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Parametrizing
History

Reifenberg 1960: a “flat” set can be parametrized by
a Hölder map.

– The set is required to be flat and without holes: at every
point and scale there’s a plane close to the set and the set is
close to the plane (official definition coming soon)
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Parametrizing
History

David-Kenig-Toro 2001: a “flat” set with small β
numbers can be parametrized by a C 1,α map

– The sets are “flat” with vanishing constant

Kolasiński 2015: a “flat” set with small holes and
small β numbers can be parametrized by a C 1,α map

– Small holes = size of β
– Uses Menger-like curvatures
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Parametrizing
History

David-Toro 2012: a “flat” set with holes can be
parametrized by a Hölder map

– Moreover if we assume convergence of a Jones function then
we can get a bi-Lipschitz parametrization

– No control assumed on the size of the holes

Silvia Ghinassi (Stony Brook University) Sufficient conditions for C1,α parametrization 4 / 16



Parametrizing
The first main theorem (vague statement)

G. 2017: a “flat” set with holes can be parametrized
by a C 1,α map if we assume a stronger convergence of
the Jones function

– Again, no control assumed on the size of the holes

Silvia Ghinassi (Stony Brook University) Sufficient conditions for C1,α parametrization 5 / 16



Parametrizing
Definition of Reifenberg flat sets

Definition

Let E ⊆ Rn and let ε > 0. Define E to be Reifenberg flat if the
following conditions (1) hold.

(1) For x ∈ E , 0 < r ≤ 10 there is a d-plane P(x , r) such that

dist(y ,P(x , r)) ≤ ε, y ∈ E ∩ B(x , r),

dist(y ,E ) ≤ ε, y ∈ P(x , r) ∩ B(x , r).
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Parametrizing
Definition of Reifenberg flat sets with holes

Definition

Let E ⊆ Rn and let ε > 0. Define E to be Reifenberg flat with holes
if the following conditions (1)-(2) hold.

(1) For x ∈ E , 0 < r ≤ 10 there is a d-plane P(x , r) such that

dist(y ,P(x , r)) ≤ ε, y ∈ E ∩ B(x , r),

dist(y ,E ) ≤ ε, y ∈ P(x , r) ∩ B(x , r).

(2) Moreover we require some compatibility between the P(x , r)’s:

dx ,10−k (P(x , 10−k),P(x , 10−k+1)) ≤ ε, x ∈ E ,

dx ,10−k+2(P(x , 10−k),P(y , 10−k)) ≤ ε, x , y ∈ E , |x − y | ≤ 10−k+2
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Parametrizing
Definition of β numbers

Let E ⊆ Rn, x ∈ Rn, and r > 0.

Definition

βE
∞(x , r) = inf

P
sup

y∈E∩B(x ,r)

dist(y ,P)

r

if E ∩ B(x , r) 6= ∅, where the infimum is taken over all d-planes P ,
and βE

∞(x , r) = 0 if E ∩ B(x , r) = ∅.

Definition

βE
p (x , r) = inf

P

{∫
E∩B(x ,r)

(
dist(y ,P)

r

)p
dHd(y)

rd

} 1
p

where the infimum is taken over all d-planes P .

Silvia Ghinassi (Stony Brook University) Sufficient conditions for C1,α parametrization 8 / 16



Parametrizing
David-Toro 2012

Theorem (G. David, T. Toro, 2012)

Let E ⊆ Rn be a Reifenberg flat set with holes. Then we can construct a
map f : Rd → Rn, such that E ⊂ f (Rd) and f is bi-Hölder. Moreover, if
we assume that there exists M < +∞ such that∑

k≥0

βE∞(x , rk)
2 ≤ M, for all x ∈ E ,

then f is bi-Lipschitz.
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Parametrizing
David-Toro 2012

Theorem (G. David, T. Toro, 2012)

Let E ⊆ Rn be a Reifenberg flat set with holes. Then we can construct a
map f : Rd → Rn, such that E ⊂ f (Rd) and f is bi-Hölder. Moreover, if
we assume that there exists M < +∞ such that∑

k≥0

βE1 (x , rk)
2 ≤ M, for all x ∈ E ,

then f is bi-Lipschitz.
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Parametrizing
The first main theorem I

Theorem (G., 2017)

Let E ⊆ Rn be a Reifenberg flat set with holes and α ∈ [0, 1]. Also
assume that there exists M < +∞ such that∑

k≥0

βE∞(x , rk)
2

rαk
≤ M, for all x ∈ E .

Then we can construct a map f : Rd → Rn, such that E ⊂ f (Rd) such
that the map and its inverse are C 1,α continuous. Moreover the Hölder
constants depend only on n, d , and M.

Silvia Ghinassi (Stony Brook University) Sufficient conditions for C1,α parametrization 11 / 16



Parametrizing
The first main theorem II

Theorem (G., 2017)

Let E ⊆ Rn be a Reifenberg flat set with holes and α ∈ [0, 1]. Also
assume that there exists M < +∞ such that∑

k≥0

βE1 (x , rk)
2

rαk
≤ M, for all x ∈ E .

Then we can construct a map f : Rd → Rn, such that E ⊂ f (Rd) such
that the map and its inverse are C 1,α continuous. Moreover the Hölder
constants depend only on n, d , and M.
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Why?
Why did I prove it?

Characterize different types of rectifiability

Connection between decay of β’s and smoothness
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Rectifiability of measures
The second main theorem I

Theorem (G., 2017)

Let µ be a Radon measure on Rn such that 0 < θd∗(µ, x) <∞ for µ-a.e.
x . Assume that for µ-a.e. x ∈ Rn,

Jµ2,α(x) =
∑
k≥0

βµ2 (x , rk)
2

rαk
<∞.

Then µ is (countably) C 1,α d-rectifiable.
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Rectifiability of sets
The second main theorem II

Theorem (G., 2017)

Let E ⊆ Rn such that 0 < θd∗(E , x) <∞, for a.e. x ∈ E . Assume that
for almost every x ∈ E ,

JE∞,α(x) =
∑
k≥0

βE∞(x , rk)
2

rαk
<∞.

Then E is (countably) C 1,α d-rectifiable.

Silvia Ghinassi (Stony Brook University) Sufficient conditions for C1,α parametrization 15 / 16



References

Matthew Badger.
Generalized rectifiability of measures and the identification problem.
https://arxiv.org/abs/1803.10022, 2018.

Guy David, Carlos Kenig, and Tatiana Toro.
Asymptotically optimally doubling measures and Reifenberg flat sets with vanishing
constant.
Comm. Pure Appl. Math. 54(4): 385–449, 2001.

Guy David and Tatiana Toro.
Reifenberg parameterizations for sets with holes.
Mem. Amer. Math. Soc., 215(1012): vi+102, 2012.

Silvia Ghinassi.

Sufficient conditions for C1,α parametrization and rectifiability.
https://arxiv.org/abs/1709.06015, 2017.

S lawomir Kolasiński.
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