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Intro 1, this is joint work

Title of Paper on ArXiv:
The Brunn-Minkowski inequality and a Minkowski problem for
nonlinear capacity.
with Murat Akman, Jasun Gong, Jay Hineman, John Lewis

Abstract of Talk: We focus on the Minkowski problem in Rn
for classes of equations similar to and including the p-Laplace
equations for 1 < p < n. The minimization problem that leads
to the solution will be described along with a discussion of why
the minimizing set has nonempty interior for the full range
1 < p < n. We may briefly discuss the Brunn-Minkowski
inequality which leads to uniqueness arguments for the
Minkowski problem, and is helpful in deriving the Hadamard
Variational formula.



Intro 2, credits

Much of this talk is inspired by Jerison’s paper
A Minkowski problem for electrostatic capacity in Acta Math.
This is the p = 2 case.
and by
The Hadamard variational formula and the Minkowski problem
for p-capacity by Colesanti, Nyström, Salani, Xiao, Yang,
Zhang in Advances in Mathematics
This is the 1 < p < 2 case.

The Brunn-Minkowski part is inspired by Colesanti, Salani
The Brunn-Minkowski inequality for p-capacity of convex
bodies. in Math. Ann.

See Jasun Gong’s talk for that! Special Session on Analysis and
Geometry in Non-smooth Spaces, IV at 3:00pm



Intro 3, credits

Lewis and Nyström have several papers concerning the
boundary behavior of p-harmonic functions, some of those
results needed extensions to this setting. In addition they have
recent work on the behavior on lower dimensional sets
k < n− 1, which we also need.

Regularity and free boundary regularity for the p-Laplace
operator in Reifenberg flat and Ahlfors regular domains. J.
Amer. Math. Soc.

Quasi-linear PDEs and low-dimensional sets. to appear JEMS

Venouziou and Verchota, have a result that we extend and use
to get nonempty interiors in the k = n− 1 dimensional case.
The mixed problem for harmonic functions in polyhedra of R3.

For even more, see John Lewis’s talk, here, next!!



Nonlinear Capacity 1 < p < n
We are thinking of Rn with 1 < p < n and a p homogeneous
function

f(tη) = tpf(η) for all η ∈ Rn \ {0} and t > 0

For example, the p-Laplacian comes from,

f(η) =
1

p
|η|p so Df(η) = |η|p−2η

and for a function u(x), x ∈ Rn

div(Df(∇u)) = ∇ · |∇u|p−2∇u

More generally f could be convex but not rotationally invariant

f(η) = (1 +
εη1

|η|
)|η|p



Nonlinear capacity, conditions on A = Df

In general we have A(η) = Df(η) mapping Rn \ {0} → Rn with
continuous first partials satisfying for some 1 < p < n and some
α ≥ 1

α−1|η|p−2||ξ|2 ≤
n∑

i,j=1

∂Ai(η)

∂ηj
ξiξj ≤ α|η|p−2|ξ|2

and
A(η) = |η|p−1A(η/|η|)

For uniqueness in BM and so uniqueness in M we need

|∂Ai(η)

∂ηj
− ∂Ai(η′)

∂ηj
| ≤ Λ|η − η′||η|p−3

For some Λ ≥ 1, 1 ≤ i, j ≤ n, 0 < 1
2 |η| ≤ |η

′| ≤ 2|η|.



Nonlinear capacity see Heinonen Kilpeläinen Martio
Nonlinear Potential Theory of Degenerate Elliptic Equations

For E a convex, compact subset of Rn, let Ω = Ec then

CapA(E) = inf
ψ∈C∞0
ψ|E ≥1

∫
Rn

f(∇ψ)dx

For f(η) = 1
p |η|

p this is the p-capacity, Capp. From our
assumptions on A

Capp(E) ≈ CapA(E)

where the constant of equivalence depends only on p, n, α.
For CapA(E) > 0 (equivalently Hn−p(E) =∞ ) there is a
unique continuous u attaining the inf, 0 < u ≤ 1 on Rn, u is
A-harmonic in Ω, u = 1 on E,..., u is the A-capacitary function
of E.



Nonlinear capacity, tricks!

For the A-capacitary function u of E it’s important to consider
the function 1− u, this function is positive in Ω and 0 on ∂Ω
but it is not in general an A-harmonic function. Luckily, it is
Ã(η) = −A(−η)-harmonic, and Ã satisfies the same condtions
as A with the same constants.

If Ê = ρE + z, a scaled and translated E, then
û(x) = u((x− z)/ρ) is the A-capacitary function of Ê and
CapA(Ê) = ρn−pCapA(E)
What about rotations? See the trick above!

For E convex, compact, subset of Rn the dimension of E (at
every point of E) is some integer k, then Hk(E) <∞.
• for CapA(E) > 0 we need Hn−p(E) =∞ and therefore
n− p < k, or n− k < p < n.



Hadamard variational formula

For convex compact sets E1, E2 with 0 ∈ E1, (not necessarily
0 ∈ E◦1) and 0 ∈ E◦2 , and t ≥ 0 we have

d

dt
CapA(E1 + tE2)

∣∣∣∣
t=t2

=

(p− 1)

∫
∂(E1+t2E2)

h2(g(x))f(∇u(x))dHn−1

h2 is the support function of E2, g is the Gauss map of
E1 + t2E2 and u is the A-capacitary function of E1 + t2E2.
Here we are varying off the base configuration E1 + t2E2 by
(t− t2)E2.
And we use the Brunn-Minkowski inequality in this proof! It

says that Cap
1/(n−p)
A (E1 + tE2) is concave in t.



Polyhedron, Gauss map, support function.

Gauss map: 2 red faces (right, left) and 3 blue faces (front,
bottom = F1, back) for x ∈ F1, g(x) = −e3, g−1(−e3) = F1.
Support function: for x ∈ bottom face, h(g(x)) is the distance
of the face to the origin, the length of the vertical thick blue
segment.
Next Slide: Move the 3 blue faces to the origin, the solid blue
segments shrink to zero, call this E1. Make all the solid
segments the same length, call this E2.



Polyhedron example E1, E2 and E1 + t2E2

• E2 has five unit normals ξ1, . . . , ξ5 all with h2(ξk) = a
On the faces Fi, i = 1, . . . , 5 of E1 + t2E2 the integral above is

(p− 1)

5∑
i=1

a

∫
Fi

f(∇u(x))dHn−1

u is the A-capacitary function.



Does f(∇u(x)) make sense in the boundary integral?

Use the 1− u trick above, this is positive, 0 on the boundary
has an associated measure...
In the harmonic case, p = 2,

∫
∂Ω |∇u|dH

n−1 gives a ”harmonic
measure at infinity” = Capacity of E and by results of Dahlberg∫

∂Ω
|∇u|2dHn−1 ≤ c

(∫
∂Ω
|∇u|dHn−1

)2

in the p-harmonic setting this becomes∫
∂Ω
|∇u|pdHn−1 ≤ c

(∫
∂Ω
|∇u|p−1dHn−1

) p
p−1

where the constant depends on the Lipschitz nature, meaning
the Lipschitz constant and the number of balls used.
• As n-d polyhedron shrink to (k < n)-d polyhedron keeping
the Lipschitz constant fixed, the number of balls →∞ and c
blows up.



Hadamard- capacity formula

In case E1 = E2 = E0 and t = 0 this says

d

dt
CapA(E0 + tE0)

∣∣∣∣
t=0

= (p− 1)

∫
∂E0

h(g(x))f(∇u(x))dHn−1

Where h, g and u are the support, Gauss, and capacitary
functions for E0.
But the LHS is just

d

dt

∣∣∣∣
t=0

(1 + t)n−pCapA(E0) = (n− p)CapA(E0)

so

CapA(E0) =
p− 1

n− p

∫
∂E0

h(g(x))f(∇u(x))dHn−1



For a polyhedron

For E0 a polyhedron with 0 ∈ E◦0 , with m faces F1, . . ., Fm with
unit outer normals ξ1, . . ., ξm this gives

CapA(E0) =
p− 1

n− p

m∑
i=1

∫
Fi

h(ξi)f(∇u)dHn−1

Now h(ξi) is the distance of support plane with normal ξi to the
origin, that means for x ∈ Fi, h(ξi) = x · ξi = qi

CapA(E0) =
p− 1

n− p

m∑
i=1

qi

∫
Fi

f(∇u)dHn−1

set ci =
∫
Fi
f(∇u)dHn−1 we have

CapA(E0) =
p− 1

n− p

m∑
i=1

qici



Capacity is Translation invariant

Translating E0 by x, then CapA(E0 + x) = CapA(E0) but the
support function of E0 + x is h(ξ) + x · ξ so that

p− 1

n− p

m∑
i=1

qici =
p− 1

n− p

m∑
i=1

(qi + x · ξi)ci

which gives, for all x,

m∑
i=1

(x · ξi)ci = 0

and therefore
m∑
i=1

ξici = 0



The Minkowski problem- discrete case

The setup: Let µ be a finite positive Borel measure on the unit
sphere Sn−1 given by

µ(K) =

m∑
i=1

ciδξi(K) for all Borel K ⊂ Sn−1

where the ci > 0, the ξi are distinct unit vectors, δξi is a unit
mass at ξi.
The Question: Is there a compact, convex, set E0 with
nonempty interior so that

µ(K) =

∫
g−1(K)

f(∇u)dHn−1

where g and u are the Gauss and capacitary functions for E0?



Jerison p = 2

Let n ≥ 3 and f(η) = 1
2 |η|

2, this gives the Laplacian, and so
harmonic functions u, and the usual electrostatic capacity of E.

If µ satisfies (i)
∑m

i=1 ci|θ · ξi| > 0 and (ii)
∑m

i=1 ciξi = 0 then
there is a compact, convex set E with nonempty interior so that

µ(K) =

∫
g−1(K)

|∇u|2dHn−1 for all Borel K ⊂ Sn−1

When n > 4 the set E is unique up to translation, when n = 3
there is a b > 0 so that the equation holds with b on the right
hand side, and then E is unique up to translation and dilation.



Why (i)?
We’ve seen why (ii), how about (i)?
This condition is used to show that for 0 ≤ qi <∞, sets like
E(q) =

⋂m
i=1{x | x · ξi ≤ qi} are bounded.

(ii) says
∫
Sn−1 θ · ξdµ = θ ·

∑m
i=1 ciξi = 0 for all θ ∈ Sn−1

so ∫
Sn−1

(θ · ξ)+dµ =

∫
Sn−1

(θ · ξ)−dµ

(i) says 0 <
∑m

i=1 ci|θ · ξi| =
∫
Sn−1 |θ · ξ|dµ = 2

∫
Sn−1(θ · ξ)+dµ

so ∫
Sn−1

(θ · ξ)+dµ > c0 > 0

For τ ∈ Sn−1 and x = rτ ∈ E(q) , r ≥ 0

rc0 <

∫
Sn−1

(rτ · ξ)+dµ =

m∑
i=1

(rτ · ξi)+ci ≤
m∑
i=1

qici = γ(q)

So that E(q) ⊆ B(0, γ(q)/c0)



Colesanti, Nyström, Salani, Xiao, Yang, Zhang,
1 < p < 2

Let n ≥ 3 and f(η) = 1
p |η|

p, this gives the p-Laplacian, and so
p-harmonic functions u, and the usual p-capacity of E.

If µ satisfies (i)
∑m

i=1 ci|θ · ξi| > 0 and (ii)
∑m

i=1 ciξi = 0 and
(iii) for all ξ ∈ Sn−1 if µ({ξ}) 6= 0 then µ({−ξ}) = 0 then there
is a compact, convex set E with nonempty interior so that

µ(K) =

∫
g−1(K)

|∇u|pdHn−1 for all Borel K ⊂ Sn−1

E is unique up to translation.



The minimization procedure

For qi ≥ 0 let

E(q) =

m⋂
i=1

{x | x · ξi ≤ qi}

Θ ={E(q) | CapA(E(q)) ≥ 1}

γ(q) =

m∑
i=1

qici

γ = inf
E(q)∈Θ

γ(q)

Because of condition (i) the E(q) ∈ Θ are bounded, compact,
convex sets.
There is a sequence qk → q̂ so that E(qk)→ E(q̂) = E1 a
convex, compact set with γ = γ(q̂)
Is E◦1 nonempty? Do we have q̂i > 0 for i = 1, . . . ,m?



Recall the examples

• Imagine the 3 blue faces moving to the origin and giving the
minimizer E1 as the black 1-d segment. The q̂i for the blue
faces are all 0.

• Or imagine that the two red faces are parallel and that they
move to the origin, giving a 2-d set for the minimizer E1. The
q̂i for the red faces are now 0.
• In either case, for appropriate p, CapA(E1) = 1 is possible!



The minimizer E1 has nonempty interior, 1 < p ≤ 2

Given condition (iii) , no antipodal normals
• If E1 is k = n− 1 dimensional then there must of have been
two opposing normals ξi = −ξj , a contradiction.
• If E1 is k ≤ n− 2 dimensional then n− p ≥ n− 2 ≥ k so
Hn−p(E1) <∞ and E1 has 0 A-capacity, a contradiction.

Jerison for p = 2 uses condition (iii), but it is not necessary as
an inradius estimate can be used to get nonempty interior.

Colesanti et al need (iii) in the k = n− 1 case when p 6= 2. And
they need 1 < p ≤ 2 for the k < n− 1 situation.



The minimizer E1 has nonempty interior, 1 < p < n

For k < n− 1, a situation illustrated here

We set E2 =
⋂m
i=1{x | x · ξi ≤ a} and consider E1 + tE2

It turns out that for qi(t) = (q̂i + at)/CapA(Ẽ(t))
γ(q(t)) ≤ k(t) < γ for t > 0 close to zero
This contradicts γ being the minimum, so this situation does
not occur!



The minimizer E1 has nonempty interior, 1 < p < n

Here’s k(t) = CapA(E1 + tE2)−1/(n−p)∑m
i=1 ci(q̂i + at)

taking the derivative we get a term involving the derivative of
the capacity which blows up approaching 0

lim
τ→0

(p− 1)

∫
∂(E1+τE2)

h2(g(x))f(∇u(x))dHn−1 =∞

where g and u are Gauss and capacitary functions of E1 + τE2

This uses LN lower dimensional work

When k = n− 1 we use the VV idea and get similarly that∫
∂E
f(∇u+)dHn−1 =∞

u+ means approaching from one side.



E1 + tE2, k < n− 1

LN (1− U) ≥ ctψ, ψ = p−(n−k)
p−1 , at the 2t points, on a surface

ball ∫
∆t

f(∇U)dHn−1 ≥ c
(

1− U
t

)p
tn−1 ≥ c tp(ψ−1)+n−1

There are about t−k balls, summing over these∑
balls

∫
∆t

f(∇U)dHn−1 ≥ c tp(ψ−1)+n−1−k

arithmetic ∑
balls

∫
∆t

f(∇U)dHn−1 ≥ c t(k−(n−1))/(p−1)

This is a negative exponent, let t→ 0+.



k = n− 1, p-laplace argument

Krol’, (1− U) ≥ cv(x), where the ”radial” part of v is
[(x2

1 + x2
n)1/2]1−1/p, E into Whitney cubes Q, let s = s(Q).∫

Q
|∇U |pdHn−1 ≥ c

(
s1−1/p

s

)p
sn−1 = csn−2

There are about 2l(n−2) cubes of size about 2−l, for l large,
summing over these cubes gives a sum ≥ c. Summing over all l
gives infinity.



k = n− 1, VV

We have B(0, 1), E, Et all in B(0, 1). then

t

∫
E
f(∇GEt) ≥ c((F −GE)(zt)− (F −GB)(zt)) ≥ c

divide by t let t→ 0+.
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