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The electric Schrödinger operator

By an electric Schrödinger operator we mean a second-order linear
operator of the form

L := −divA∇+ V,

where V is a scalar, real-valued, positive a.e., locally integrable
function, and A is a matrix of bounded, measurable complex
coefficients satisfying the uniform ellipticity condition

λ|ξ|2 ≤ <e 〈A(x)ξ, ξ〉 ≡ <e
n∑

i,j=1

Aij(x)ξj ξ̄i and ‖A‖L∞(Rn) ≤ Λ,

(1)
for some λ > 0, Λ <∞ and for all ξ ∈ Cn, x ∈ Rn.
• The exponential decay of solutions to the Schrödinger operator in the
presence of a positive potential is an important property underpinning
foundation of quantum physics.
• However, establishing a precise rate of decay for complicated
potentials is a challenging open problem to this date. (Landis
conjecture)

Authors: Svitlana Mayboroda, Bruno Poggi Exponential decay for fundamental solutions of Schrödinger operators



2

The electric Schrödinger operator

By an electric Schrödinger operator we mean a second-order linear
operator of the form

L := −divA∇+ V,

where V is a scalar, real-valued, positive a.e., locally integrable
function, and A is a matrix of bounded, measurable complex
coefficients satisfying the uniform ellipticity condition

λ|ξ|2 ≤ <e 〈A(x)ξ, ξ〉 ≡ <e
n∑

i,j=1

Aij(x)ξj ξ̄i and ‖A‖L∞(Rn) ≤ Λ,

(1)
for some λ > 0, Λ <∞ and for all ξ ∈ Cn, x ∈ Rn.
• The exponential decay of solutions to the Schrödinger operator in the
presence of a positive potential is an important property underpinning
foundation of quantum physics.
• However, establishing a precise rate of decay for complicated
potentials is a challenging open problem to this date. (Landis
conjecture)

Authors: Svitlana Mayboroda, Bruno Poggi Exponential decay for fundamental solutions of Schrödinger operators



2

The electric Schrödinger operator

By an electric Schrödinger operator we mean a second-order linear
operator of the form

L := −divA∇+ V,

where V is a scalar, real-valued, positive a.e., locally integrable
function, and A is a matrix of bounded, measurable complex
coefficients satisfying the uniform ellipticity condition

λ|ξ|2 ≤ <e 〈A(x)ξ, ξ〉 ≡ <e
n∑

i,j=1

Aij(x)ξj ξ̄i and ‖A‖L∞(Rn) ≤ Λ,

(1)
for some λ > 0, Λ <∞ and for all ξ ∈ Cn, x ∈ Rn.
• The exponential decay of solutions to the Schrödinger operator in the
presence of a positive potential is an important property underpinning
foundation of quantum physics.
• However, establishing a precise rate of decay for complicated
potentials is a challenging open problem to this date. (Landis
conjecture)

Authors: Svitlana Mayboroda, Bruno Poggi Exponential decay for fundamental solutions of Schrödinger operators



3

Exponential Decay of electric Schrödinger operators

• First results expressing upper estimates on the solutions in terms of a
certain distance associated to V go back to Agmon [1], but not sharp.

• For eigenfunctions, the decay is governed by the uncertainty principle -
see ADFJM ‘Localization of eigenfunctions via an effective potential’[2]

• In [9], Shen proved that if V ∈ RHn
2

, then the fundamental solution
Γ to the classical Schrödinger operator −∆ + V satisfies the bounds

c1e
−ε1d(x,y,V )

|x− y|n−2
≤ Γ(x, y) ≤ c2e

−ε2d(x,y,V )

|x− y|n−2
, (2)

where d is a certain distance function depending on V .
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Exponential Decay of electric Schrödinger operators

• A natural question is whether the sharp exponential decay found by
Shen for the fundamental solution to −∆ + V can be extended to the
non self-adjoint setting −div A∇+ V .

• Moreover, we also wondered whether we can obtain exponential decay
results for the fundamental solution to the magnetic Schrödinger
operator.

Authors: Svitlana Mayboroda, Bruno Poggi Exponential decay for fundamental solutions of Schrödinger operators



4

Exponential Decay of electric Schrödinger operators

• A natural question is whether the sharp exponential decay found by
Shen for the fundamental solution to −∆ + V can be extended to the
non self-adjoint setting −div A∇+ V .

• Moreover, we also wondered whether we can obtain exponential decay
results for the fundamental solution to the magnetic Schrödinger
operator.

Authors: Svitlana Mayboroda, Bruno Poggi Exponential decay for fundamental solutions of Schrödinger operators



5

The generalized magnetic Schrödinger operator

We consider the operator formally given by

L = −(∇− ia)TA(∇− ia) + V, (3)

where a = (a1, . . . , an) is a vector of real-valued L2
loc(Rn) functions, A

and V as before. Denote

Da = ∇− ia,

and the magnetic field by B, so that

B = curl a. (4)
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Properties of the magnetic Schrödinger operator

• The magnetic Schrödinger operator exhibits a property called gauge
invariance: quantitative assumptions should be put on B rather than a.

• The diamagnetic inequality∣∣∣∇|u|(x)
∣∣∣ ≤ ∣∣∣Dau(x)

∣∣∣. (5)

• When A ≡ I so that LM := L = (∇− ia)2 + V , the operator LM is
dominated by the Schrödinger operator LE := −∆ + V in the following
sense: for each ε > 0,

|(LM + ε)−1f | ≤ (−∆ + ε)−1|f |, for each f ∈ H = L2(Rn). (6)

The above is known as the Kato-Simon inequality.
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Existence of a fundamental solution to LM?

• Some authors (Ben Ali [3], Kurata and Sugano [7]) showed properties
of the fundamental solution to LM under ad-hoc smoothness
assumptions on the magnetic potential a.

• On the other hand, the natural setting to make sense of LM in the
weak sense requires only that a ∈ L2

loc(Rn), V ∈ L1
loc(Rn).

• Through a smooth approximation method, we establish the existence
of an integral kernel to LM in the above context.
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Some more history

• Before Shen obtained the sharp exponential decay result for the
fundamental solution to −∆ + V , he first obtained a polynomial decay
result in [11].

• He later also obtained polynomial decay results for the magnetic
Schrödinger operator LM in [12].

• In [6], Kurata obtained exponential decay results for −div A∇+ V
and LM by integrating certain heat kernel estimates. He obtained the
bound

|Γ(x, y)| ≤ Ce−ε(1+m(x,V+|B|)|x−y|)
2

2k0+3

|x− y|n−2
for a.e. x, y ∈ Rn,

which is not sharp.
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The Reverse Hölder class RHp

To state our results, we need just a few more definitions.
We say that w ∈ Lploc(Rn), with w > 0 a.e., belongs to the Reverse
Hölder class RHp = RHp(Rn) if there exists a constant C so that for
any ball B ⊂ Rn, ( 

B

wp
)1/p

≤ C
 
B

w. (7)
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The Fefferman-Phong-Shen maximal function m(x,w)

For a function w ∈ RHp, p ≥ n
2 , define the maximal function m(x,w)

by
1

m(x,w)
:= sup

r>0

{
r :

1

rn−2

ˆ
B(x,r)

w ≤ 1
}
, (8)

and the distance function

d(x, y, w) = inf
γ

1ˆ

0

m(γ(t), w)|γ′(t)| dt, (9)

where γ : [0, 1]→ Rn is absolutely continuous and γ(0) = x, γ(1) = y.
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m(x,w) and the uncertainty principle

The function m measures the sum of the contributions of the kinetic
energy <eADafDaf and potential energy V |f |2, and is intimately
related to the uncertainty principle through the following estimate which
is often known as the Fefferman-Phong inequality:

Suppose that a ∈ L2
loc(Rn)n, and moreover assume (12) (next slide).

Then, for all u ∈ C1
c (Rn),

ˆ
Rn

m2(x, V + |B|)|u|2 dx ≤ C
ˆ
Rn

(|Dau|2 + V |u|2) dx, (10)

where C depends on the constants c, c′ from (12) and on
‖V + |B|‖RHn

2
.
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L2 exponential decay

Theorem 1 (Mayboroda, P. 2018)
For any operator L given by (3) and for any f ∈ L2(Rn) with compact
support, there exist constants d̃, ε, C > 0 such that

ˆ{
x∈Rn|d(x,supp f,V+|B|)≥d̃

}m (·, V + |B|)2 |u|2e2εd(·,supp f,V+|B|)

≤ C
ˆ
Rn

|f |2 1

m(x, V + |B|)2
, (11)

where u := L−1f (in a weak sense), provided that A is an elliptic
matrix with complex bounded measurable coefficients, and

i) either a = 0 and V ∈ RHn/2,

ii) or, more generally, a ∈ L2
loc(Rn), V > 0 a.e. on Rn, and V + |B| ∈ RHn/2,

0 ≤ V ≤ cm(·, V + |B|)2,
|∇B| ≤ c′m(·, V + |B|)3.

(12)
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L2 exponential decay for the resolvent

An analogous estimate holds for the resolvent operator (I + t2L)−1,
t > 0:

ˆ
{
x∈Rn|d(x,supp f,Bt)≥d̃

} m
(
·,Bt

)2 ∣∣(I + t2L)−1f
∣∣2 e2εd(·,supp f,Bt)

≤ C
ˆ

Rn

|f |2m
(
·,Bt

)2
.

where B := V + |B|+ 1
t2 .

• In other words, L−1f decays as e−εd(·,supp f,V+|B|) away from the

support of f and the resolvent decays as e−εd(·,supp f,V+|B|+ 1
t2

).
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• L2 exponential decay for the resolvents has appeared in the literature,
see Germinet and Klein [5], but purely in terms of 1

t2 . Also in many
other sources.

• The estimate (11) (for the operator L−1) is entirely new and is a
consequence of the decay afforded by our assumptions on V and B.

• Our results are in the nature of best possible under the very general
assumptions.

Authors: Svitlana Mayboroda, Bruno Poggi Exponential decay for fundamental solutions of Schrödinger operators



14

• L2 exponential decay for the resolvents has appeared in the literature,
see Germinet and Klein [5], but purely in terms of 1

t2 . Also in many
other sources.

• The estimate (11) (for the operator L−1) is entirely new and is a
consequence of the decay afforded by our assumptions on V and B.

• Our results are in the nature of best possible under the very general
assumptions.

Authors: Svitlana Mayboroda, Bruno Poggi Exponential decay for fundamental solutions of Schrödinger operators



14

• L2 exponential decay for the resolvents has appeared in the literature,
see Germinet and Klein [5], but purely in terms of 1

t2 . Also in many
other sources.

• The estimate (11) (for the operator L−1) is entirely new and is a
consequence of the decay afforded by our assumptions on V and B.

• Our results are in the nature of best possible under the very general
assumptions.

Authors: Svitlana Mayboroda, Bruno Poggi Exponential decay for fundamental solutions of Schrödinger operators



15

A Moser estimate

Definition 2
We say that the operator L has a Moser estimate if for each ball
B ⊂ Rn and each function u which solves Lu = 0 in the weak sense on
2B, it follows that u ∈ L∞(B) and

‖u‖L∞(cB) ≤ C
(  

2B

|u|2
) 1

2

, (13)

where c, C are independent of B and u.

• The electric Schrödinger operators with real matrix A, and the
magnetic Schrödinger operator both have Moser estimates.
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Upper bound exponential decay

Theorem 3 (Mayboroda, P. 2018)
Suppose a ∈ L2

loc(Rn), A is an elliptic matrix with complex, bounded
coefficients, V ∈ L1

loc(Rn), and that L is an operator for which there
exists a fundamental solution bounded above by a multiple of
|x− y|2−n. Moreover, if a ≡ 0, assume V ∈ RHn

2
; otherwise assume

(12). Then there exists ε > 0 and a constant C > 0, depending on L,
such that( 

B(x, 1
m(x,V +|B|) )

|Γ(z, y)|2 dz
) 1

2 ≤ Ce−εd(x,y,V+|B|)

|x− y|n−2
for all x, y ∈ Rn.

(14)
If L has a Moser estimate, then

|Γ(x, y)| ≤ Ce−εd(x,y,V+|B|)

|x− y|n−2
for all x, y ∈ Rn. (15)
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Upper bound exponential decay

Theorem 3 establishes in particular the upper bound exponential decay
for both electric Schrödinger operators −div A∇+ V , and the magnetic
Schrödinger operator (∇− ia)2 + V .
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A scale-invariant Harnack inequality

Definition 4
We say that the operator L satisfying assumptions (12) has the m-scale
invariant Harnack Inequality if whenever B = B(x0, r),
r < c

m(x0,V+|B|) , x0 ∈ Rn, the following property holds. For any u

which solves Lu = 0 in the weak sense on 2B,

sup
x∈B
|u(x)| ≤ C inf

x∈B
|u(x)|, (16)

with the constant C > 0 independent of B.

• The electric Schrödinger operators with real matrix A have the
m-scale invariant Harnack inequality.
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Lower bound exponential decay

Theorem 5 (Mayboroda, P. 2018)
Suppose that a ∈ L2

loc(Rn), A is an elliptic matrix with complex,
bounded coefficients, V ∈ L1

loc(Rn), and that L, L0 := L− V , L∗0 are
operators for which there exist fundamental solutions Γ ≡ ΓV , Γ0 Γ∗0.
Assume that ΓV ,Γ0,Γ

∗
0 are bounded above by a multiple of |x− y|2−n,

and that Γ0 is bounded below by a multiple of |x− y|2−n. Suppose
that L has a Moser estimate, and that L satisfies the m-scale invariant
Harnack Inequality. Moreover, if a ≡ 0, assume that V ∈ RHn

2
;

otherwise assume (12). Then there exist constants c and ε2 depending
on λ,Λ, ‖V + |B|‖RHn

2
, n and the constants from (12) such that

|Γ(x, y)| ≥ ce−ε2d(x,y,V+|B|)

|x− y|n−2
. (17)
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Exponential decay of the real electric Schrödinger
operators

If ΓE is the fundamental solution to an electric Schrödinger operator
with real matrix A and V ∈ RHn

2
, then the last few theorems imply

that

c1e
−ε1d(x,y,V )

|x− y|n−2
≤ Γ(x, y) ≤ c2e

−ε2d(x,y,V )

|x− y|n−2
. (18)
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Thanks for listening!

Thank you. :)
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