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Classical boundary value problems

Lp Dirichlet and Lp Regularity problems:

(D)p


u ∈ C2(Ω)

Lu = 0 in Ω

u|∂Ω = f ∈ Lp(∂Ω)

u∗ ∈ Lp(∂Ω)

(R)p


u ∈ C2(Ω)

Lu = 0 in Ω

u|∂Ω = f ∈ Lp1(∂Ω).

(∇u)∗ ∈ Lp(∂Ω)

Lp Neumann problem:

(N)p


u ∈ C2(Ω)

Lu = 0 in Ω

∂u
∂ν

∣∣
∂Ω

= f ∈ Lp0(∂Ω)

(∇u)∗ ∈ Lp(∂Ω)

• ν denotes the outward unit
normal vector

• All boundary values in
(D), (R), (N) are
understood as
non-tangential limits.
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The mixed boundary value problem

Decompose ∂Ω = D ∪ N, D ∩ N = ∅. Let D ⊂ ∂Ω be an open set
(relative to ∂Ω).

Lp mixed problem:

(MP)p



u ∈ C2(Ω)

Lu = 0 in Ω

u
∣∣
D

= fD ∈ Lp1(D)

∂u

∂ν

∣∣
N

= fN ∈ Lp(N)

(∇u)∗ ∈ Lp(∂Ω).

Boundary values in (MP) are understood as non-tangential limits.
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The Lp mixed problem for the Laplacian

Let Ω ⊂ Rn, n ≥ 2, be a bounded Lipschitz domain with boundary
∂Ω = D ∪ N, D ∩ N = ∅.

(MP)p



∆u = 0 in Ω

u
∣∣
D

= fD ∈ Lp1(D)

∂u

∂ν

∣∣
N

= fN ∈ Lp(N)

(∇u)∗ ∈ Lp(∂Ω).
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The Lp mixed problem for the Laplacian

Seek boundary regularity of solutions to the Lp mixed problem.

• What conditions on Ω, N and D, and fN and fD ensure that a
solution of (MP)p exists?

• What conditions on Ω, N and D ensure that (MP)p has at
most one solution?

Let Λ = ∂D and let δ(x) = dist(x ,Λ).

Corkscrew condition: There exists M > 0 such that for all
x ∈ Λ, 0 < r < r0, there exists x̃ ∈ D such that |x − x̃ | < r and
δ(x̃) > M−1r .
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The Lp mixed problem for the Laplacian

Let Ω ⊂ Rn, n ≥ 2, be a bounded Lipschitz domain with boundary
∂Ω = D ∪ N, D ∩ N = ∅.

Theorem 1: L1 result Brown, Ott & Taylor

Let D satisfy the corkscrew condition. If fN ∈ H1(N) and
fD ∈ H1,1(D), the L1-mixed problem has a solution that satisfies

‖(∇u)∗‖L1(∂Ω) ≤ C
(
‖fN‖H1(N) + ‖fD‖H1,1(D)

)
.

Furthermore, the solution is unique in the class of functions with
(∇u)∗ ∈ L1(∂Ω).
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The Lp mixed problem for the Laplacian

Theorem 2: Lp result Brown, Ott & Taylor

Let D satisfy the corkscrew condition. There exists an exponent
q0 > 2, depending on M and n, so that the following hold.

For p in the interval (1, q0/2), we have:

If fN ∈ Lp(N) and fD ∈ Lp1(D) there exists a solution to the
Lp-mixed problem. The solution u satisfies

‖(∇u)∗‖Lp(∂Ω) ≤ C
(
‖fN‖Lp(N) + ‖fD‖Lp1(D)

)
.

Furthermore, the solution is unique in the class of functions
satisfying (∇u)∗ ∈ Lp(∂Ω).
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The Lp mixed problem for the Lamé system of
elastostatics

Let Ω ⊂ R2 be a bounded Lipschitz domain, ∂Ω = D ∪ N,
D ∩ N = ∅.

(MP)p



L~u = ~0 in Ω

~u
∣∣
D

= ~fD ∈ Lp1(D)

∂~u

∂ρs
∣∣
N

= ~fN ∈ Lp(N)

(∇u)∗ ∈ Lp(∂Ω).

The action of L on ~u is given by

L~u := µ∆~u + (λ+ µ)∇div ~u,

where λ, µ ∈ R are called the Lamé moduli and satisfy

µ > 0 and λ+ µ > 0.
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The Lamé system of elastostatics

For each s ∈ R, the tensor coefficient associated with L is
understood to be the collection

A(s) :=
(
aijαβ(s)

)
i ,j ,α,β∈{1,2}

where

aijαβ(s) := µδijδαβ + (λ+ µ− s)δiαδjβ + sδi`δjk ,

for all i , j , α, β ∈ {1, 2}.

Neumann-type boundary conditions:(
∂~u

∂ρs

)α
= νia

ij
αβ(s)

∂uβ

∂xj
.

Above, ν = (ν1, ν2) denotes the outward unit normal vector
defined a.e. on ∂Ω.
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The Lp mixed problem for the Lamé system

Assume that D ⊂ ∂Ω satisfies the corkscrew condition.

Theorem 3: The Lp mixed problem for Lamé
Brown and Ott

1. There exists p0 > 1 such that for 1 < p < p0, the Lp-mixed
problem is well-posed in the following sense: if fN ∈ Lp(N),
fD ∈ Lp1(∂Ω), the Lp-mixed problem has a unique solution u
satisfying

‖(∇u)∗‖Lp(∂Ω) ≤ C
(
‖fN‖Lp(N) + ‖fD‖Lp1(∂Ω)

)
.

The boundary values of u exist as nontangential limits.

continued
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The Lp mixed problem for the Lamé system

Theorem 3: The Lp mixed problem for Lamé
Brown and Ott

2. There exists p1 < 1 such that if p1 < p ≤ 1, the Lp-mixed
problem is well-posed in the following sense: if fN ∈ Hp(N),
fD ∈ H1,p(∂Ω), the Lp-mixed problem has a unique solution u
satisfying

‖u‖H1,p(∂Ω) + ‖∂u
∂ρ
‖Hp(∂Ω) + ‖(∇u)∗‖Lp(∂Ω)

≤ C
(
‖fN‖Hp(N) + ‖fD‖H1,p(∂Ω)

)
.

11



Next steps

1. Well-posedness of mixed problem for the Stokes system of
hydrostatics:

(MP)


−∆u +∇p = f in Ω

−divu = g in Ω

u = fD on D

2νε(u)− pν = fN on N.

I u : Ω→ R2, p : Ω→ R
I ε(u) denotes the symmetric part of the gradient of u,

εαi (u) =
1

2

(
∂uα

xi
+
∂ui

xα

)
.
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Next steps

2. Sharp well-posedness of (MP)p for the Laplacian.

A first step in this direction is to consider the Lp mixed
problem for the Laplacian when the domain Ω is an infinite
sector in R2, with a Dirichlet boundary condition imposed on
one ray of the sector and a Neumann boundary condition is
imposed on the other ray.
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Well-posedness of (MP)p in a sector

• Seek a solution to (MP)p, p ∈ (1,∞), expressed as a
harmonic single layer potential operator with Lp density.

• This leads to the issue of inverting the operator(
∂τS ∂τS

K ∗ −1
2 I + K ∗

)
: Lp(D)⊕ Lp(N)→ Lp(D)⊕ Lp(N).

I S is the boundary-to-boundary harmonic single layer potential
operator,

I ∂τ denotes differentiation in the tangential direction,
I K∗ is the formal adjoint of the boundary-to-boundary

harmonic double layer potential operator,
I I is the identity operator.
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Well-posedness of (MP)p in a sector

Theorem 4. Awala, I. Mitrea & Ott (2016)

Let Ω ⊆ R2 be the interior of an infinite angle of aperture
θ ∈ (0, 2π). Denote by D := (∂Ω)1 and N := (∂Ω)2 the left and
right rays, respectively, of Ω. Then (MP)p for the Laplacian is
well-posed whenever

p 6=



2π−θ
π−θ if θ ∈ (0, π/2],

2π−θ
π−θ ,

2θ
2θ−π if θ ∈ (π/2, π)

2 if θ = π

2θ
2θ−π ,

θ
θ−π if θ ∈ (π, 3π/2]

2θ
2θ−π ,

2θ
2θ−3π ,

θ
θ−π if θ ∈ (3π/2, 2π).
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The mixed problem in creased domains

• Brown and Sykes (1994, 2001) establish the well-posedness of
(MP)p for the Laplacian for p ∈ (1, 2] in the class of creased
domains.

I A creased domain, roughly speaking, is one where D and N
meet at an angle strictly less than π.

• Via perturbation, the result is that for each bounded creased
Lipschitz domain, (MP)p is well-posed for p ∈ (1, 2 + εΩ).

• In the setting where the sector is a creased domain, i.e.
θ ∈ (0, π), Theorem 4 is in line with the earlier theory, and it
makes explicit the dependence of εΩ on Ω (via the aperture θ).
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The mixed problem in creased domains

• When θ ∈ [π, 2π), we continue to have well-posedness results
that go beyond the class of creased domains considered by
Brown and Sykes.

• For this range of θ’s, let

pcritic(θ) :=


min

{
2θ

2θ−π ,
θ

θ−π

}
if θ ∈ (π, 3π/2]

min
{

2θ
2θ−π ,

2θ
2θ−3π ,

θ
θ−π

}
if θ ∈ (3π/2, 2π).

• Then 4
3 < pcritic(θ) < 2, so the range of indices for which

(MP)p is well-posed is more restrictive than (1, 2]. This
portion of the work should be compared with results of
Brown, Capogna, and Lanzani who showed that in this
scenario, (MP)p is solvable for some p > 1.

17



The mixed problem in creased domains

• When θ ∈ [π, 2π), we continue to have well-posedness results
that go beyond the class of creased domains considered by
Brown and Sykes.

• For this range of θ’s, let

pcritic(θ) :=


min

{
2θ

2θ−π ,
θ

θ−π

}
if θ ∈ (π, 3π/2]

min
{

2θ
2θ−π ,

2θ
2θ−3π ,

θ
θ−π

}
if θ ∈ (3π/2, 2π).

• Then 4
3 < pcritic(θ) < 2, so the range of indices for which

(MP)p is well-posed is more restrictive than (1, 2]. This
portion of the work should be compared with results of
Brown, Capogna, and Lanzani who showed that in this
scenario, (MP)p is solvable for some p > 1.

17



The mixed problem in creased domains

• When θ ∈ [π, 2π), we continue to have well-posedness results
that go beyond the class of creased domains considered by
Brown and Sykes.

• For this range of θ’s, let

pcritic(θ) :=


min

{
2θ

2θ−π ,
θ

θ−π

}
if θ ∈ (π, 3π/2]

min
{

2θ
2θ−π ,

2θ
2θ−3π ,

θ
θ−π

}
if θ ∈ (3π/2, 2π).

• Then 4
3 < pcritic(θ) < 2, so the range of indices for which

(MP)p is well-posed is more restrictive than (1, 2]. This
portion of the work should be compared with results of
Brown, Capogna, and Lanzani who showed that in this
scenario, (MP)p is solvable for some p > 1.

17



Thank you!
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