The mixed boundary value problem in Lipschitz domains

Katharine Ott
Bates College

Special Session on Regularity of PDEs on Rough Domains AMS Spring Eastern Sectional Meeting

Northeastern University, Boston MA
21-22 April 2018

Classical boundary value problems

L^{p} Dirichlet and L^{p} Regularity problems:

$$
(D)_{p}\left\{\begin{array} { l }
{ u \in \mathcal { C } ^ { 2 } (\Omega) } \\
{ L u = 0 \text { in } \Omega } \\
{ u | _ { \partial \Omega } = f \in L ^ { p } (\partial \Omega) } \\
{ u ^ { * } \in L ^ { p } (\partial \Omega) }
\end{array} \quad (R) _ { p } \left\{\begin{array}{l}
u \in \mathcal{C}^{2}(\Omega) \\
L u=0 \text { in } \Omega \\
\left.u\right|_{\partial \Omega}=f \in L_{1}^{p}(\partial \Omega) . \\
(\nabla u)^{*} \in L^{p}(\partial \Omega)
\end{array}\right.\right.
$$

Classical boundary value problems

L^{p} Dirichlet and L^{p} Regularity problems:
$(D)_{p}\left\{\begin{array}{l}u \in \mathcal{C}^{2}(\Omega) \\ L u=0 \text { in } \Omega \\ \left.u\right|_{\partial \Omega}=f \in L^{p}(\partial \Omega) \\ u^{*} \in L^{p}(\partial \Omega)\end{array}\right.$

$$
(R)_{p}\left\{\begin{array}{l}
u \in \mathcal{C}^{2}(\Omega) \\
L u=0 \text { in } \Omega \\
\left.u\right|_{\partial \Omega}=f \in L_{1}^{p}(\partial \Omega) . \\
(\nabla u)^{*} \in L^{p}(\partial \Omega)
\end{array}\right.
$$

L^{p} Neumann problem:
$(N)_{p}\left\{\begin{array}{l}u \in \mathcal{C}^{2}(\Omega) \\ L u=0 \text { in } \Omega \\ \left.\frac{\partial u}{\partial \nu}\right|_{\partial \Omega}=f \in L_{0}^{p}(\partial \Omega) \\ (\nabla u)^{*} \in L^{p}(\partial \Omega)\end{array}\right.$

Classical boundary value problems

L^{p} Dirichlet and L^{p} Regularity problems:
$(D)_{p}\left\{\begin{array}{l}u \in \mathcal{C}^{2}(\Omega) \\ L u=0 \text { in } \Omega \\ \left.u\right|_{\partial \Omega}=f \in L^{p}(\partial \Omega) \\ u^{*} \in L^{p}(\partial \Omega)\end{array}\right.$

$$
(R)_{p}\left\{\begin{array}{l}
u \in \mathcal{C}^{2}(\Omega) \\
L u=0 \text { in } \Omega \\
\left.u\right|_{\partial \Omega}=f \in L_{1}^{p}(\partial \Omega) . \\
(\nabla u)^{*} \in L^{p}(\partial \Omega)
\end{array}\right.
$$

L^{p} Neumann problem:
$(N)_{p}\left\{\begin{array}{l}u \in \mathcal{C}^{2}(\Omega) \\ L u=0 \text { in } \Omega \\ \left.\frac{\partial u}{\partial \nu}\right|_{\partial \Omega}=f \in L_{0}^{p}(\partial \Omega) \\ (\nabla u)^{*} \in L^{p}(\partial \Omega)\end{array}\right.$

- ν denotes the outward unit normal vector
- All boundary values in $(D),(R),(N)$ are understood as non-tangential limits.

The mixed boundary value problem

Decompose $\partial \Omega=D \cup N, D \cap N=\emptyset$. Let $D \subset \partial \Omega$ be an open set (relative to $\partial \Omega$).

The mixed boundary value problem

Decompose $\partial \Omega=D \cup N, D \cap N=\emptyset$. Let $D \subset \partial \Omega$ be an open set (relative to $\partial \Omega$).
L^{p} mixed problem:

$$
(M P)_{p}\left\{\begin{array}{l}
u \in \mathcal{C}^{2}(\Omega) \\
L u=0 \text { in } \Omega \\
\left.u\right|_{D}=f_{D} \in L_{1}^{p}(D) \\
\left.\frac{\partial u}{\partial \nu}\right|_{N}=f_{N} \in L^{p}(N) \\
(\nabla u)^{*} \in L^{p}(\partial \Omega)
\end{array}\right.
$$

Boundary values in (MP) are understood as non-tangential limits.

The L^{p} mixed problem for the Laplacian

Let $\Omega \subset \mathbb{R}^{n}, n \geq 2$, be a bounded Lipschitz domain with boundary $\partial \Omega=D \cup N, D \cap N=\emptyset$.

$$
(M P)_{p}\left\{\begin{array}{l}
\Delta u=0 \quad \text { in } \Omega \\
\left.u\right|_{D}=f_{D} \in L_{1}^{p}(D) \\
\left.\frac{\partial u}{\partial \nu}\right|_{N}=f_{N} \in L^{p}(N) \\
(\nabla u)^{*} \in L^{p}(\partial \Omega)
\end{array}\right.
$$

The L^{p} mixed problem for the Laplacian

Seek boundary regularity of solutions to the L^{p} mixed problem.

The L^{p} mixed problem for the Laplacian

Seek boundary regularity of solutions to the L^{p} mixed problem.

- What conditions on Ω, N and D, and f_{N} and f_{D} ensure that a solution of $(M P)_{p}$ exists?
- What conditions on Ω, N and D ensure that $(M P)_{p}$ has at most one solution?

The L^{p} mixed problem for the Laplacian

Seek boundary regularity of solutions to the L^{p} mixed problem.

- What conditions on Ω, N and D, and f_{N} and f_{D} ensure that a solution of $(M P)_{p}$ exists?
- What conditions on Ω, N and D ensure that $(M P)_{p}$ has at most one solution?

Let $\Lambda=\partial D$ and let $\delta(x)=\operatorname{dist}(x, \Lambda)$.
Corkscrew condition: There exists $M>0$ such that for all $x \in \Lambda, 0<r<r_{0}$, there exists $\tilde{x} \in D$ such that $|x-\tilde{x}|<r$ and $\delta(\tilde{x})>M^{-1} r$.

The L^{p} mixed problem for the Laplacian

Let $\Omega \subset \mathbb{R}^{n}, n \geq 2$, be a bounded Lipschitz domain with boundary $\partial \Omega=D \cup N, D \cap N=\emptyset$.

The L^{p} mixed problem for the Laplacian

Let $\Omega \subset \mathbb{R}^{n}, n \geq 2$, be a bounded Lipschitz domain with boundary $\partial \Omega=D \cup N, D \cap N=\emptyset$.

Theorem 1: L^{1} result Brown, Ott \& Taylor
Let D satisfy the corkscrew condition. If $f_{N} \in H^{1}(N)$ and $f_{D} \in H^{1,1}(D)$, the L^{1}-mixed problem has a solution that satisfies

$$
\left\|(\nabla u)^{*}\right\|_{L^{1}(\partial \Omega)} \leq C\left(\left\|f_{N}\right\|_{H^{1}(N)}+\left\|f_{D}\right\|_{H^{1,1}(D)}\right)
$$

Furthermore, the solution is unique in the class of functions with $(\nabla u)^{*} \in L^{1}(\partial \Omega)$.

The L^{p} mixed problem for the Laplacian

Theorem 2: L^{p} result Brown, Ott \& Taylor
Let D satisfy the corkscrew condition. There exists an exponent $q_{0}>2$, depending on M and n, so that the following hold.

For p in the interval $\left(1, q_{0} / 2\right)$, we have:
If $f_{N} \in L^{p}(N)$ and $f_{D} \in L_{1}^{p}(D)$ there exists a solution to the L^{p}-mixed problem. The solution u satisfies

$$
\left\|(\nabla u)^{*}\right\|_{L^{p}(\partial \Omega)} \leq C\left(\left\|f_{N}\right\|_{L^{p}(N)}+\left\|f_{D}\right\|_{L_{1}^{p}(D)}\right) .
$$

Furthermore, the solution is unique in the class of functions satisfying $(\nabla u)^{*} \in L^{p}(\partial \Omega)$.

The L^{p} mixed problem for the Lamé system of elastostatics

Let $\Omega \subset \mathbb{R}^{2}$ be a bounded Lipschitz domain, $\partial \Omega=D \cup N$, $D \cap N=\emptyset$.

$$
(M P)_{p}\left\{\begin{array}{l}
\mathcal{L} \vec{u}=\overrightarrow{0} \quad \text { in } \Omega \\
\left.\vec{u}\right|_{D}=\vec{f}_{D} \in L_{1}^{p}(D) \\
\left.\frac{\partial \vec{u}}{\partial \rho^{s}}\right|_{N}=\vec{f}_{N} \in L^{p}(N) \\
(\nabla u)^{*} \in L^{p}(\partial \Omega) .
\end{array}\right.
$$

The action of \mathcal{L} on \vec{u} is given by

$$
\mathcal{L} \vec{u}:=\mu \Delta \vec{u}+(\lambda+\mu) \nabla \operatorname{div} \vec{u},
$$

where $\lambda, \mu \in \mathbb{R}$ are called the Lamé moduli and satisfy

$$
\mu>0 \quad \text { and } \quad \lambda+\mu>0 .
$$

The Lamé system of elastostatics

For each $s \in \mathbb{R}$, the tensor coefficient associated with \mathcal{L} is understood to be the collection

$$
A(s):=\left(a_{\alpha \beta}^{i j}(s)\right)_{i, j, \alpha, \beta \in\{1,2\}}
$$

where

$$
a_{\alpha \beta}^{i j}(s):=\mu \delta_{i j} \delta_{\alpha \beta}+(\lambda+\mu-s) \delta_{i \alpha} \delta_{j \beta}+s \delta_{i \ell} \delta_{j k}
$$

$$
\text { for all } i, j, \alpha, \beta \in\{1,2\} \text {. }
$$

The Lamé system of elastostatics

For each $s \in \mathbb{R}$, the tensor coefficient associated with \mathcal{L} is understood to be the collection

$$
A(s):=\left(a_{\alpha \beta}^{i j}(s)\right)_{i, j, \alpha, \beta \in\{1,2\}}
$$

where

$$
\begin{gathered}
a_{\alpha \beta}^{i j}(s):=\mu \delta_{i j} \delta_{\alpha \beta}+(\lambda+\mu-s) \delta_{i \alpha} \delta_{j \beta}+s \delta_{i \ell} \delta_{j k}, \\
\quad \text { for all } i, j, \alpha, \beta \in\{1,2\} .
\end{gathered}
$$

Neumann-type boundary conditions:

$$
\left(\frac{\partial \vec{u}}{\partial \rho^{s}}\right)^{\alpha}=\nu_{i} a_{\alpha \beta}^{i j}(s) \frac{\partial u^{\beta}}{\partial x_{j}} .
$$

Above, $\nu=\left(\nu_{1}, \nu_{2}\right)$ denotes the outward unit normal vector defined a.e. on $\partial \Omega$.

The L^{p} mixed problem for the Lamé system

Assume that $D \subset \partial \Omega$ satisfies the corkscrew condition.

Theorem 3: The L^{p} mixed problem for Lamé

 Brown and Ott1. There exists $p_{0}>1$ such that for $1<p<p_{0}$, the L^{p}-mixed problem is well-posed in the following sense: if $f_{N} \in L^{p}(N)$, $f_{D} \in L_{1}^{p}(\partial \Omega)$, the L^{p}-mixed problem has a unique solution u satisfying

$$
\left\|(\nabla u)^{*}\right\|_{L^{p}(\partial \Omega)} \leq C\left(\left\|f_{N}\right\|_{L^{p}(N)}+\left\|f_{D}\right\|_{L_{1}^{p}(\partial \Omega)}\right) .
$$

The boundary values of u exist as nontangential limits.

The L^{p} mixed problem for the Lamé system

Theorem 3: The L^{p} mixed problem for Lamé

Brown and Ott

2. There exists $p_{1}<1$ such that if $p_{1}<p \leq 1$, the L^{p}-mixed problem is well-posed in the following sense: if $f_{N} \in H^{p}(N)$, $f_{D} \in H^{1, p}(\partial \Omega)$, the L^{p}-mixed problem has a unique solution u satisfying

$$
\begin{aligned}
\|u\|_{H^{1, p}(\partial \Omega)}+\left\|\frac{\partial u}{\partial \rho}\right\|_{H^{p}(\partial \Omega)} & +\left\|(\nabla u)^{*}\right\|_{L^{p}(\partial \Omega)} \\
& \leq C\left(\left\|f_{N}\right\|_{H^{p}(N)}+\left\|f_{D^{2}}\right\|_{H^{1, p}(\partial \Omega)}\right)
\end{aligned}
$$

Next steps

1. Well-posedness of mixed problem for the Stokes system of hydrostatics:

$$
(M P)\left\{\begin{array}{l}
-\Delta u+\nabla p=f \quad \text { in } \Omega \\
-\operatorname{div} u=g \text { in } \Omega \\
u=f_{D} \text { on } D \\
2 \nu \epsilon(u)-p \nu=f_{N} \text { on } N .
\end{array}\right.
$$

- $u: \Omega \rightarrow \mathbb{R}^{2}, p: \Omega \rightarrow \mathbb{R}$
- $\epsilon(u)$ denotes the symmetric part of the gradient of u,

$$
\epsilon_{i}^{\alpha}(u)=\frac{1}{2}\left(\frac{\partial u^{\alpha}}{x_{i}}+\frac{\partial u^{i}}{x_{\alpha}}\right) .
$$

Next steps

2. Sharp well-posedness of $(M P)_{p}$ for the Laplacian.

Next steps

2. Sharp well-posedness of $(M P)_{p}$ for the Laplacian.

A first step in this direction is to consider the L^{p} mixed problem for the Laplacian when the domain Ω is an infinite sector in \mathbb{R}^{2}, with a Dirichlet boundary condition imposed on one ray of the sector and a Neumann boundary condition is imposed on the other ray.

Well-posedness of $(M P)_{p}$ in a sector

- Seek a solution to $(M P)_{p}, p \in(1, \infty)$, expressed as a harmonic single layer potential operator with L^{p} density.

Well-posedness of $(M P)_{p}$ in a sector

- Seek a solution to $(M P)_{p}, p \in(1, \infty)$, expressed as a harmonic single layer potential operator with L^{p} density.
- This leads to the issue of inverting the operator

$$
\left(\begin{array}{rr}
\partial_{\tau} S & \partial_{\tau} S \\
K^{*} & -\frac{1}{2} I+K^{*}
\end{array}\right): L^{p}(D) \oplus L^{p}(N) \rightarrow L^{p}(D) \oplus L^{p}(N) .
$$

- S is the boundary-to-boundary harmonic single layer potential operator,
- ∂_{τ} denotes differentiation in the tangential direction,
- K^{*} is the formal adjoint of the boundary-to-boundary harmonic double layer potential operator,
- I is the identity operator.

Well-posedness of $(M P)_{p}$ in a sector

Theorem 4. Awala, I. Mitrea \& Ott (2016)
Let $\Omega \subseteq \mathbb{R}^{2}$ be the interior of an infinite angle of aperture $\theta \in(0,2 \pi)$. Denote by $D:=(\partial \Omega)_{1}$ and $N:=(\partial \Omega)_{2}$ the left and right rays, respectively, of Ω. Then $(M P)_{p}$ for the Laplacian is well-posed whenever

$$
p \neq \begin{cases}\frac{2 \pi-\theta}{\pi-\theta} & \text { if } \theta \in(0, \pi / 2], \\ \frac{2 \pi-\theta}{\pi-\theta}, \frac{2 \theta}{2 \theta-\pi} & \text { if } \theta \in(\pi / 2, \pi) \\ 2 & \text { if } \theta=\pi \\ \frac{2 \theta}{2 \theta-\pi}, \frac{\theta}{\theta-\pi} & \text { if } \theta \in(\pi, 3 \pi / 2] \\ \frac{2 \theta}{2 \theta-\pi}, \frac{2 \theta}{2 \theta-3 \pi}, \frac{\theta}{\theta-\pi} & \text { if } \theta \in(3 \pi / 2,2 \pi) .\end{cases}
$$

The mixed problem in creased domains

- Brown and Sykes $(1994,2001)$ establish the well-posedness of $(M P)_{p}$ for the Laplacian for $p \in(1,2]$ in the class of creased domains.
- A creased domain, roughly speaking, is one where D and N meet at an angle strictly less than π.

The mixed problem in creased domains

- Brown and Sykes $(1994,2001)$ establish the well-posedness of $(M P)_{p}$ for the Laplacian for $p \in(1,2]$ in the class of creased domains.
- A creased domain, roughly speaking, is one where D and N meet at an angle strictly less than π.
- Via perturbation, the result is that for each bounded creased Lipschitz domain, $(M P)_{p}$ is well-posed for $p \in\left(1,2+\varepsilon_{\Omega}\right)$.

The mixed problem in creased domains

- Brown and Sykes $(1994,2001)$ establish the well-posedness of $(M P)_{p}$ for the Laplacian for $p \in(1,2]$ in the class of creased domains.
- A creased domain, roughly speaking, is one where D and N meet at an angle strictly less than π.
- Via perturbation, the result is that for each bounded creased Lipschitz domain, $(M P)_{p}$ is well-posed for $p \in\left(1,2+\varepsilon_{\Omega}\right)$.
- In the setting where the sector is a creased domain, i.e. $\theta \in(0, \pi)$, Theorem 4 is in line with the earlier theory, and it makes explicit the dependence of ε_{Ω} on Ω (via the aperture θ).

The mixed problem in creased domains

- When $\theta \in[\pi, 2 \pi)$, we continue to have well-posedness results that go beyond the class of creased domains considered by Brown and Sykes.

The mixed problem in creased domains

- When $\theta \in[\pi, 2 \pi)$, we continue to have well-posedness results that go beyond the class of creased domains considered by Brown and Sykes.
- For this range of θ 's, let

$$
p_{\text {critic }}(\theta):= \begin{cases}\min \left\{\frac{2 \theta}{2 \theta-\pi}, \frac{\theta}{\theta-\pi}\right\} & \text { if } \theta \in(\pi, 3 \pi / 2] \\ \min \left\{\frac{2 \theta}{2 \theta-\pi}, \frac{2 \theta}{2 \theta-3 \pi}, \frac{\theta}{\theta-\pi}\right\} & \text { if } \theta \in(3 \pi / 2,2 \pi) .\end{cases}
$$

The mixed problem in creased domains

- When $\theta \in[\pi, 2 \pi)$, we continue to have well-posedness results that go beyond the class of creased domains considered by Brown and Sykes.
- For this range of θ 's, let

$$
p_{\text {critic }}(\theta):= \begin{cases}\min \left\{\frac{2 \theta}{2 \theta-\pi}, \frac{\theta}{\theta-\pi}\right\} & \text { if } \theta \in(\pi, 3 \pi / 2] \\ \min \left\{\frac{2 \theta}{2 \theta-\pi}, \frac{2 \theta}{2 \theta-3 \pi}, \frac{\theta}{\theta-\pi}\right\} & \text { if } \theta \in(3 \pi / 2,2 \pi) .\end{cases}
$$

- Then $\frac{4}{3}<p_{\text {critic }}(\theta)<2$, so the range of indices for which $(M P)_{p}$ is well-posed is more restrictive than (1,2]. This portion of the work should be compared with results of Brown, Capogna, and Lanzani who showed that in this scenario, $(M P)_{p}$ is solvable for some $p>1$.

Thank you!

