (0, r0) with
lim
r→0

λ(r) = 0.

Let Hλ(E ) denote the Hausdorff measure of E ⊂ R2 relative to λ defined in
the following way;
for fixed 0 < δ < r0 let L(δ) = {B(zi , ri )} be such that E ⊆

⋃
B(zi , ri ) and

0 < ri < δ, i = 1, 2, ...

Set φλδ (E ) := inf
L(δ)

∑
λ(ri ). Then Hλ(E ) := lim

δ→0
φλδ (E ).

When λ(r) = rα we write Hα for Hλ. Define the Hausdorff dimension of a
Borel measure ν by

H− dim ν := inf{α | ∃ a Borel set E ⊂ ∂Ω; Hα(E ) = 0, ν(R2 \ E ) = 0}.

i.e., it is the “smallest dimension” of a set with full ν measure.

When everything is smooth,

dµp = |∇u|p−1 dH1|∂Ω.
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A measure µ is said to be absolutely continuous with respect to another
measure ν if for every Borel set E ⊂ ∂Ω with ν(E ) = 0 then we have
µ(E ) = 0. In this case we use the following notation

µ� ν.

A measure µ is called singular with respect to another measure ν if there is
a Borel set E ⊂ ∂Ω with ν(E ) = 0 and µ(∂Ω \ E ) = 0. In this case we use
the following notation

µ ⊥ ν.

A set E is said to have σ−finite ν measure if

E =
∞⋃
i=1

Ei

with ν(Ei ) <∞ for i = 1, . . . ,∞.
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Results of interest in the plane for harmonic measure
When p = 2 then we have the usual Laplace equation. In this case, if u is
the Green’s function for Laplace’s equation with pole at some z0 ∈ Ω, then
the measure associated with this function u is harmonic measure, ω(·, z0).

Theorem (Carleson in [C])

H− dim ω = 1 when ∂Ω is a snowflake in the plane and H− dim ω ≤ 1
when Ω is the complement of a self similar Cantor set.

Theorem (Makarov in [M])

Let Ω ⊂ R2 be a simply connected domain. Then

a) ω � Hλ where λ(r) := r exp{A
√

log 1/r log log log 1/r} if A is large.
b) ω is concentrated on a set of σ−finite H1 measure.

Therefore, H− dim ω = 1 when Ω ⊂ R2 is simply connected.

[C]: Lennart Carleson. On the support of harmonic measure for sets of Cantor type.
Ann. Acad. Sci. Fenn., 10:113123, 1985.

[M]: Nikolai Makarov. On the distortion of boundary sets under conformal mappings.
Proc. London Math. Soc., 51(2):369384, 1985.
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For 1 < p 6= 2 <∞, we have the p−harmonic measure, µp, associated with
a p-harmonic function u.

Theorem (Bennewitz and Lewis in [BL])

If ∂Ω is a quasi circle in the plane then H− dim µp ≥ 1 when 1 < p < 2
while H− dim µp ≤ 1 if 2 < p <∞. Moreover, strict inequality holds for
H− dim µp when ∂Ω is the Von Koch snowflake.

Theorem (Lewis, Nyström, and Poggi-Corradini in [LNP])

Let Ω ⊂ R2 be a bounded simply connected domain and let
λ̂(r) := r exp{A

√
log 1/r log log 1/r}.

a) µp � Hλ̂ when 1 < p < 2 for some A = A(p) ≥ 1.

b) µp is concentrated on a set of σ−finite Hλ̂ when 2 < p <∞ for some
A = A(p) ≤ −1.

[BL]: Björn Bennewitz and John Lewis. On the dimension of p-harmonic measure.
Ann. Acad. Sci. Fenn. Math., 30(2):459505, 2005.

[LNP]: John Lewis, Kaj Nyström, and Pietro Poggi-Corradini. p-harmonic measure in
simply connected domains. Ann. Inst. Fourier Grenoble, 61(2):689715, 2011.
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Finally, analogue of Makarov’s theorem is proved under the p-harmonic
setting;

Theorem (Lewis in [L])

Let
λ(r) := r exp{A

√
log 1/r log log log 1/r}

and let Ω ⊂ R2 is a bounded simply connected domain.

a) If 1 < p < 2, then µp � Hλ for A = A(p) sufficiently large.
b) If 2 < p <∞, then µp is concentrated on a set of σ−finite H1.

Combining results of Makarov and Lewis we see

H− dim µp


≥ 1 when 1 < p < 2,

= 1 when p = 2,

≤ 1 when 2 < p <∞.

[L]: John Lewis. p-harmonic measure in simply connected domains revisited. Tran. of
the AMS, electronically published on November 6, 2014.
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Is there any other measure or PDE that one can study the same problem?

In [HKM, Chapter 21], it was shown that the measure associated with a
positive weak solution u with 0 boundary values for a larger class of
qusailinear elliptic PDEs exists;

div A(x ,∇u) = 0

where A : Rn × Rn → Rn satisfies certain structural assumptions.

The measure is so called A-harmonic measure.

If A(ξ) = |ξ|p−2ξ, then the above PDE becomes the usual p-Laplace
equation.

In [BL, Closing remarks 10], the authors pointed out this fact and asked for
what PDE one can obtain dimension estimates on the associated measure.

{Laplace} ⊆ {p-Laplace}

⊆ {4f u = 0}

⊆ {A − Harmonic PDEs}.

[BL]: Björn Bennewitz and John Lewis. On the dimension of p-harmonic measure.
Ann. Acad. Sci. Fenn. Math., 30(2):459505, 2005.
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Let p be fixed and 1 < p <∞ and let f be a function with;

(a) f : R2 → (0,∞) is homogeneous of degree p.

That is, f (η) = |η|pf (
η

|η|
) > 0 when η ∈ R2 \ {0}.

(b) f is uniformly convex in B(0, 1) \ B(0, 1/2).

That is, ∃c ≥ 1 such that for a.e. η ∈ R2,
1

2
< |η| < 1 and

all ξ ∈ R2 we have c−1|ξ|2 ≤
2∑

j ,k=1

∂2f

∂ηjηk
(η)ξjξk ≤ c |ξ|2.

In fact, in my thesis, it is assumed that f has the properties (a) and that ∇f
is δ−monotone which turned out to be equivalent to (b) with (a).
Examples for such f ;

• f (η) = |η|p for 1 < p <∞.
• f (η) = |η|p(1 + εη1/|η|) for small ε > 0.

h is called δ−monotone for some 0 < δ ≤ 1 in R2 if h ∈W 1,1(B(0,R)) for each
R > 0 and 〈h(x)− h(y), x − y〉 ≥ δ|h(x)− h(y)| |x − y | for a.e. x , y ∈ R2.
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Let Ω ⊂ R2 be a bounded simply connected domain and N be a
neighborhood of ∂Ω. Let f be as above.

Let u > 0 be a minimizer of ∫
Ω∩N

f (∇v)dx

where v is in a certain subclass of the Sobolev space W 1,p. Then u > 0 is a
weak solution to the Euler Lagrange equation in Ω ∩ N;

4f u :=
2∑

k=1

∂

∂xk

(
∂f

∂ηk
(∇u)

)
=

2∑
j ,k=1

fηkηj (∇u)uxjxk = 0.

Assume that u has zero continuous boundary values on ∂Ω. Extend u to all
N by setting u ≡ 0 in N \ Ω in the Sobolev sense.

∂Ω

u ≡ 0

N

4 f
u

=
0
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There is a finite, positive, Borel measure µf with support on ∂Ω satisfying∫
〈Df (∇u),∇φ〉dx = −

∫
φ dµf whenever φ ∈ C∞0 (N) and φ ≥ 0

where Df = (fη1(∇u), fη2(∇u)).

• f (η) = |η|2 → Laplace equation, 4u = 0.
• f (η) = |η|p, 1 < p <∞ → p-Laplace equation, div(|∇u|p−2∇u) = 0.

If ∂Ω and ∇u are smooth enough then∫
〈Df (∇u),∇φ〉dx = −

∫
φ〈Df (∇u),

∇u
|∇u|

〉dH1

= −p
∫
φ
f (∇u)

|∇u|
dH1.

Therefore when ∂Ω and ∇u are smooth enough,

dµf = p
f (∇u)

|∇u|
dH1|∂Ω.
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Theorem (Akman in [A14])

Let λ̂ := r exp{A
√

log 1/r log log 1/r} and Ω ⊂ R2 be a bounded simply
connected domain and N be a neighborhood of ∂Ω. Let f be as above and
let u > 0 be a weak solution to 4f u = 0 in Ω ∩ N with continuous zero
boundary values on ∂Ω. Let µf be the measure associated with u.

a) If 1 < p ≤ 2, there exists A = A(p, f ) ≥ 1 such that µf � Hλ̂.
b) If 2 ≤ p <∞, there exists A = A(p, f ) ≤ −1 such that µf is

concentrated on a set of σ−finite Hλ̂.

Therefore H− dim µf


≥ 1 when 1 < p < 2,
= 1 when p = 2,
≤ 1 when 2 < p <∞.

This result is analogue of Lewis, Nyström, and Poggi-Corradini’s result under
this generalized setting. It is weaker than Makarov’s result when p = 2 and
Lewis’s result for other p because of λ̂.

[A14]: M. Akman, On the dimension of a certain measure in the plane, Ann. Acad.
Sci. Fenn. Math., 39(2014), 187-209.
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Let Ω ⊂ R2 be a bounded simply connected domain. Let u > 0 be a weak
solution to 4f u = 0 in Ω ∩ N. Let µf be the measure associated with u.

Let û be a capacitary function for D = Ω \B(z0, d(z0, ∂Ω)/2) for some fixed
z0 ∈ Ω and let µ̂f be the associated measure to û.

Then µf � µ̂f � µf .

1 ûz is a K−quasiregular mapping.
2 ûz 6= 0 in D.
3 û satisfies the so called fundamental inequality;

û(z)

d(z , ∂Ω)
≈ |∇û(z)| for all z near ∂Ω.

4 ζ = û, ζ = ûxk , k = 1, 2, are solution to Lζ = 0. Moreover, log f (∇û)
is a super solution when 1 < p < 2, a solution when p = 2, and a sub
solution when 2 < p <∞ to Lζ where

Lζ :=
2∑

i ,j=1

(fηiηj ζxj )xi .
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3 û satisfies the so called fundamental inequality;
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≈ |∇û(z)| for all z near ∂Ω.
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4 ζ = û, ζ = ûxk , k = 1, 2, are solution to Lζ = 0. Moreover, log f (∇û)
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Define

w(z) =

{
max(v(z), 0) when 1 < p < 2
max(−v(z), 0) when 2 < p <∞

where v = log f (∇û).

Using the fundamental inequality, sub/super solution estimates, and an
induction argument, we get

Lemma

Let m be a nonnegative integer. Then there exists c∗ = c∗(f , p) ≥ 1 such
that for 0 < t < 1/2,∫

{z∈D: û(z)=t}

w2m f (∇û)

|∇û|
dH1 ≤ cm+1

∗ m![log
1

t
]m.

Then the result follows from this Lemma and measure theoretic arguments.
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Current research project

Aim is to show that our result holds if we replace λ̂ by
λ(r) = r exp{A

√
log 1/r log log log 1/r}.

For a given t ∈ (0, 1], let µ̂tf denote the measure associated with û − t as

û = 1û = 1

û = t = ∂Ω(t)

Ω

As ∂Ω(t) is a smooth curve we then have

dµ̂tf = p
f (∇û)

|∇û|
dH1|∂Ω(t).

Moreover,

µ̂tf (∂Ω(t)) = p

∫
∂Ω(t)

f (∇û)

|∇û|
dH1 = ξ > 0 and ξ independent of t ∈ (0, 1].
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|∇û|
dH1 = ξ > 0 and ξ independent of t ∈ (0, 1].



Current research project

Aim is to show that our result holds if we replace λ̂ by
λ(r) = r exp{A

√
log 1/r log log log 1/r}.

For a given t ∈ (0, 1], let µ̂tf denote the measure associated with û − t as
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For a given t ∈ (0, 1], let µ̂tf denote the measure associated with û − t as

û = 1û = 1

û = t = ∂Ω(t)

Ω

As ∂Ω(t) is a smooth curve we then have

dµ̂tf = p
f (∇û)

|∇û|
dH1|∂Ω(t).

Moreover,

µ̂tf (∂Ω(t)) = p

∫
∂Ω(t)

f (∇û)

|∇û|
dH1 = ξ > 0 and ξ independent of t ∈ (0, 1].



The Law of the iterated Logarithm for certain functions
When f (η) = |η|2, i.e., under the harmonic setting, Makarov proved that if
φ : D→ Ω is a conformal mapping then

lim sup
r→1

|g(rξ)|√
log 1

1−r log log log 1
1−r

≤ C

holds almost every ξ ∈ ∂D where g = log(φ′).

When f (η) = |η|p, i.e., under the p-harmonic setting, Lewis proved that

lim sup
t→0

w(σ(ẑ , 1− t))√
log 1

t log log log 1
t

≤ c = c(p)

for almost every ẑ ∈ ∂Ω(t0) with respect to a certain measure where
w = max(log |∇u| − c , 0) and σ(ẑ , ·) is trajectories orthogonal to the levels
of u with σ(ẑ , 1− t)→ ∂Ω as t → 0.
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As

4f û =
2∑

j=1

(fηj (∇û))xj =
2∑

j ,k=1

fηjηk (∇û)ûxkxj = 0.

If we set

vx1 = −fη2(∇û) and vx2 = fη1(∇û)

Then the above differential equation is exact and therefore v exists locally
and is unique up to a constant.

We can also show that v is a solution to the following quasilinear elliptic
equation

4f v =
2∑

j ,k=1

fηjηk (∇û)vxkxj = 0

As fηiηj are bounded and uniformly elliptic then vz is also K-quasiregular and
vz 6= 0 in D and also the fundamental inequality holds for v .
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1 û + iv is a K ′−quasiregular mapping.

2 The mapping z = x + iy → û + iv has Jacobian p f (∇û)(z) > 0.

Let

F (z) := exp{2π

ξ
(û(z) + iv(z))}.

Using Stöilov factorization theorem for û + iv and following [A]; F can be
uniquely extended to D to get a sense preserving mapping from D → D̃.
Moreover, it can be shown that F is one to one and onto.

F : D → D̃

D̃ = {w : 1 < |w| < e2π/ξ}

û = 1

D = Ω \ B(0, 1)

[A]: Lars V. Ahlfors. Complex analysis. McGraw-Hill Book Co., New York, third
edition, 1978.
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uniquely extended to D to get a sense preserving mapping from D → D̃.
Moreover, it can be shown that F is one to one and onto.

F : D → D̃

D̃ = {w : 1 < |w| < e2π/ξ}
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(û(z) + iv(z))}.
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As 4f û = 0 is invariant under translation and dilation we can consider,
0 ∈ Ω, D = Ω \ B(0, 1), and d(0, ∂Ω) = 4.

Let t0 ∈ (0, 1/2] so small that ∂Ω(t0) ∩ B(0, 2) = ∅. Given ẑ ∈ ∂Ω(t0) and
draw the ray from origin through F (ẑ).

F

l(F (ẑ), ·)

F (ẑ)

D̃

û = 1

û = t

û = t0

σ(ẑ, ·)
ẑ

D

Define σ(ẑ , ·) := F−1(l(F (ẑ), ·)). Then v is constant on σ(ẑ , ·).
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D̃
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Existence of the curve σ(ẑ , t) can also follow from the solution of ordinary
differential equation;

dσ(ẑ , t)

dt
=
−Df (∇û)(σ(ẑ , t))

pf (∇û)(σ(ẑ , t))
=

(
−fη1(∇û)(σ(ẑ , t))

pf (∇û)(σ(ẑ , t))
,
−fη2(∇û)(σ(ẑ , t))

pf (∇û)(σ(ẑ , t))

)
.

Existence and uniqueness follows from assumptions on f and ∇û 6= 0.

1 û is strictly decreasing along σ as

dû(σ(ẑ , t))

dt
= 〈∇û(σ(ẑ , t)),

dσ(ẑ , t)

dt
〉 = −1.

where we have used the p-homogeneity of f .
2 We also observe that v is constant along σ(ẑ , t) as

dv(σ(ẑ , t))

dt
= 〈∇v(σ(ẑ , t)),

dσ(ẑ , t)

dt
〉 = 0.
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û = 1

û = t

û = t0

σ(ẑ, ·)
ẑ

∂Ω

Following Lewis’s work we can show that

lim sup
t→0

w(σ(ẑ , 1− t))√
log(1/t) log log log(1/t)

≤ ĉ = ĉ(p, f ).

holds µ̂t0
f for almost every ẑ0 ∈ ∂Ω(t0) where w(z) = max(log f (∇û)− c , 0)

for z ∈ D and c is chosen so that w ≡ 0 in B(0, 2) \ B(0, 1).

Define λ(r) := r exp{A
√

log 1/r log log log 1/r}.

Plausible Theorem

There exists A = A(p, f ) ≥ 1 such that µ̂f � Hλ for 1 < p ≤ 2.
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ẑ

∂Ω

Following Lewis’s work we can show that

lim sup
t→0
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The machinery we use here requires to find a pde Lζ = 0 in divergence form
such that

1 ζ = u is solution to Lζ = 0

2 ζ = uxk for k = 1, 2 is solution to Lζ = 0

3 ζ = logH(∇u) is sub/super solution to Lζ = 0 depending on p for
some ’nice’ function H.

This pde is

Lζ =
2∑

i ,j=1

∂

∂xi
(bijζxj ) = 0

and ζ = log |∇u| is sub/super solution in the p-harmonic setting and
ζ = log f (∇u) in the general setting where bij is the usual coefficients in the
p-Laplace equation in the p-harmonic setting and fηiηj in the general setting.

If one can come with such L for A−harmonic PDEs then this tool can be
used to study Hausdorff dimension of A−harmonic measure in the simply
connected domain in the plane.



The machinery we use here requires to find a pde Lζ = 0 in divergence form
such that

1 ζ = u is solution to Lζ = 0

2 ζ = uxk for k = 1, 2 is solution to Lζ = 0

3 ζ = logH(∇u) is sub/super solution to Lζ = 0 depending on p for
some ’nice’ function H.

This pde is

Lζ =
2∑

i ,j=1

∂

∂xi
(bijζxj ) = 0

and ζ = log |∇u| is sub/super solution in the p-harmonic setting and
ζ = log f (∇u) in the general setting where bij is the usual coefficients in the
p-Laplace equation in the p-harmonic setting and fηiηj in the general setting.

If one can come with such L for A−harmonic PDEs then this tool can be
used to study Hausdorff dimension of A−harmonic measure in the simply
connected domain in the plane.



The machinery we use here requires to find a pde Lζ = 0 in divergence form
such that

1 ζ = u is solution to Lζ = 0

2 ζ = uxk for k = 1, 2 is solution to Lζ = 0

3 ζ = logH(∇u) is sub/super solution to Lζ = 0 depending on p for
some ’nice’ function H.

This pde is

Lζ =
2∑

i ,j=1

∂

∂xi
(bijζxj ) = 0

and ζ = log |∇u| is sub/super solution in the p-harmonic setting and
ζ = log f (∇u) in the general setting where bij is the usual coefficients in the
p-Laplace equation in the p-harmonic setting and fηiηj in the general setting.

If one can come with such L for A−harmonic PDEs then this tool can be
used to study Hausdorff dimension of A−harmonic measure in the simply
connected domain in the plane.



The machinery we use here requires to find a pde Lζ = 0 in divergence form
such that

1 ζ = u is solution to Lζ = 0

2 ζ = uxk for k = 1, 2 is solution to Lζ = 0

3 ζ = logH(∇u) is sub/super solution to Lζ = 0 depending on p for
some ’nice’ function H.

This pde is

Lζ =
2∑

i ,j=1

∂

∂xi
(bijζxj ) = 0

and ζ = log |∇u| is sub/super solution in the p-harmonic setting and
ζ = log f (∇u) in the general setting where bij is the usual coefficients in the
p-Laplace equation in the p-harmonic setting and fηiηj in the general setting.

If one can come with such L for A−harmonic PDEs then this tool can be
used to study Hausdorff dimension of A−harmonic measure in the simply
connected domain in the plane.



The machinery we use here requires to find a pde Lζ = 0 in divergence form
such that

1 ζ = u is solution to Lζ = 0

2 ζ = uxk for k = 1, 2 is solution to Lζ = 0

3 ζ = logH(∇u) is sub/super solution to Lζ = 0 depending on p for
some ’nice’ function H.

This pde is

Lζ =
2∑

i ,j=1

∂

∂xi
(bijζxj ) = 0

and ζ = log |∇u| is sub/super solution in the p-harmonic setting and
ζ = log f (∇u) in the general setting where bij is the usual coefficients in the
p-Laplace equation in the p-harmonic setting and fηiηj in the general setting.

If one can come with such L for A−harmonic PDEs then this tool can be
used to study Hausdorff dimension of A−harmonic measure in the simply
connected domain in the plane.



The machinery we use here requires to find a pde Lζ = 0 in divergence form
such that

1 ζ = u is solution to Lζ = 0

2 ζ = uxk for k = 1, 2 is solution to Lζ = 0

3 ζ = logH(∇u) is sub/super solution to Lζ = 0 depending on p for
some ’nice’ function H.

This pde is

Lζ =
2∑

i ,j=1

∂

∂xi
(bijζxj ) = 0

and ζ = log |∇u| is sub/super solution in the p-harmonic setting and
ζ = log f (∇u) in the general setting where bij is the usual coefficients in the
p-Laplace equation in the p-harmonic setting and fηiηj in the general setting.

If one can come with such L for A−harmonic PDEs then this tool can be
used to study Hausdorff dimension of A−harmonic measure in the simply
connected domain in the plane.



Part II - Dimension of µf in space
Let p be fixed and 1 < p <∞ and let f be a function with following
properties;

(a) f : Rn → (0,∞) is homogeneous of degree p.

That is, f (η) = |η|pf (
η

|η|
) > 0 when η ∈ Rn \ {0}.

(b) f is uniformly convex in B(0, 1) \ B(0, 1/2).

That is, Df is Lipschitz and ∃c ≥ 1 such that for a.e. η ∈ Rn,

1

2
< |η| < 1 and all ξ ∈ Rn we have c−1|ξ|2 ≤

n∑
j ,k=1

∂2f

∂ηjηk
(η)ξjξk ≤ c |ξ|2.
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Let O ⊂ Rn be an open set. Let ẑ ∈ ∂O and ρ > 0. Let u > 0 be a weak
solution in O ∩ B(ẑ , ρ) to

4f u :=
n∑

k=1

∂

∂xk

(
∂f

∂ηk
(∇u)

)
=

n∑
j ,k=1

fηkηj (∇u)uxjxk = 0.

Assume also that u has zero continuous boundary values on ∂O ∩ B(ẑ , ρ).
Extend u to all B(ẑ , ρ) by setting u ≡ 0 in B(ẑ , ρ) \ O in the Sobolev sense.
There is finite, positive, Borel measure µf (associated with u) with support
on ∂O ∩ B(ẑ , ρ) satisfying∫

〈Df (∇u),∇φ〉dx = −
∫
φ dµf whenever φ ∈ C∞0 (B(ẑ , ρ)).

When everything is smooth enough we have

dµf = p
f (∇u)

|∇u|
dHn−1|∂O∩B(ẑ,ρ).
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on ∂O ∩ B(ẑ , ρ) satisfying∫

〈Df (∇u),∇φ〉dx = −
∫
φ dµf whenever φ ∈ C∞0 (B(ẑ , ρ)).
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fηkηj (∇u)uxjxk = 0.

Assume also that u has zero continuous boundary values on ∂O ∩ B(ẑ , ρ).
Extend u to all B(ẑ , ρ) by setting u ≡ 0 in B(ẑ , ρ) \ O in the Sobolev sense.
There is finite, positive, Borel measure µf (associated with u) with support
on ∂O ∩ B(ẑ , ρ) satisfying∫

〈Df (∇u),∇φ〉dx = −
∫
φ dµf whenever φ ∈ C∞0 (B(ẑ , ρ)).

When everything is smooth enough we have

dµf = p
f (∇u)

|∇u|
dHn−1|∂O∩B(ẑ,ρ).



ẑ
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ẑ

ρ

4f u = 0

u=0 u=0

u=0
u=0

u=0 u > 0u=0



ẑ
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Results of interest in space for harmonic measure, ω
When f (η) = |η|2, i.e., µf is the usual Harmonic measure, ω, associated
with u.

Theorem (Jones and Wolff in [JW])

H− dim ω ≤ 1 whenever Ω ⊂ R2 and ω exists.

Theorem (Wolff in [W93])

ω lives on a set of σ−finite H1 measure whenever Ω ⊂ R2 and ω exists.

[JW]: Peter W. Jones and Thomas Wolff. Hausdorff dimension of harmonic measures
in the plane. Acta Math., 161(1-2):131144, 1988.

[W93]: Thomas Wolff. Plane harmonic measures live on sets of -finite length. Ark.
Mat., 31(1):137-172, 1993.
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Theorem (Bourgain in [B])

H− dim ω ≤ n − τ whenever Ω ⊂ Rn where τ = τ(n) > 0.

Theorem (Wolff in [W95])

There exists a Wolff snowflake in R3 for which H− dim ω < 2, and there is
another one for which H− dim ω > 2.

[B]: Jean Bourgain. On the Hausdorff dimension of harmonic measure in higher
dimension. Inv. Math., 87:477-483, 1987.

[W95]: Thomas Wolff, Counterexamples with harmonic gradients in R3, In Essays on
Fourier analysis in honor of Elias M. Stein, 42:321-384, 1995.
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Results of interest in space for p-harmonic measure
When f (η) = |η|p, i.e., µf is the usual p-harmonic measure, µf associated
with a p-harmonic function u.

Theorem (Lewis, Nyström, and Vogel in[LNV])

• µp is concentrated on a set of σ−finite Hn−1 measure when ∂Ω is
sufficiently “flat” and p ≥ n.

• All examples produced by Wolff snowflake has H− dim µp < n − 1
when p ≥ n.

• There is a Wolff snowflake for which H− dim µp > n − 1 when p > 2,
near enough 2

[LNV]: John Lewis, Kaj Nyström, and Andrew Vogel. p-harmonic measure in space.
JEMS, To appear.
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We improve this result by proving

Theorem (Akman, Lewis, and Vogel in [ALV])

Let O ⊂ Rn be an open set and ẑ ∈ ∂O, ρ > 0. Let u > 0 be p-harmonic in
O ∩ B(ẑ , ρ) with continuous zero boundary values on ∂O ∩ B(ẑ , ρ), and µp
be the p-harmonic measure associated with u.

If p > n then µp is concentrated on a set of σ−finite Hn−1 measure,
Same result holds when p = n provided that ∂O ∩ B(ẑ , ρ) is locally
uniformly fat in the sense of n−capacity.

Therefore H− dim µp ≤ n − 1 when p ≥ n.

Observe that this Theorem is the natural extension of the result of Wolff to
Rn (and Jones and Wolff’s result).

[ALV]: Murat Akman, John Lewis, and Andrew Vogel, Hausdorff dimension and
σfiniteness of pharmonic measures in space when p ≥ n. arXiv:1306.5617, submitted.
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be the p-harmonic measure associated with u.

If p > n then µp is concentrated on a set of σ−finite Hn−1 measure,
Same result holds when p = n provided that ∂O ∩ B(ẑ , ρ) is locally
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Following similar arguments from our previous result we show that

Theorem (Akman, Lewis, and Vogel in [ALV14])

Let O ⊂ Rn be an open set and ẑ ∈ ∂O, ρ > 0. Let f be as above. Let
u > 0 be a weak solution to 4f u = 0 in O ∩ B(ẑ , ρ) with continuous zero
boundary values on ∂O ∩ B(ẑ , ρ), and µf be the measure associated with u.

If p > n then µf is concentrated on a set of σ−finite Hn−1 measure,
Same result holds when p = n provided that ∂O ∩ B(ẑ , ρ) is locally
uniformly fat in the sense of n−capacity.

Therefore H− dim µf ≤ n − 1 when p ≥ n.

[ALV14]: Murat Akman, John Lewis, and Andrew Vogel, σ−finiteness of a certain
measure arising from a positive weak solution to a quasilinear elliptic PDE in space. in
preparation.



An example of domain in Rn for which H− dim µf < n − 1
When f (η) = |η|2, i.e., µf = ω then there is an unpublished result;

Theorem (Jones and Wolff in [GM, Chapter IX])

Let Ω = C ∪ {∞} \ C where C is a certain compact set. Then
H− dim ω < 1.

We try to generalize this result to our measure, µf , in Rn for p ≥ n ≥ 2.

Let S ′ be the square with side length 1/2 and center 0 in R2. Let C0 = S ′.

Let Q11, . . . ,Q14 be the squares of the four corners of C0 of side length a1,

0 < α < a1 < β < 1/4, and let C1 =
4⋃

i=1
Q1i .

Let {Q2j}, j = 1, . . . , 16 be the square of corners of each Q1i , i = 1, . . . , 4

of side length a1a2, α < a2 < β. Let C2 =
16⋃
j=1

Q2j .

[GM]: John B. Garnett and Donald E. Marshall, Harmonic Measure, volume 2 of New
Mathematical Monographs. Cambridge University Press, Cambridge, 2008.
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S ′

C0 C1 C2

Continuing recursively, at the mth step we get 4m squares Qmj , 1 ≤ j ≤ 4m

of side length a1a2 . . . am, α < am < β and let Cm =
4m⋃
j=1

Qmj .

Then C is obtained as the limit in the Hausdorff metric of Cm as m→∞
Following Jones and Wolff arguments and using sub solution estimates we
show that

Theorem (Akman, Lewis, and Vogel in [ALV14])

Let S = 2S ′ ⊂ Rn and let u be a positive weak solution to 4f u = 0 in S \ C
with boundary values u = 1 on ∂S and u = 0 on C. Let µf be the
associated measure to u.
Then H− dim µf < n − 1 when p ≥ n.
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