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Thank you for the invitation!
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In this talk we will discuss a two-penalty boundary obstacle problem of
interest in thermics and fluid dynamics.

Our goal is to establish existence, uniqueness and optimal regularity of the
solutions, as well as structural properties of the free boundary. The study
hinges on the monotone character of a perturbed frequency function of
Almgren’s type, and the analysis of the associated blow-ups.

This is joint work with Thomas Backing and Rohit Jain.
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The Signorini Problem

A problem in linear elasticity, first proposed by Signorini in 1959, was one
of the driving forces in the study of Variational Inequalities. In its original
formulation, it consists of finding the elastic equilibrium configuration of
an anisotropic non-homogeneous elastic body, resting on a rigid frictionless
surface and subject only to its mass forces.

The existence and uniqueness of solutions was proved by Fichera in 1963.
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Figure: What will be the equilibrium configuration of an elastic body resting on a
rigid frictionless plane?
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Other applications include optimal control of temperature across a surface,
in the modeling of semipermeable membranes where some saline
concentration can flow through the membrane only in one direction, and
financial math (when the random variation of underlying asset changes in
a discontinuous fashion, as a Levi process).
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Semipermeable Membranes and Osmosis

Picture Source: Wikipedia

Semipermeable membrane is
a membrane that is permeable
only for a certain type of
molecules (solvents) and blocks
other molecules (solutes).

Because of the chemical
imbalance, the solvent flows
through the membrane from the
region of smaller concentration
of solute to the region of higher
concentration (osmotic
pressure).

The flow occurs in one direction. The flow continues until a sufficient
pressure builds up on the other side of the membrane (to compensate
for osmotic pressure), which then shuts the flow. This process is
known as osmosis.
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Mathematical Formulation

Given open Ω ⊂ Rn

M⊂ ∂Ω semipermeable part of the
boundary

ϕ :M→ R osmotic pressure

u : Ω =→ R pressure of the chemical
solution, that satisfies the equation

∆u = 0 in Ω

Ω

M

ϕ

∆u = 0

We distinguish two cases.
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Wall of Negligible Thickness

The boundary M consists of a semi-permeable membrane of negligible
thickness. It allows the fluid which enters Ω to pass freely but prevents all
outflow of fluid.

Two situations are possible for points x ∈ Ω:

ϕ(x) < u(x)
When the outside pressure ϕ(x) is smaller than the inside pressure
u(x), the fluid tries to leave Ω, but the wall prevents it. Thus,

∂u

∂ν
= 0.

ϕ(x) ≥ u(x)
In this case the wall allows the fluid to enter into Ω, so that v · ν ≤ 0
(v denoting the velocity field).
By Darcy’s law v = −K∇u (K > 0) and therefore

∂u

∂ν
≥ 0.
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Since the flux must be finite, continuity
considerations coupled with the
negligible thickness of the wall imply
u = ϕ on M. In conclusion, we

u ≥ ϕ
∂νu ≥ 0

(u − ϕ)∂νu = 0

These are known as the Signorini
boundary conditions

Since u should stay above ϕ on M,
ϕ is known as the thin obstacle. The
problem is also known as the Thin
Obstacle Problem.

M

ϕ

∆u = 0
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Although formulated in the 1960’s, only in recent years there has been
some significant progress on it.

One of the main goals is to understand the properties of the coincidence
set Λ(u) := {x ∈M : u = ϕ} and its boundary (in the relative topology of
M) Γ(u) := ∂MΛ(u), i.e., the free boundary. In order to do so, one needs
to establish the optimal regularity of the solution across the free boundary.

When M and ϕ are smooth, Caffarelli proved in 1979 that the minimizer
u in the thin obstacle problem is of class C 1,α

loc (Ω± ∪M).
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Normalization

Simplifying assumptions:
1. Vanishing thin obstacle ϕ.
2. The manifold M is a flat portion of the boundary of the relevant
domain: M=Rn−1 × {0}.

Since we are interested in properties of minimizers near free boundary
points, after translation, rotation and scaling arguments we may consider a
function u defined in the upper half-ball B+

1 := B1 ∩ Rn
+ satisfying

∆u = 0 in B+
1 (0.1)

u ≥ 0, −∂xnu ≥ 0, u ∂xnu = 0 on B ′1 (0.2)

0 ∈ Γ(u) = ∂Λ(u) := ∂{(x ′, 0) ∈ B ′1 | u(x ′, 0) = 0}, (0.3)

where Λ(u) is the coincidence set and the boundary is in the relative
topology of B ′1. Here B ′1 := B1 ∩ (Rn−1 × {0}).
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Recent Developments

Athanasopoulos-Caffarelli (2006): Optimal C 1,1/2 interior regularity.

Athanasopoulos-Caffarelli-Salsa (2008): Fine regularity properties of
the free boundary. Namely, the set of regular free boundary points is
locally a C 1,α-manifold of dimension n − 2.

In the particular case Ω = Rn−1 × (0,∞) and M = Rn−1 × {0}, the
Signorini problem can be interpreted as an obstacle problem for the
fractional Laplacian on Rn−1:

u − ϕ ≥ 0, (−∆x ′)
su ≥ 0, (u − ϕ)(−∆x ′)

su = 0,

with s = 1/2.

Silvestre (2007): Almost optimal regularity of solutions, namely
u ∈ C 1,α(Rn−1) for any α < s, 0 < s < 1.
Caffarelli-Salsa-Silvestre (2008): Optimal regularity C 1,s(Rn−1), free
boundary regularity.

Donatella Danielli (Purdue University) Penalized Boundary Obstacle Problems April 22, 2018 14 / 41



Recent Developments

Athanasopoulos-Caffarelli (2006): Optimal C 1,1/2 interior regularity.

Athanasopoulos-Caffarelli-Salsa (2008): Fine regularity properties of
the free boundary. Namely, the set of regular free boundary points is
locally a C 1,α-manifold of dimension n − 2.

In the particular case Ω = Rn−1 × (0,∞) and M = Rn−1 × {0}, the
Signorini problem can be interpreted as an obstacle problem for the
fractional Laplacian on Rn−1:

u − ϕ ≥ 0, (−∆x ′)
su ≥ 0, (u − ϕ)(−∆x ′)

su = 0,

with s = 1/2.

Silvestre (2007): Almost optimal regularity of solutions, namely
u ∈ C 1,α(Rn−1) for any α < s, 0 < s < 1.
Caffarelli-Salsa-Silvestre (2008): Optimal regularity C 1,s(Rn−1), free
boundary regularity.

Donatella Danielli (Purdue University) Penalized Boundary Obstacle Problems April 22, 2018 14 / 41



Recent Developments

Athanasopoulos-Caffarelli (2006): Optimal C 1,1/2 interior regularity.

Athanasopoulos-Caffarelli-Salsa (2008): Fine regularity properties of
the free boundary. Namely, the set of regular free boundary points is
locally a C 1,α-manifold of dimension n − 2.

In the particular case Ω = Rn−1 × (0,∞) and M = Rn−1 × {0}, the
Signorini problem can be interpreted as an obstacle problem for the
fractional Laplacian on Rn−1:

u − ϕ ≥ 0, (−∆x ′)
su ≥ 0, (u − ϕ)(−∆x ′)

su = 0,

with s = 1/2.

Silvestre (2007): Almost optimal regularity of solutions, namely
u ∈ C 1,α(Rn−1) for any α < s, 0 < s < 1.
Caffarelli-Salsa-Silvestre (2008): Optimal regularity C 1,s(Rn−1), free
boundary regularity.

Donatella Danielli (Purdue University) Penalized Boundary Obstacle Problems April 22, 2018 14 / 41



Recent Developments

Athanasopoulos-Caffarelli (2006): Optimal C 1,1/2 interior regularity.

Athanasopoulos-Caffarelli-Salsa (2008): Fine regularity properties of
the free boundary. Namely, the set of regular free boundary points is
locally a C 1,α-manifold of dimension n − 2.

In the particular case Ω = Rn−1 × (0,∞) and M = Rn−1 × {0}, the
Signorini problem can be interpreted as an obstacle problem for the
fractional Laplacian on Rn−1:

u − ϕ ≥ 0, (−∆x ′)
su ≥ 0, (u − ϕ)(−∆x ′)

su = 0,

with s = 1/2.

Silvestre (2007): Almost optimal regularity of solutions, namely
u ∈ C 1,α(Rn−1) for any α < s, 0 < s < 1.
Caffarelli-Salsa-Silvestre (2008): Optimal regularity C 1,s(Rn−1), free
boundary regularity.

Donatella Danielli (Purdue University) Penalized Boundary Obstacle Problems April 22, 2018 14 / 41



Garofalo-Petrosyan (2009): Structure of the singular set of solutions
to the thin obstacle problem by construction of two one-parameter
families of monotonicity formulas (of Weiss and Monneau type).

Higher regularity of the free boundary around regular points:

De Silva-Savin (2014)
C∞ regularity (based on boundary Harnack estimates in slit domains)
Koch-Petrosyan-Shi (2014)
Analiticity (based on a partial hodograph-Legendre transformation)
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Wall of Finite Thickness

Again, two situations are possible for points x ∈ Ω:

ϕ(x) < u(x)
When the outside pressure ϕ(x) is smaller than the inside pressure
u(x), the fluid tries to leave Ω, but the wall prevents it. Thus,

∂u

∂ν
= 0.

ϕ(x) ≥ u(x)
It is reasonable to assume that the outflow through the wall is
proportional to the difference in pressure:

−∂u
∂ν

= k(u − ϕ),

where k > 0 measures the conductivity of the wall.
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Remarks

If the conductivity k = 0, no fluid enter or leaves the chamber and
the pressure u is a solution to the Neumann problem.

If the conductivity k →∞, in the limit one recovers the Signorini
boundary conditions. Duvaut and Lions showed that if uk is the
solution corresponding to the conductivity k , then uk converges
weakly in L2 to the solution to the thin obstacle problem.
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Here we consider a local version of the problem, posed in the upper half
ball

B+
1 = {x ∈ B1 | xn > 0}.

Additionally, we will let ϕ = 0, but we will allow for fluid flow to occur
both into and out of Ω with different permeability constants, under the
assumption that the flux in each direction is proportional to a power of the
pressure.

This allows an alternate interpretation of the problem as a boundary
temperature control problem, as derived by Duvaut and Lions. The same
model also describes the flux of electricity through semi-conducting walls.
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Boundary temperature control

Assume that a continuous medium occupies a region Ω in Rn, with
boundary Γ and outer unit normal ν.

Given a reference temperature h(x), for x ∈ Γ, it is required that the
temperature at the boundary u(x , t) deviates as little as possible from
h(x).

Thermostatic controls are placed on the boundary to inject an appropriate
heat flux when necessary. The controls are regulated as follows:

If u(x , t) = h(x), no correction is needed and therefore the heat flux
is null.

If u(x , t) 6= h(x), a quantity of heat proportional to the difference
between u(x , t) and h(x) is injected.
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heat flux when necessary. The controls are regulated as follows:

If u(x , t) = h(x), no correction is needed and therefore the heat flux
is null.

If u(x , t) 6= h(x), a quantity of heat proportional to the difference
between u(x , t) and h(x) is injected.
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The boundary condition can be written as

−∂u
∂ν

= Φ(u),

where

Φ(u) =


k−(u − h) if u < h

0 if u = h

k+(u − h) if u > h
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Statement of the problem

In this setting the problem becomes
∆u= 0 in B+

1

u= g on (∂B1)+

uxn= k+(u+)p−1 − k−(u−)p−1 on Γ

where g ∈ C 2,α
(
B1

)
is the given boundary datum, p > 1, and

(∂B1)+= {x ∈ ∂B1 | xn > 0}
Γ= {x ∈ B1 | xn = 0}

u+= max{u, 0}, u− = −min{u, 0} ≥ 0.
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Variational Formulation

We seek to minimize

J(v) =
1

2

(ˆ
B1

|∇v |2 +

ˆ
Γ
k̃−(v−)p +

ˆ
Γ
k̃+(v+)p

)
over all v ∈W 1,2(B1), v − g ∈W 1,2

0 (B1) for a given boundary datum
g ∈ C 2,α

(
B1

)
.

In this context we think of the data g as extended to all of B1 by even
reflection. A minimizer will be symmetric about Γ and u will correspond to
its restriction to B+

1 .

Note: k̃± = 2k±/p.
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Related results

Allen-Lindgren-Petrosyan (2015)
Studied minimizers of

Ja(v) =

ˆ
B+

1

|∇v |2xan + 2

ˆ
Γ

(
k−(v−)1 + k+(v+)1

)
with a ∈ (−1, 1).
Proved optimal regularity of the minimizer u: For K b B+ ∪ Γ

u ∈ C 0,1−a(K ) if a ≥ 0,

u ∈ C 1,−a(K ) if a < 0,

as well as separation of the two free boundaries ∂{u > 0} ∩ Γ and
∂{u < 0} ∩ Γ when a ≥ 0.
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Allen (2016)
Considered the problem

div
(
xan∇u(x ′, xn)

)
= 0 in B+

1 ,

lim
xn→0

xanuxn(x ′, xn) = −ku+(x , 0) on Γ,

with k > 0.
The main objective is the study of the singular points of the free
boundary.
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Comparison with Signorini problem

New difficulties:

1. Non-homogeneous boundary condition ⇒ this problem does not
admit global homogeneous solutions of any degree.
Existence and classification of such solutions play a pivotal role in the
Signorini problem.

2. In the thin obstacle problem continuity arguments force u ≥ h, but
the case h > u is no longer ruled out when considering walls of finite
thickness.
Allowing for both constants k+, k− to be finite (even when one of
the two vanishes) de facto destroys the one-phase character of the
problem.

Redeeming feature:
The non-homogeneous character of the boundary condition allows to
employ bootstrap arguments to prove regularity.
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Existence and Uniqueness

Theorem 1

There exists a unique minimizer u ∈ {v ∈W 1,2(B1) | v − g ∈W 1,2
0 (B1)}

for the energy J(v).

Theorem 2

The minimizer u is a weak solution, i.e.,
ˆ
B+

1

∇u∇ξ = −
ˆ

Γ
(−k−(u−)p−1 + k+(u+)p−1)ξ (0.4)

for all ξ ∈ C∞(B+
1 ) vanishing on (∂B1)+.

Proofs: Standard variational arguments.
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Regularity of solutions

Theorem 3

Let g ∈ C 2,α(B1) and let k± be non-negative, finite and non-equal
constants. Let u be the unique minimizer of the energy J(v). Then

u ∈ C bp−1c,α(B+
1/2) for every α < p − 1− bp − 1c, if p is not an

integer.

u ∈ Cp−1,α(B+
1/2) for every α < p − 1, if p is an integer.

Additionally, if k− = k+ or if g does not change sign, then u ∈ C∞(B+
1/2).
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Sketch of proof

Starting point: Energy estimate

Lemma 4

Let u be the minimizer to J(v), r > 0. Then, for any B2r ⊂ B1

ˆ
Br

|∇u|2 dx ≤ c

r2

ˆ
B2r

u2 dx .

Intermediate regularity: Hölder modulus of continuity

Lemma 5

Let u be as in Lemma 4. Then

u ∈ C 0,1/2(B1/2).
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Conclusion:

u ∈ C 0,1/2(B1/2)⇒ u ∈ C 0,1/2(Γ)

⇒ uxn = −k−(u−)p−1 + k+(u+)p−1 ∈ C 0,α(Γ)

for α > 0.

Hence, u is the solution to an oblique derivative problem, with Hölder
continuous boundary datum. Regularity theory implies

u ∈ C 1,α(Γ)⇒ uxn = −k−(u−)p−1 + k+(u+)p−1 ∈ C 0,p−1(Γ) if p ≤2,

(or uxn = −k−(u−)p−1 + k+(u+)p−1 is differentiable with a Hölder
modulus of continuity if p > 2.)
Repeated application of the regularity theory and iteration give the desired
result.

Finally, if g does not change sign, then u does not change sign either
⇒ u± = u. Thus u± is as smooth as u, and the regularity result can be
bootstrapped to show smoothness.
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Optimal regularity

Consider the case p = 2. Then, our regularity result ensures u ∈ C 1,α for
all α < 1. Is this optimal?

Theorem 6

If ∇u(0) 6= 0, then u /∈ C 1,1(0).

Proof. Argument by contradiction, based on comparison principle and
construction of suitable barrier.

Open question: What is the optimal regularity when p > 2?

Donatella Danielli (Purdue University) Penalized Boundary Obstacle Problems April 22, 2018 30 / 41



Optimal regularity

Consider the case p = 2. Then, our regularity result ensures u ∈ C 1,α for
all α < 1. Is this optimal?

Theorem 6

If ∇u(0) 6= 0, then u /∈ C 1,1(0).

Proof. Argument by contradiction, based on comparison principle and
construction of suitable barrier.

Open question: What is the optimal regularity when p > 2?

Donatella Danielli (Purdue University) Penalized Boundary Obstacle Problems April 22, 2018 30 / 41



Optimal regularity

Consider the case p = 2. Then, our regularity result ensures u ∈ C 1,α for
all α < 1. Is this optimal?

Theorem 6

If ∇u(0) 6= 0, then u /∈ C 1,1(0).

Proof. Argument by contradiction, based on comparison principle and
construction of suitable barrier.

Open question: What is the optimal regularity when p > 2?

Donatella Danielli (Purdue University) Penalized Boundary Obstacle Problems April 22, 2018 30 / 41



Optimal regularity

Consider the case p = 2. Then, our regularity result ensures u ∈ C 1,α for
all α < 1. Is this optimal?

Theorem 6

If ∇u(0) 6= 0, then u /∈ C 1,1(0).

Proof. Argument by contradiction, based on comparison principle and
construction of suitable barrier.

Open question: What is the optimal regularity when p > 2?

Donatella Danielli (Purdue University) Penalized Boundary Obstacle Problems April 22, 2018 30 / 41



Free boundary: Regular set

The regular set of the free boundary is defined as

R = {(x ′, 0) ∈ Γ | u(x ′, 0) = 0, ∇u(x ′, 0) 6= 0}

Theorem 7

If x ′0 ∈ R, then in a neighborhood of x ′0, the free boundary {u(x ′, 0) = 0}
is a C 1,α− graph for all α < 1.

Proof. Consequence of regularity result, and implicit function theorem.

Open problem: Higher regularity of the free boundary.
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A perturbed Almgren Frequency Functional

A crucial tool in the study of the Signorini problem is the Almgren’s
Frequency Functional

N(r , u) =
r
´
Br
|∇u|2´

∂Br
u2

The name comes from fact that if u is a harmonic function in B1,
homogeneous of degree κ, then N(r , u) = κ.

Theorem 8 (Athanasopolous-Caffarelli-Salsa, 2007)

If u is a solution to the Signorini problem, then the function N(r , u) is
monotone increasing in r for 0 < r < 1. Moreover, N(r , u) ≡ κ for
0 < r < 1 iff u is homogeneous of order κ in B1, i.e.

x · ∇u − κu = 0 in B1.
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The Almgren’s Frequency Functional is no longer monotone in our setting,
but a suitable perturbation is.

Theorem 9

Let p ≥ 2, u be a solution, and let F (u) = k−(u−)p + k+(u+)p. Then the
perturbed Almgren Frequency Functional

Ñ(r , u) = r

´
B+
r
|∇u|2 + 2

p

´
Γ F (u)´

(∂Br )+ u2

is monotone increasing in r ∈ (0, 1).

Since Ñ(r , u) ≥ 0, we immediately have

Corollary 10

There exists limr→0+ Ñ(r , u) = µ ∈ [0,∞).
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Some consequences

To fix ideas, in the following we will always assume p = 2.
Recall

N(r , u) =
r
´
B+
r
|∇u|2´

∂B+
r
u2

, F (u) = k−(u−)2 + k+(u+)2,

and

Ñ(r , u) = r

´
B+
r
|∇u|2 +

´
Γ F (u)´

(∂Br )+ u2
= N(r , u) + r

´
Γ F (u)´

(∂Br )+ u2

Clearly Ñ(r , u) ≥ N(r , u). Moreover, a Poincaré-type trace inequality
implies

N(r , u) ≥ Ñ(r , u)− Cr

1 + Cr
.

Hence, there exists limr→0+ N(r , u) = µ.

Donatella Danielli (Purdue University) Penalized Boundary Obstacle Problems April 22, 2018 34 / 41



Some consequences

To fix ideas, in the following we will always assume p = 2.
Recall

N(r , u) =
r
´
B+
r
|∇u|2´

∂B+
r
u2

, F (u) = k−(u−)2 + k+(u+)2,

and
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N(r , u) ≥ Ñ(r , u)− Cr

1 + Cr
.

Hence, there exists limr→0+ N(r , u) = µ.

Donatella Danielli (Purdue University) Penalized Boundary Obstacle Problems April 22, 2018 34 / 41



From now assume ∇u(0) = 0. We introduce

ϕ(r) = ϕ(r ; u) =

 
(∂Br )+

u2.

Corollary 11

Let 0 ≤ limr→0+ Ñ(r) = µ <∞. Then
(a) The function r → r−2µϕ(r) is nondecreasing for 0 < r < 1. In
particular,

ϕ(r) ≤ r2µϕ(1) ≤ r2µ sup
B1

|u|.

(b) Let 0 < r < 1. ∀δ > 0, ∃r0(δ) > 0 such that ∀r ,R ≤ r0(δ),

ϕ(R) ≤
(
R

r

)2(µ+δ)

ϕ(r).
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Corollary 12

For all x ∈ Br/2,
|u(x)| ≤ rµ sup

B1

|u|.

The final step to obtain the optimal regularity estimate around free
boundary points with vanishing gradient is to study blow-up sequences.
Define

vr (x) =
u(rx)

[ϕ(u, r)]1/2
.

Note: ‖vr‖L2(∂B1) = 1, and as a consequence of the monotonicity of the
perturbed Almgren Frequency Function and regularity estimates, {vr} are
equibounded in H1

loc and in C 1,α.

Thus, there exists a uniformly convergent subsequence on every compact
subset of Rn such that vj → v∗, ∇vj → ∇v∗.
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equibounded in H1

loc and in C 1,α.

Thus, there exists a uniformly convergent subsequence on every compact
subset of Rn such that vj → v∗, ∇vj → ∇v∗.
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Note: ‖vr‖L2(∂B1) = 1⇒ the blow-up is nontrivial.
Moreover,

[u(rx)]y = ruxn(rx) = r
(
k+u

+ − k−u
−).

Letting r → 0, we find that v∗ satisfies

{
∆v∗ = 0 in B+

1 .

v∗xn = 0 on Γ.
(0.5)

As rj → 0,
Ñ(rj , u) = Ñ(1, vj)→ Ñ(1, v∗) = µ.

Hence v∗ is homogenous of degree µ ≥ 2.
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A monotonicity formula of Monneau type

We now introduce the Weiss functional

Wµ(r , u) =
H(r , u)

rn−1+2µ
(N(r , u)− µ),

where H(r , u) =
´

(∂Br )+ u2.

Let pµ be a harmonic polynomial, homogeneous of degree µ and even in
xn. Using the estimates previously established, we can show

d

dr

(
1

rn−1+2µ

ˆ
(∂Br )+

(u − pµ)2

)
≥ 2

r
W (r , u)− C ≥ −C ′.

We have thus proved the quasi-monotonicity of the Monneau functional

1

rn−1+2µ

ˆ
(∂Br )+

(u − pµ)2
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Consequences

Nondegeneracy: There exists a constant c > 0 such that, for r < 1

sup
B+
r

|u| ≥ cr2.

Uniqueness of the homogeneous blow-ups: There exists a unique
non-zero harmonic polynomial pµ, homogeneous of degree µ ≥ 2 and
even in xn, such that

ṽr (x) =
u(rx)

r2
→ pµ(x).
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Future developments

Structure of the free boundary

Separation of the two phases

Parabolic case

Refined analysis of the case p > 2

More general boundary condition: non-zero obstacle, gap in range for
temperature controls...
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Thank you for your attention!
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