Two-phase free boundary problems for harmonic measure with Hölder data (and blowups in multi-phase problems)

Joint work with
Murat Akman
Max Engelstein
Tatiana Toro

Matthew Badger

University of Connecticut
April 21, 2018

AMS Meeting Boston

Special Session on Regularity of PDE

Dirichlet Problem and Harmonic Measure

Let $n \geq 2$ and let $\Omega \subset \mathbb{R}^{n}$ be a regular domain for (D).

Dirichlet Problem
Given $f \in C_{c}(\partial \Omega)$, find $u \in C^{2}(\Omega) \cap C(\bar{\Omega})$:
(D) $\left\{\begin{array}{c}\Delta u=0 \text { in } \Omega \\ u=f \text { on } \partial \Omega\end{array}\right.$
$\Delta=\partial_{x_{1} x_{1}}+\partial_{x_{2} x_{2}}+\cdots+\partial_{x_{n} x_{n}}$
\exists ! family of probability measures $\left\{\omega^{X}\right\} X \in \Omega$ on the boundary $\partial \Omega$ called harmonic measure of Ω with pole at $X \in \Omega$ such that $u(X)=\int_{\partial \Omega} f(Q) d \omega^{X}(Q) \quad$ solves (D)

Dirichlet Problem and Harmonic Measure

Let $n \geq 2$ and let $\Omega \subset \mathbb{R}^{n}$ be a regular domain for (D).

Dirichlet Problem

Given $f \in C_{c}(\partial \Omega)$, find $u \in C^{2}(\Omega) \cap C(\bar{\Omega})$:
(D) $\left\{\begin{array}{c}\Delta u=0 \text { in } \Omega \\ u=f \text { on } \partial \Omega\end{array}\right.$
$\Delta=\partial_{x_{1} x_{1}}+\partial_{x_{2} x_{2}}+\cdots+\partial_{x_{n} x_{n}}$
\exists ! family of probability measures $\left\{\omega^{X}\right\}_{X \in \Omega}$ on the boundary $\partial \Omega$ called harmonic measure of Ω with pole at $X \in \Omega$ such that

$$
u(X)=\int_{\partial \Omega} f(Q) d \omega^{X}(Q) \quad \text { solves }(D)
$$

For unbounded domains, we may also consider harmonic measure with pole at infinity.

Dirichlet Problem and Harmonic Measure

Let $n \geq 2$ and let $\Omega \subset \mathbb{R}^{n}$ be a regular domain for (D).

Dirichlet Problem

Given $f \in C_{c}(\partial \Omega)$, find $u \in C^{2}(\Omega) \cap C(\bar{\Omega})$:
(D) $\left\{\begin{array}{c}\Delta u=0 \text { in } \Omega \\ u=f \text { on } \partial \Omega\end{array}\right.$

$$
\Delta=\partial_{x_{1} x_{1}}+\partial_{x_{2} x_{2}}+\cdots+\partial_{x_{n} x_{n}}
$$

\exists ! family of probability measures $\left\{\omega^{X}\right\}_{X \in \Omega}$ on the boundary $\partial \Omega$ called harmonic measure of Ω with pole at $X \in \Omega$ such that

$$
u(X)=\int_{\partial \Omega} f(Q) d \omega^{X}(Q) \quad \text { solves }(D)
$$

For unbounded domains, we may also consider harmonic measure with pole at infinity.

Examples of Regular Domains

NTA domains introduced by Jerison and Kenig 1982:
Quantitative Openness + Quantitative Path Connectedness

Smooth Domains

Lipschitz Domains

Quasispheres
(e.g. snowflake)

Two-Phase Free Boundary Regularity Problem

$\Omega \subset \mathbb{R}^{n}$ is a 2-sided domain if:
$1 \Omega^{+}=\Omega$ is open and connected
$2 \Omega^{-}=\mathbb{R}^{n} \backslash \bar{\Omega}$ is open and connected
$3 \partial \Omega^{+}=\partial \Omega^{-}$

Let $\Omega \subset \mathbb{R}^{n}$ be a 2-sided domain, equipped with interior
harmonic measure ω^{+}and exterior harmonic measure ω

Determine the extent to which existence or regularity of f controls the geometry or regularity of the boundary $\partial \Omega$.

Two-Phase Free Boundary Regularity Problem

$\Omega \subset \mathbb{R}^{n}$ is a 2-sided domain if:
$1 \Omega^{+}=\Omega$ is open and connected
$2 \Omega^{-}=\mathbb{R}^{n} \backslash \bar{\Omega}$ is open and connected
$3 \partial \Omega^{+}=\partial \Omega^{-}$

Let $\Omega \subset \mathbb{R}^{n}$ be a 2 -sided domain, equipped with interior harmonic measure ω^{+}and exterior harmonic measure ω^{-}. If $\omega^{+} \ll \omega^{-} \ll \omega^{+}$, then $f=\frac{d \omega^{-}}{d \omega^{+}}$exists, $f \in L^{1}\left(d \omega^{+}\right)$.
Determine the extent to which existence or regularity of f controls the geometry or regularity of the boundary $\partial \Omega$.

Regularity of a boundary can be expressed in terms of geometric blowups of the boundary

Existence of Measure-Theoretic Tangents at Typical Points

Theorem (Azzam-Mourgoglou-Tolsa-Volberg 2016)
Let $\Omega \subset \mathbb{R}^{n}$ be a 2 -sided domain equipped with harmonic measures $\omega^{ \pm}$ on $\Omega^{ \pm}$. If $\omega^{+} \ll \omega^{-} \ll \omega^{+}$, then $\partial \Omega=G \cup N$, where
$1 \omega^{ \pm}(N)=0$ and $\mathcal{H}^{n-1}\llcorner G$ is locally finite,
$2 \omega^{ \pm}\left\llcorner G \ll \mathcal{H}^{n-1}\left\llcorner G \ll \omega^{ \pm}\llcorner G\right.\right.$,
3 up to a $\omega^{ \pm}$-null set, G is contained in a countably union of graphs of Lipschitz functions $f_{i}: V_{i} \rightarrow V_{i}^{\perp}, V \in G(n, n-1)$.

In contemporary Geometric Measure Theory, we express (3) by saying $\omega^{ \pm}$are $(n-1)$-dimensional Lipschitz graph rectifiable.
\square there is a unique $\omega^{ \pm}$-approximate tangent plane $V \in G(n, n-1)$:
\square $r \downarrow 0$

Existence of Measure-Theoretic Tangents at Typical Points

Theorem (Azzam-Mourgoglou-Tolsa-Volberg 2016)
Let $\Omega \subset \mathbb{R}^{n}$ be a 2 -sided domain equipped with harmonic measures $\omega^{ \pm}$ on $\Omega^{ \pm}$. If $\omega^{+} \ll \omega^{-} \ll \omega^{+}$, then $\partial \Omega=G \cup N$, where
$1 \omega^{ \pm}(N)=0$ and $\mathcal{H}^{n-1}\llcorner G$ is locally finite,
$2 \omega^{ \pm} L G \ll \mathcal{H}^{n-1} L G \ll \omega^{ \pm} L G$,
3 up to a $\omega^{ \pm}$-null set, G is contained in a countably union of graphs of Lipschitz functions $f_{i}: V_{i} \rightarrow V_{i}^{\perp}, V \in G(n, n-1)$.

In contemporary Geometric Measure Theory, we express (3) by saying $\omega^{ \pm}$are $(n-1)$-dimensional Lipschitz graph rectifiable.
\square

Existence of Measure-Theoretic Tangents at Typical Points

Theorem (Azzam-Mourgoglou-Tolsa-Volberg 2016)
Let $\Omega \subset \mathbb{R}^{n}$ be a 2 -sided domain equipped with harmonic measures $\omega^{ \pm}$ on $\Omega^{ \pm}$. If $\omega^{+} \ll \omega^{-} \ll \omega^{+}$, then $\partial \Omega=G \cup N$, where
$1 \omega^{ \pm}(N)=0$ and $\mathcal{H}^{n-1}\llcorner G$ is locally finite,
$2 \omega^{ \pm} L G \ll \mathcal{H}^{n-1} L G \ll \omega^{ \pm} L G$,
3 up to a $\omega^{ \pm}$_null set, G is contained in a countably union of graphs of Lipschitz functions $f_{i}: V_{i} \rightarrow V_{i}^{\perp}, V \in G(n, n-1)$.

In contemporary Geometric Measure Theory, we express (3) by saying $\omega^{ \pm}$are $(n-1)$-dimensional Lipschitz graph rectifiable.
In particular, if $\omega^{+} \ll \omega^{-} \ll \omega^{+}$, then at $\omega^{ \pm}$-a.e. $x \in \partial \Omega$, there is a unique $\omega^{ \pm}$-approximate tangent plane $V \in G(n, n-1)$:
$\underset{r \downarrow 0}{\limsup } \frac{\omega^{ \pm}(B(x, r))}{r^{n-1}}>0 \quad$ and $\quad \limsup _{r \downarrow 0} \frac{\omega^{ \pm}(B(x, r) \backslash \operatorname{Cone}(x+V, \alpha))}{r^{n-1}}=0$
for every cone around the $(n-1)$-plane $x+V^{\perp}$.

Example: 2-Sided Domain with a Polynomial Singularity

Figure: The zero set of Szulkin's degree 3 harmonic polynomial $p(x, y, z)=x^{3}-3 x y^{2}+z^{3}-1.5\left(x^{2}+y^{2}\right) z$
$\Omega^{ \pm}=\left\{p^{ \pm}>0\right\}$ is a 2-sided domain, $\omega^{+}=\omega^{-}$(pole at infinity), $\log \frac{d \omega^{-}}{d \omega^{+}} \equiv 0$ but $\partial \Omega^{ \pm}=\{p=0\}$ is not smooth at the origin.

Example: 2-Sided Domain with a Polynomial Singularity

Figure: The zero set of Szulkin's degree 3 harmonic polynomial $p(x, y, z)=x^{3}-3 x y^{2}+z^{3}-1.5\left(x^{2}+y^{2}\right) z$ $\Omega^{ \pm}=\left\{p^{ \pm}>0\right\}$ is a 2-sided domain, $\omega^{+}=\omega^{-}$(pole at infinity), $\log \frac{d \omega^{-}}{d \omega^{+}} \equiv 0$ but $\partial \Omega^{ \pm}=\{p=0\}$ is not smooth at the origin.

Example: 2-Sided Domain with a Polynomial Singularity

Figure: The zero set of Szulkin's degree 3 harmonic polynomial $p(x, y, z)=x^{3}-3 x y^{2}+z^{3}-1.5\left(x^{2}+y^{2}\right) z$ $\Omega^{ \pm}=\left\{p^{ \pm}>0\right\}$ is a 2-sided domain, $\omega^{+}=\omega^{-}$(pole at infinity), $\log \frac{d \omega^{-}}{d \omega^{+}} \equiv 0$ but $\partial \Omega^{ \pm}=\{p=0\}$ is not smooth at the origin.

```
log}\frac{d\mp@subsup{\omega}{}{-}}{d\mp@subsup{\omega}{}{+}}\mathrm{ is smooth }\not=>\partial\Omega\mathrm{ is smooth
```

Useful Terminology: Local Set Approximation (B-Lewis)
Let $A \subset \mathbb{R}^{n}$ be closed, let $x_{i} \in A$, let $x_{i} \rightarrow x \in A$, and let $r_{i} \downarrow 0$.
If $\frac{A-x}{r_{i}} \rightarrow T$, we say that T is a tangent set of A at x.

- Attouch-Wets topology: $\Sigma_{i} \rightarrow \Sigma$ if and only if for every $r>0$, $\lim _{i \rightarrow \infty}\left(\sup _{x \in \Sigma_{i} \cap B_{r}} \operatorname{dist}(x, \Sigma)+\sup _{y \in \Sigma \cap B_{r}} \operatorname{dist}\left(y, \Sigma_{i}\right)\right)=0$
- There is at least one tangent set at each $x \in A$.
- There could be more than one tangent set at each $x \in A$.

If $\frac{A-x_{i}}{r_{i}} \rightarrow S$, we say that S is a pseudotangent set of A at x.
= Every tangent set of A at x is a nseudotangent set of A at x.

- There could be pseudotangent sets that are not tangent sets.

We say that A is locally bilaterally well approximated by \mathcal{S} if every pseudotangent set of A belongs to S.

Useful Terminology: Local Set Approximation (B-Lewis)

Let $A \subset \mathbb{R}^{n}$ be closed, let $x_{i} \in A$, let $x_{i} \rightarrow x \in A$, and let $r_{i} \downarrow 0$.
If $\frac{A-x}{r_{i}} \rightarrow T$, we say that T is a tangent set of A at x.

- Attouch-Wets topology: $\Sigma_{i} \rightarrow \Sigma$ if and only if for every $r>0$, $\lim _{i \rightarrow \infty}\left(\sup _{x \in \Sigma_{i} \cap B_{r}} \operatorname{dist}(x, \Sigma)+\sup _{y \in \Sigma \cap B_{r}} \operatorname{dist}\left(y, \Sigma_{i}\right)\right)=0$
- There is at least one tangent set at each $x \in A$.
- There could be more than one tangent set at each $x \in A$.

We say that A is locally bilaterally well approximated by \mathcal{S} if every pseudotangent set of A belongs to S.

Useful Terminology: Local Set Approximation (B-Lewis)

Let $A \subset \mathbb{R}^{n}$ be closed, let $x_{i} \in A$, let $x_{i} \rightarrow x \in A$, and let $r_{i} \downarrow 0$.
If $\frac{A-x}{r_{i}} \rightarrow T$, we say that T is a tangent set of A at x.

- Attouch-Wets topology: $\Sigma_{i} \rightarrow \Sigma$ if and only if for every $r>0$, $\lim _{i \rightarrow \infty}\left(\sup _{x \in \Sigma_{i} \cap B_{r}} \operatorname{dist}(x, \Sigma)+\sup _{y \in \Sigma \cap B_{r}} \operatorname{dist}\left(y, \Sigma_{i}\right)\right)=0$
- There is at least one tangent set at each $x \in A$.
- There could be more than one tangent set at each $x \in A$.

If $\frac{A-x_{i}}{r_{i}} \rightarrow S$, we say that S is a pseudotangent set of A at x.
■ Every tangent set of A at x is a pseudotangent set of A at x.

- There could be pseudotangent sets that are not tangent sets.

Useful Terminology: Local Set Approximation (B-Lewis)

Let $A \subset \mathbb{R}^{n}$ be closed, let $x_{i} \in A$, let $x_{i} \rightarrow x \in A$, and let $r_{i} \downarrow 0$.
If $\frac{A-x}{r_{i}} \rightarrow T$, we say that T is a tangent set of A at x.

- Attouch-Wets topology: $\Sigma_{i} \rightarrow \Sigma$ if and only if for every $r>0$, $\lim _{i \rightarrow \infty}\left(\sup _{x \in \Sigma_{i} \cap B_{r}} \operatorname{dist}(x, \Sigma)+\sup _{y \in \Sigma \cap B_{r}} \operatorname{dist}\left(y, \Sigma_{i}\right)\right)=0$
- There is at least one tangent set at each $x \in A$.
- There could be more than one tangent set at each $x \in A$.

If $\frac{A-x_{i}}{r_{i}} \rightarrow S$, we say that S is a pseudotangent set of A at x.
■ Every tangent set of A at x is a pseudotangent set of A at x.

- There could be pseudotangent sets that are not tangent sets.

We say that A is locally bilaterally well approximated by \mathcal{S} if every pseudotangent set of A belongs to S.

Tangents and Pseudotangents under Weak Regularity

Theorem (Kenig-Toro 2006, B 2011, B-Engelstein-Toro 2017) Let $\Omega \subset \mathbb{R}^{n}$ be a 2-sided domain equipped with harmonic measures $\omega^{ \pm}$ on $\Omega^{ \pm}$. If $\Omega^{ \pm}$are NTA and $f=\frac{d \omega^{-}}{d \omega^{+}}$has $\log f \in \operatorname{VMO}\left(d \omega^{+}\right)$, then

- $\partial \Omega$ is locally bilaterally well approximated by zero sets of harmonic polynomials $p: \mathbb{R}^{n} \rightarrow \mathbb{R}$ of degree at most d_{0} such that $\Omega_{p}^{ \pm}=\{x: \pm p(x)>0\}$ are NTA domains and $\operatorname{dim}_{M} \partial \Omega=n-1$.
Moreover, we can partition $\partial \Omega=\Gamma_{1} \cup S=\Gamma_{1} \cup \Gamma_{2} \cup$.

Tangents and Pseudotangents under Weak Regularity

Theorem (Kenig-Toro 2006, B 2011, B-Engelstein-Toro 2017) Let $\Omega \subset \mathbb{R}^{n}$ be a 2 -sided domain equipped with harmonic measures $\omega^{ \pm}$ on $\Omega^{ \pm}$. If $\Omega^{ \pm}$are NTA and $f=\frac{d \omega^{-}}{d \omega^{+}}$has $\log f \in \mathrm{VMO}\left(d \omega^{+}\right)$, then

- $\partial \Omega$ is locally bilaterally well approximated by zero sets of harmonic polynomials $p: \mathbb{R}^{n} \rightarrow \mathbb{R}$ of degree at most d_{0} such that $\Omega_{p}^{ \pm}=\{x: \pm p(x)>0\}$ are NTA domains and $\operatorname{dim}_{M} \partial \Omega=n-1$.
Moreover, we can partition $\partial \Omega=\Gamma_{1} \cup S=\Gamma_{1} \cup \Gamma_{2} \cup \cdots \cup \Gamma_{d_{0}}$.
- Γ_{1} is relatively open in $\partial \Omega, \Gamma_{1}$ is locally bilaterally well approximated by $(n-1)$-planes, and $\operatorname{dim}_{M} \Gamma_{1}=n-1$
- S is closed, $\omega^{ \pm}(S)=0$, and $\operatorname{dim}_{M} S \leq n-3$
- $S=\Gamma_{2} \cup \cdots \cup \Gamma_{d_{0}}$, where $x \in \Gamma_{d} \Leftrightarrow$ every tangent set of $\partial \Omega$ at x is the zero set of a homogeneous harmonic polynomial q of degree d such that $\Omega_{q}^{ \pm}$are NTA domains.

Zero Sets of HHP in \mathbb{R}^{2} and \mathbb{R}^{3} of Degrees $1,2,3,4,5$
Admissible Tangents

- In first row, only the first example (degree 1) separates the plane into 2-sided NTA domains
= In second row, only the first, third, and fifth examples (odd degrees) separate space into 2-sided NTA domains
- In \mathbb{R}^{4} or higher dimensions, there are examples of all degrees that separate space into 2-sided NTA domains

Zero Sets of HHP in \mathbb{R}^{2} and \mathbb{R}^{3} of Degrees $1,2,3,4,5$

Admissible Tangents

- In first row, only the first example (degree 1) separates the plane into 2-sided NTA domains
- In second row, only the first, third, and fifth examples (odd degrees) separate space into 2-sided NTA domains
- In \mathbb{R}^{4} or higher dimensions, there are examples of all degrees that separate space into 2-sided NTA domains

Zero Sets of HHP in \mathbb{R}^{2} and \mathbb{R}^{3} of Degrees $1,2,3,4,5$

Admissible Tangents

- In first row, only the first example (degree 1) separates the plane into 2-sided NTA domains
- In second row, only the first, third, and fifth examples (odd degrees) separate space into 2 -sided NTA domains
- In \mathbb{R}^{4} or higher dimensions, there are examples of all degrees that separate space into 2 -sided NTA domains

Zero Sets of HHP in \mathbb{R}^{2} and \mathbb{R}^{3} of Degrees $1,2,3,4,5$

Admissible Tangents

- In first row, only the first example (degree 1) separates the plane into 2-sided NTA domains
- In second row, only the first, third, and fifth examples (odd degrees) separate space into 2 -sided NTA domains
- In \mathbb{R}^{4} or higher dimensions, there are examples of all degrees that separate space into 2 -sided NTA domains

Regularity under Hölder and Higher Order Data

2-sided NTA $+\log \frac{d \omega^{-}}{d \omega^{+}} \in \mathrm{VMO}\left(d \omega^{+}\right) \Longrightarrow \partial \Omega=\Gamma_{1} \cup \Gamma_{2} \cup \cdots \cup \Gamma_{d_{0}}$

Theorem (Engelstein 2016)

- Hölder regularity: If $\log \frac{d \omega^{-}}{d \omega^{+}} \in C^{0, \alpha}$, then Γ_{1} is $C^{1, \alpha}$.
- Higher regularity: If $\log \frac{d \omega^{-}}{d \omega^{+}} \in C^{\infty}$, then Γ_{1} is C^{∞}.

Regularity under Hölder and Higher Order Data

2-sided NTA $+\log \frac{d \omega^{-}}{d \omega^{+}} \in \mathrm{VMO}\left(d \omega^{+}\right) \Longrightarrow \partial \Omega=\Gamma_{1} \cup \Gamma_{2} \cup \cdots \cup \Gamma_{d_{0}}$

Theorem (Engelstein 2016)
■ Hölder regularity: If $\log \frac{d \omega^{-}}{d \omega^{+}} \in C^{0, \alpha}$, then Γ_{1} is $C^{1, \alpha}$.

- Higher regularity: If $\log \frac{d \omega^{-}}{d \omega^{+}} \in C^{\infty}$, then Γ_{1} is C^{∞}.

Theorem (B-Engelstein-Toro 2018)
Assume that $\log \frac{d \omega^{-}}{d \omega^{+}} \in C^{0, \alpha}$. Then:
■ At every $x \in \partial \Omega$, there is a unique tangent set of $\partial \Omega$ at x.

- The singular set $S=\Gamma_{2} \cup \cdots \cup \Gamma_{d_{0}}$ is $C^{1, \beta}(n-3)$-rectifiable: S is subset of a countable union of $C^{1, \beta}$ submanifolds M_{i}^{n-3}

Remarks / Ingredients in the Proof

2-sided NTA $+\log \frac{d \omega^{-}}{d \omega^{+}} \in \mathrm{VMO}\left(d \omega^{+}\right) \Longrightarrow \partial \Omega=\Gamma_{1} \cup \Gamma_{2} \cup \cdots \cup \Gamma_{d_{0}}$
Theorem (B-Engelstein-Toro 2017) $\operatorname{dim}_{M}\left(\Gamma_{2} \cup \cdots \cup \Gamma_{d_{0}}\right) \leq n-3$

- Do not have monotonicity nor a definite rate of convergence of $\left(\partial \Omega-x_{i}\right) / r_{i}$ to Σ_{p}. Do not know that tangents of $\partial \Omega$ are unique.
- Instead: we use Local Set Approximation framework (B-Lewis) + prove "excess improvement" type lemma for pseudotangents
- Lojasiewicz type inequality for harmonic polynomials with uniform constants and sharp exponents

- For each $x \in \Gamma_{d}$, establish almost monotonicity of a Weiss-type functional $W_{d}\left(r, x ; v^{x}\right)$, where $v^{x}(z)=\frac{d \omega^{-}}{d \omega^{+}}(x) u^{+}(z)-u^{-}(z)$ and $u^{ \pm}$are Green's functions associated to $\Omega^{ \pm}$
- Epiperimetric inequality for homogeneous harmonic functions

Remarks / Ingredients in the Proof

2-sided NTA $+\log \frac{d \omega^{-}}{d \omega^{+}} \in \mathrm{VMO}\left(d \omega^{+}\right) \Longrightarrow \partial \Omega=\Gamma_{1} \cup \Gamma_{2} \cup \cdots \cup \Gamma_{d_{0}}$
Theorem (B-Engelstein-Toro 2017) $\operatorname{dim}_{M}\left(\Gamma_{2} \cup \cdots \cup \Gamma_{d_{0}}\right) \leq n-3$

- Do not have monotonicity nor a definite rate of convergence of $\left(\partial \Omega-x_{i}\right) / r_{i}$ to Σ_{p}. Do not know that tangents of $\partial \Omega$ are unique.
- Instead: we use Local Set Approximation framework (B-Lewis) + prove "excess improvement" type lemma for pseudotangents
- Lojasiewicz type inequality for harmonic polynomials with uniform constants and sharp exponents

2-sided NTA $+\log \frac{d \omega^{-}}{d \omega^{+}} \in C^{0, \alpha} \Longrightarrow \partial \Omega=\Gamma_{1} \cup \Gamma_{2} \cup \cdots \cup \Gamma_{d_{0}}$

Theorem (B-Engelstein-Toro 2018) Unique tangents of $\partial \Omega$ and $C^{1, \beta}$ rectifiability of the singular set $S=\Gamma_{2} \cup \cdots \cup \Gamma_{d_{0}}$

- For each $x \in \Gamma_{d}$, establish almost monotonicity of a Weiss-type functional $W_{d}\left(r, x ; v^{x}\right)$, where $v^{x}(z)=\frac{d \omega^{-}}{d \omega^{+}}(x) u^{+}(z)-u^{-}(z)$ and $u^{ \pm}$are Green's functions associated to $\Omega^{ \pm}$
- Epiperimetric inequality for homogeneous harmonic functions

What about the missing harmonic polynomials?

Multiphase Free Boundary Regularity Problem

An NTA configuration $\Omega=\left(\left\{\Omega_{i}\right\}, \Sigma\right)$ is a partition of \mathbb{R}^{n} into finitely many NTA domains Ω_{i} (the "chambers") and a closed set Σ (the "interface") such that

$$
\mathbb{R}^{n}=\Sigma \cup \bigcup_{i} \Omega_{i}, \quad \Sigma=\bigcup_{i} \partial \Omega_{i}
$$

The valency of $x \in \Sigma$ is the number of chambers with $x \in \partial \Omega_{i}$.

Multiphase Free Boundary Regularity Problem

An NTA configuration $\Omega=\left(\left\{\Omega_{i}\right\}, \Sigma\right)$ is a partition of \mathbb{R}^{n} into finitely many NTA domains Ω_{i} (the "chambers") and a closed set Σ (the "interface") such that

$$
\mathbb{R}^{n}=\Sigma \cup \bigcup_{i} \Omega_{i}, \quad \Sigma=\bigcup_{i} \partial \Omega_{i}
$$

The valency of $x \in \Sigma$ is the number of chambers with $x \in \partial \Omega_{i}$.

Multiphase Problem (Akman-B):

Let ω_{i} denote harmonic measure on the chamber Ω_{i} of Ω.
If $\omega_{i} \ll \omega_{j} \ll \omega_{i}$ on $\partial \Omega_{i} \cap \partial \Omega_{j}$, then $f_{j}^{i}=\frac{d \omega_{i}}{d \omega_{j}} \in L^{1}\left(d \omega_{j}\right)$.
Determine the extent to which simultaneous existence or regularity of the f_{j}^{i} along $\partial \Omega_{i} \cap \partial \Omega_{j}$ controls the geometry or regularity of the interface Σ.

Example: $\omega_{i}=\omega_{j}$ on $\partial \Omega_{i} \cap \partial \Omega_{j}$ (pole at infinity)

Sample Result: Blowups at Bipartite Points

Let $\boldsymbol{\Omega}=\left(\left\{\Omega_{i}\right\}, \Sigma\right)$ be an NTA configuration in \mathbb{R}^{n} and let $x \in \Sigma$.
The two-phase graph (V, E) of Ω at x is defined so that

- The vertices of the graph are the chambers Ω_{i} with $x \in \partial \Omega_{i}$
- Two chambers $\Omega_{i}, \Omega_{j} \in V$ are connected by an edge if and only if $\Omega_{i} \neq \Omega_{j}$ and there exists $y \in \partial \Omega_{i} \cap \partial \Omega_{j}$ with valency 2.

We say $x \in \Sigma$ is bipartite if the two-phase graph of Ω at x is bipartite.

Let $\Omega=\left(\left\{\Omega_{i}\right\}, \Sigma\right)$ be an NTA configuration in \mathbb{R}^{n}. Assume that $\log \frac{d \omega_{i}}{d \omega_{j}} \in \operatorname{VMO}\left(d \omega_{j} l o \Omega_{i} \cap \Omega_{j}\right)$ for all i, j;
\square
of Σ at x is the zero set Σ_{q} of a hhp q of degree d.

- Σ_{q} determines an NTA configuration Ω_{q}
- the two-phase graph of Ω_{q} at 0 is isomorphic to the two-phase graph of Ω at x.

Sample Result: Blowups at Bipartite Points

Let $\boldsymbol{\Omega}=\left(\left\{\Omega_{i}\right\}, \Sigma\right)$ be an NTA configuration in \mathbb{R}^{n} and let $x \in \Sigma$.
The two-phase graph (V, E) of Ω at x is defined so that

- The vertices of the graph are the chambers Ω_{i} with $x \in \partial \Omega_{i}$
- Two chambers $\Omega_{i}, \Omega_{j} \in V$ are connected by an edge if and only if $\Omega_{i} \neq \Omega_{j}$ and there exists $y \in \partial \Omega_{i} \cap \partial \Omega_{j}$ with valency 2.

We say $x \in \Sigma$ is bipartite if the two-phase graph of Ω at x is bipartite.
Theorem (Akman-B 2018)
Let $\boldsymbol{\Omega}=\left(\left\{\Omega_{i}\right\}, \Sigma\right)$ be an NTA configuration in \mathbb{R}^{n}. Assume that

$$
\log \frac{d \omega_{i}}{d \omega_{j}} \in V M O\left(\left.d \omega_{j}\right|_{\partial \Omega_{i} \cap \partial \Omega_{j}}\right) \quad \text { for all } i, j .
$$

If $x \in \Sigma$ is bipartite, then there is $d=d(x)$ such that every tangent set of Σ at x is the zero set Σ_{q} of a hhp q of degree d.

- Σ_{q} determines an NTA configuration Ω_{q}
- the two-phase graph of Ω_{q} at 0 is isomorphic to the two-phase graph of $\boldsymbol{\Omega}$ at \times.

Zero Sets of HHP in \mathbb{R}^{2} and \mathbb{R}^{3} of Degrees 1, 2, 3, 4, 5

Every point in the zero set of a non-constant harmonic function is bipartite by the mean value property

All homogeneous harmonic polynomials whose zero sets determine an NTA configuration occur as tangents in the Multiphase Problem

Further Work In Progress (Akman-B)

We expect to classify all tangent sets of the interfaces of planar NTA configurations with VMO free boundary conditions:

Example (A Platonic Cone): The NTA configuration whose interface is the cone over the skeleton of the cube in \mathbb{R}^{3} has equal harmonic measures with pole at infinity on all 6 chambers, but the origin is not bipartite.

Further Work In Progress (Akman-B)

We expect to classify all tangent sets of the interfaces of planar NTA configurations with VMO free boundary conditions:

Example (A Platonic Cone): The NTA configuration whose interface is the cone over the skeleton of the cube in \mathbb{R}^{3} has equal harmonic measures with pole at infinity on all 6 chambers, but the origin is not bipartite.

What are all of the possible tangent sets in \mathbb{R}^{3} ?

Further Work In Progress (Akman-B)

We expect to classify all tangent sets of the interfaces of planar NTA configurations with VMO free boundary conditions:

Example (A Platonic Cone): The NTA configuration whose interface is the cone over the skeleton of the cube in \mathbb{R}^{3} has equal harmonic measures with pole at infinity on all 6 chambers, but the origin is not bipartite.

What are all of the possible tangent sets in \mathbb{R}^{3} ?

Thank You!

