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Let Q C R? be a bounded domain and let N be a neighborhood of 9.

Fix p, 1 < p < oo and suppose that v is in QN N. That is,
ue WhHP(Q N N) and

/<|vu|P—2vu, V) dx = 0 for all ¢ € WEP(QN N).

Assume that u > 0in QN N and v =0 on 0 in the Sobolev sense.
Set u=0in N\ Q. Then u € WHP(N).

It is well know from [HKM, Chapter 21] that there is a finite, positive, Borel
measure fi, associated with u satisfying

/<|Vu|p 2Vu, Vi) d /¢ dpp for all nonnegative ¢ € Cg°(N).

tp has support on 92 and is called
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Set p)(E) := 1?52 A(r). Then H(E) := lim ¢} ().

When A(r) = r® we write H® for H*. Define the Hausdorff dimension of a
Borel measure v by

H — dim v := inf{a'| 3 a Borel set E C 9Q; HY(E) =0, v(R?\ E) = 0}.

i.e.,

When everything is smooth,

dup = [VulP~t dH e
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A measure p is said to be with respect to another
measure v if for every Borel set E C 09 with v(E) = 0 then we have
p(E) = 0. In this case we use the following notation

n L.
A measure p is called with respect to another measure v if there is
a Borel set E C 9Q with ¥(E) =0 and (9 \ E) = 0. In this case we use
the following notation

wl v
A set E is said to have v measure if

oo
E=JE
i=1

with v(Ej) < oo fori=1,...,00.
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Theorem (Lewis, Nystrom, and Poggi-Corradini in [LNP])
Let Q C R? be a bounded simply connected domain and let

a) up<<7-L5‘ when 1 < p < 2 for some A = A(p) > 1.

b) p is concentrated on a set of o—finite HA when 2 < p < oo for some
A=A(p) < -1.
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setting;
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Let

M(r) := r exp{A/log1/rlogloglog1/r}
and let Q C R? is a bounded simply connected domain.

a) If1 < p <2, then pu, < H* for A= A(p) sufficiently large.
b) If2 < p < 0o, then p, is concentrated on a set of o—finite H!.

Combining results of Makarov and Lewis we see

>1 whenl<p<2,
H —dim pp =1 when p=2,
<1 when 2 < p < 0.

[L]: John Lewis. p-harmonic measure in simply connected domains revisited. Tran. of
the AMS, electronically published on November 6, 2014.
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In fact, in my thesis, it is assumed that f has the properties (a) and that Vf
is d—monotone which turned out to be equivalent to (b) with (a).
Examples for such f;

o f(n)=|nlP for1 < p < 0.

o f(n) = [n|P(1+ eni/|n|) for small € > 0.
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Let Q C R? be a bounded simply connected domain and N be a
neighborhood of 9. Let f be as above.

Let v >0 be a of
/ f(Vv)dx

QNN

where v is in a certain subclass of the Sobolev space WP, Then u > 0 is a
weak solution to the in 2N N;

2
Ayti= Z 3Xk (877k ) = Z £'7k77j(vu)uxjxk =0.

Jk=1
Assume that u has zero continuous boundary values on 9€2. Extend u to all
N by setting u =0 in N\ Q in the Sobolev sense.

\ u=0
AY
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There is a finite, positive, Borel measure s with support on 02 satisfying
/(Df(Vu) V)dx /gbduf whenever ¢ € C5°(N) and ¢ > 0

where Df = (f,,,(Vu), f,,(Vu)).

e f(n) = |n|?> — Laplace equation, Au = 0.
e f(n)=|n|P, 1 < p < oo — p-Laplace equation, div(|Vu|P~2Vu) = 0.
If 02 and Vu are smooth enough then

Vu
[Vl

/(Df(Vu) Vo)d /¢ (DFf(Vu), ydH?

i

Therefore when 9Q and Vu are smooth enough,

\VUI

f(Vu)

_ dHl
V] O lon

dps =



Theorem (Akman in [A14])

Let and Q C R? be a bounded simply
connected domain and N be a neighborhood of 0S2. Let f be as above and
let u > 0 be a weak solution to Afu =0 in QN N with continuous zero
boundary values on 0S2. Let jr be the measure associated with u.

a) If1 < p <2, there exists A= A(p, f) > 1 such that uf < HA.
b) If2 < p < oo, there exists A= A(p, f) < —1 such that pr is
concentrated on a set of o—finite H.

[A14]: M. Akman, On the dimension of a certain measure in the plane, Ann. Acad.
Sci. Fenn. Math., 39(2014), 187-209.
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Theorem (Akman in [A14])

Let and Q C R? be a bounded simply
connected domain and N be a neighborhood of 0S2. Let f be as above and
let u > 0 be a weak solution to Afu =0 in QN N with continuous zero
boundary values on 0S2. Let jsr be the measure associated with u.

a) If1 < p <2, there exists A= A(p, f) > 1 such that uf < HA.
b) If2 < p < oo, there exists A= A(p, f) < —1 such that pr is

concentrated on a set of o—finite H.

>1 whenl<p<2,
Therefore H —dim ur < =1 when p=2,
<1 when2< p< 0.

This result is analogue of Lewis, Nystrom, and Poggi-Corradini’s result under
this generalized setting. It is weaker than Makarov's result when p = 2 and
Lewis's result for other p because of .

[A14]: M. Akman, On the dimension of a certain measure in the plane, Ann. Acad.
Sci. Fenn. Math., 39(2014), 187-209.
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i is called capacitary function for D if i is positive weak solution to
Afii =0 in D with continuous boundary values i = 1 on
aB(Zo, C/(Zo,aQ)/Q) and 4 =0 on 0S2.

0d=0
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Let Q C R? be a bounded simply connected domain. Let u > 0 be a weak
solution to Aru=0in QN N. Let ur be the measure associated with u.
Let d be a function for D = Q\ B(zy, d(z,052)/2) for some fixed
z0 € Q and let

Then pr < fif < pif.

1 i, is a
2 0, #0in D.
3 { satisfies the so called

—u(z) ~ |Vi(z)| for all z near 0.

d(z,00)
4 ( =10, ¢ =y, k=1,2, are solution to L{ = 0. Moreover, log f(V i)
is a super solution when 1 < p < 2, a when , and a sub
solution when 2 < p < oo to L where

2

L¢:= Z (f"7i"7j <Xj)xi'

ij=1



Define
max(v(z),0) whenl<p<?2
max(—v(z),0) when 2 < p < o0

where v = log f(V ).



Define
w(z) = max(v(z),0) whenl<p<?2
max(—v(z),0) when 2 < p < o0

where v = log f(V ).

Using the fundamental inequality, sub/super solution estimates, and an
induction argument, we get

Lemma

Let m be a nonnegative integer. Then there exists c. = c.(f,p) > 1 such
that for 0 < t < 1/2,

F(Va) 1
2m 1 < m+1 | - m‘
/ w v dH* < " m![log t]
{zeD: a(z)=t}

Then the result follows from this Lemma and measure theoretic arguments.
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Aim is to show that our result holds if we replace " by

For a given t € (0, 1], let /if denote the measure associated with d — t as

As 09Q)(t) is a smooth curve we then have

_ f(va)
~ Pv

dH |oq(e)-
Moreover,

AE(OQ(E)) = p /

a(t)

f(Va)
IVl

dH! = ¢ > 0 and € independent of t € (0, 1].
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8(r€)] .

lim sup
r—1 \/Iog % log log log ﬁ

holds almost every ¢ € OD where g = log(¢').



When f(n) = |n|?, i.e., under the , Makarov proved that if
¢ : D — Q is a conformal mapping then

8(r€)] .

lim sup
r—1 \/Iog ﬁ log log log ﬁ

holds almost every ¢ € OD where g = log(¢').

When f(n) = |n|P, i.e., under the , Lewis proved that

lim sup w(o(2,1- 1))

<c=c(p)
t—0 \/Iog% log log log 1

for almost every z € 0S)(ty) with respect to a certain measure where
w = max(log |Vu| — ¢,0) and o(2,-) is trajectories orthogonal to the levels
of u with o(2,1 —t) - 0Q ast — 0.
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and is unique up to a constant.



As

2 2
Al = Z(fm(vm)xj‘ = Z fnjnk(va)ﬁkaj =0.
j=1 j k=1

If we set

Vi = —fnZ(Vﬁ) and vy, = fm(Vﬁ)

Then the above differential equation is exact and therefore v exists locally
and is unique up to a constant.

We can also show that v is a solution to the following quasilinear elliptic
equation

2
Apv =Y frn (Vi)vyy =0
jik=1

As fn; are bounded and uniformly elliptic then v; is also K-quasiregular and
vz # 0 in D and also the fundamental inequality holds for v.



© 0+ivis a K'—quasiregular mapping.

[A]: Lars V. Ahlfors. Complex analysis. McGraw-Hill Book Co., New York, third
edition, 1978.
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edition, 1978.
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© 0+ivis a K'—quasiregular mapping.
2 The mapping z = x + iy — 0 + iv has Jacobian p f(Vi)(z) > 0.

Let

Fz) = exp{%” (0(2) - iv(2))}.

Using Stailov factorization theorem for i + iv and following [A]; F can be
uniquely extended to D to get a sense preserving mapping from D — D.
Moreover, it can be shown that F is

N\

F:D—D

5 ru o/
D=0\ B01) D=A{w: 1< |w|<e }

[A]: Lars V. Ahlfors. Complex analysis. McGraw-Hill Book Co., New York, third
edition, 1978.
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Define o(2,) := F~Y(I(F(2),-)). Then v is constant on o(2,-).



Existence of the curve o(2,t) can also follow from the solution of ordinary
differential equation;

do(2,t) _ —DFf(Va)(o(2,1)) _< fn (V8)(0(2,1)) —fn(VO)(0(2, t)))'
dt pf(Va)(o(2, 1)) pf(Vi)(a(2,1)) * pf(Vi)(o(2,1))

Existence and uniqueness follows from assumptions on f and Vi # 0.
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Existence of the curve o(2,t) can also follow from the solution of ordinary
differential equation;

do(2,t) _ —DFf(Va)(o(2,1)) _< fn (V8)(0(2,1)) —fn(VO)(0(2, t)))
dt pf(Va)(o(2, 1)) pf(Va)(o(2,t)) * pf(Vi)(o(2,1) )

Existence and uniqueness follows from assumptions on f and Vi # 0.

1 0 is strictly decreasing along o as

d0((2,)  or e o do(2,2),
T = <VU(O’(Z, t)), T> = —1.

where we have used the p-homogeneity of f.
2 We also observe that v is constant along o(2,t) as

dv(o(2,t)) . do(2,t),
T = <VV(U(Z, t)), T> = 0.



Following Lewis's work we can show that
51
lim sup w(o(2, 2)
t-0 +/log(1/t) logloglog(1/t)

holds /i for almost every 2, € 9(to) where w(z) = max(log f(Vi) — c,0)
for z € D and c is chosen so that w = 0 in B(0,2) \ B(0,1).

< &= ¢&(p, ).
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Following Lewis's work we can show that

_ w(o(2,1—t))
lim sup
t-0 +/log(1/t) logloglog(1/t)
holds /i for almost every 2, € 9(to) where w(z) = max(log f(Vi) — c,0)

for z € D and c is chosen so that w = 0 in B(0,2) \ B(0,1).
Define

< &= ¢&(p, ).

Plausible Theorem
There exists A= A(p, f) > 1 such that jir < H* for1 < p < 2.
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some 'nice’ function H.
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0
L= o (biGx) =0
ij=1_""
and ¢ = log |Vu| is sub/super solution in the p-harmonic setting and
¢ = log f(Vu) in the general setting where bj; is the usual coefficients in the
p-Laplace equation in the p-harmonic setting and f,;,. in the general setting.



The machinery we use here requires to find a pde £{ = 0 in divergence form
such that
» ( = uis solution to L{ =0
2 ¢ = uy, for k =1,2 is solution to £{ =0
3 ¢ = log H(Vu) is sub/super solution to £{ = 0 depending on p for
some 'nice’ function H.

This pde is
2

0

LE = Z &(b:j(xj-) =0
ij=1"""1

and ¢ = log |Vu| is sub/super solution in the p-harmonic setting and

¢ = log f(Vu) in the general setting where bj; is the usual coefficients in the

p-Laplace equation in the p-harmonic setting and f,;,. in the general setting.

If one can come with such £ for A—harmonic PDEs then this tool can be
used to study Hausdorff dimension of . A—harmonic measure in the simply
connected domain in the plane.
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Part Il - Dimension of ¢ in space
Let p be fixed and 1 < p < oo and let f be a function with following
properties;

(a) f:R" — (0,00) is homogeneous of degree p.

(b) f is uniformly convex in B(0,1) \ B(0,1/2).
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Let O C R" be an open set. Let 2 € 90 and p > 0. Let u > 0 be a weak
solution in O N B(2, p) to

n

Art= Z 8Xk (87]k Vu)) Z ﬂ]knj(vu)quXk =0.

j,k=1

Assume also that u has zero continuous boundary values on 90 N B(2, p).
Extend u to all B(Z, p) by setting u =0 in B(Z,p) \ O in the Sobolev sense.
There is finite, positive, Borel measure s (associated with u) with support
on 00 N B(z, p) satisfying

/(Df(Vu),Vd))dx = —/</>de whenever ¢ € C5°(B(2, p)).

When everything is smooth enough we have

f(Vu _
dpr =p |(Vu|) A1 oonB(2.0)-



















When f(n) = |n|?, i.e., ur is the usual Harmonic measure, w, associated
with u.

[JW]: Peter W. Jones and Thomas Wolff. Hausdorff dimension of harmonic measures
in the plane. Acta Math., 161(1-2):131144, 1988.

[W93]: Thomas Wolff. Plane harmonic measures live on sets of -finite length. Ark.
Mat., 31(1):137-172, 1993.



When f(n) = |n|?, i.e., ur is the usual Harmonic measure, w, associated
with u.

Theorem (Jones and Wolff in [JW])

H — dimw < 1 whenever Q C R? and w exists.

[JW]: Peter W. Jones and Thomas Wolff. Hausdorff dimension of harmonic measures
in the plane. Acta Math., 161(1-2):131144, 1988.

[W93]: Thomas Wolff. Plane harmonic measures live on sets of -finite length. Ark.
Mat., 31(1):137-172, 1993.



When f(n) = |n|?, i.e., ur is the usual Harmonic measure, w, associated
with u.

Theorem (Jones and Wolff in [JW])

H — dimw < 1 whenever Q C R? and w exists.

Theorem (Wolff in [W93])

w lives on a set of o—finite H! measure whenever Q C R? and w exists.

[JW]: Peter W. Jones and Thomas Wolff. Hausdorff dimension of harmonic measures
in the plane. Acta Math., 161(1-2):131144, 1988.

[W93]: Thomas Wolff. Plane harmonic measures live on sets of -finite length. Ark.
Mat., 31(1):137-172, 1993.



Theorem (Bourgain in [B])
H — dimw < n— 7 whenever Q C R" where 7 = 7(n) > 0.

[B]: Jean Bourgain. On the Hausdorff dimension of harmonic measure in higher
dimension. Inv. Math., 87:477-483, 1987.

[WO5]: Thomas Wolff, Counterexamples with harmonic gradients in R3, In Essays on
Fourier analysis in honor of Elias M. Stein, 42:321-384, 1995.



Theorem (Bourgain in [B])
H — dimw < n— 7 whenever Q C R" where 7 = 7(n) > 0.

Theorem (Wolff in [W95])

There exists a Wolff snowflake in R3 for which H — dim w < 2, and there is
another one for which H — dim w > 2.

[B]: Jean Bourgain. On the Hausdorff dimension of harmonic measure in higher
dimension. Inv. Math., 87:477-483, 1987.

[WO5]: Thomas Wolff, Counterexamples with harmonic gradients in R3, In Essays on
Fourier analysis in honor of Elias M. Stein, 42:321-384, 1995.



When f(n) = |n|P, i.e., ur is the usual p-harmonic measure, pf associated
with a p-harmonic function u.

[LNV]: John Lewis, Kaj Nystrom, and Andrew Vogel. p-harmonic measure in space.
JEMS, To appear.



When f(n) = |n|P, i.e., ur is the usual p-harmonic measure, pf associated
with a p-harmonic function u.

Theorem (Lewis, Nystrom, and Vogel in[LNV])

e 1, is concentrated on a set of o—finite H"~1 measure when 0 is
sufficiently “flat” and p > n.

o All examples produced by Wolff snowflake has H — dim pp, < n—1
when p > n.

e There is a Wolff snowflake for which H — dim pip, > n—1 when p > 2,
near enough 2

[LNV]: John Lewis, Kaj Nystrom, and Andrew Vogel. p-harmonic measure in space.
JEMS, To appear.



We improve this result by proving

Theorem (Akman, Lewis, and Vogel in [ALV])

Let O C R" be an open set and z € 00, p > 0. Let u > 0 be p-harmonic in
O N B(2, p) with continuous zero boundary values on 00 N B(2, p), and yp
be the p-harmonic measure associated with u.

If p > n then i, is concentrated on a set of o—finite H"1 measure,
Same result holds when p = n provided that 00 N B(2, p) is locally
uniformly fat in the sense of n—capacity.

[ALV]: Murat Akman, John Lewis, and Andrew Vogel, Hausdorff dimension and
ofiniteness of pharmonic measures in space when p > n. arXiv:1306.5617, submitted.
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We improve this result by proving

Theorem (Akman, Lewis, and Vogel in [ALV])

Let O C R" be an open set and z € 00, p > 0. Let u > 0 be p-harmonic in
O N B(2, p) with continuous zero boundary values on 00 N B(2, p), and yp
be the p-harmonic measure associated with u.

If p > n then i, is concentrated on a set of o—finite H"1 measure,
Same result holds when p = n provided that 00 N B(2, p) is locally
uniformly fat in the sense of n—capacity.

Therefore H — dim pup, < n—1 when p > n.

Observe that this Theorem is the natural extension of the result of Wolff to
R” (and Jones and Wolff's result).

[ALV]: Murat Akman, John Lewis, and Andrew Vogel, Hausdorff dimension and
ofiniteness of pharmonic measures in space when p > n. arXiv:1306.5617, submitted.



Following similar arguments from our previous result we show that

Theorem (Akman, Lewis, and Vogel in [ALV14])

Let O C R" be an open set and z € 00, p > 0. Let f be as above. Let
u > 0 be a weak solution to Afu =0 in O N B(2, p) with continuous zero
boundary values on 00 N B(2, p), and ¢ be the measure associated with u.

If p > n then uf is concentrated on a set of o—finite H"~' measure,
Same result holds when p = n provided that 00 N B(Z, p) is locally
uniformly fat in the sense of n—capacity.

Therefore H — dim s < n—1 when p > n.

[ALV14]: Murat Akman, John Lewis, and Andrew Vogel, o—finiteness of a certain
measure arising from a positive weak solution to a quasilinear elliptic PDE in space. in
preparation.
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When f(n) = |n|?, i.e., ur = w then there is an unpublished result;

Theorem (Jones and Wolff in [GM, Chapter IX])

Let Q = CU{oo} \ C where C is a certain compact set. Then
H—-—dmw < 1.

We try to generalize this result to our measure, uf, in R" forp > n > 2.
Let S' be the square with side length 1/2 and center 0 in R?. Let Co = S'.
Let Q11,..., Q14 be the squares of the four corners of Cy of side length a1,

4
O<a<a;<fB<1/4 andlet C; = |J Q.
i=1

Let {@}, j=1,...,16 be the square of corners of each Qqj, i =1,...,4

16
of side length aia>, o < ax < 3. Let Co = |J Qo).
j=1

[GM]: John B. Garnett and Donald E. Marshall, Harmonic Measure, volume 2 of New
Mathematical Monographs. Cambridge University Press, Cambridge, 2008.
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[] [] oo oo
Co C1 Ca

Continuing recursively, at the mth step we get 4 squares Q,;, 1 < j < 47

4m
of side length aja>...am, o < am < B and let Cp, = |J Qm;.

Jj=1
Then C is obtained as the limit in the Hausdorff metric of C,, as m — oo
Following Jones and Wolff arguments and using sub solution estimates we

show that

Theorem (Akman, Lewis, and Vogel in [ALV14])

Let S = 25" C R" and let u be a positive weak solution to Afu=0in S\ C
with boundary values u =1 on 0S and u =0 on C. Let s be the
associated measure to u.

Then H — dim pus < n—1 when p > n.
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