On quantitative absolute continuity of harmonic measure and big piece approximation by chord-arc domains

Steve Hofmann (joint work with J. M. Martell)

April 21, 2018

Steve Hofmann (joint work with J. M. Martell) On quantitative absolute continuity of harmonic measure and big

- F. and M. Riesz (1916): $\Omega \subset \mathbb{C}$, simply connected. Then $\partial \Omega$ rectifiable implies $\omega \ll \sigma$.
- C.E. due to C. Bishop and P. Jones (1990): conclusion need not hold w/o some connectivity.

Notation: ω = harmonic measure (at generic point in Ω), $\sigma = \mathcal{H}^1 \lfloor_{\partial \Omega}$ (or $\sigma = \mathcal{H}^{d-1} \lfloor_{\partial \Omega}$ in \mathbb{R}^d).

Recall: $\partial \Omega$ rectifiable = covered by a countable union of Lipschitz graphs, up to a set of \mathcal{H}^1 (or \mathcal{H}^{d-1}) measure 0.

伺 と く ヨ と く ヨ と … ヨ

What about higher dimensions? (note: d = n + 1 from now on)

 Dahlberg (1977): Ω Lipschitz domain in ℝⁿ⁺¹, then ω ∈ A_∞(σ).

What about higher dimensions? (note: d = n + 1 from now on)

- Dahlberg (1977): Ω Lipschitz domain in ℝⁿ⁺¹, then ω ∈ A_∞(σ).
- A_{∞} is quantitative, scale invariant version of absolute continuity.

What about higher dimensions? (note: d = n + 1 from now on)

- Dahlberg (1977): Ω Lipschitz domain in ℝⁿ⁺¹, then ω ∈ A_∞(σ).
- A_{∞} is quantitative, scale invariant version of absolute continuity.

Remark: it follows that Dirichlet problem solvable with L^p data, some $p < \infty$ (in fact, in Lip domain can take p = 2 or even $2 - \varepsilon$).

伺 と く ヨ と く ヨ と … ヨ

Introduction/History (continued)

A_{∞} more precisely:

• $\omega \in A_{\infty}(\sigma)$ means that $\forall B$ centered on $\partial \Omega$ with $r_B < \operatorname{diam}(\partial \Omega)$, and \forall Borel $E \subset \Delta := B \cap \partial \Omega$, $X \in \Omega \setminus 4B$

$$\omega^{X}(E) \lesssim \left(rac{\sigma(E)}{\sigma(\Delta)}
ight)^{ heta} \omega^{X}(\Delta).$$

A_{∞} more precisely:

• $\omega \in A_{\infty}(\sigma)$ means that $\forall B$ centered on $\partial \Omega$ with $r_B < \operatorname{diam}(\partial \Omega)$, and \forall Borel $E \subset \Delta := B \cap \partial \Omega$, $X \in \Omega \setminus 4B$

$$\omega^{X}(E) \lesssim \left(rac{\sigma(E)}{\sigma(\Delta)}
ight)^{ heta} \omega^{X}(\Delta).$$

- weak- A_{∞} is the same but with $\omega^{X}(2\Delta)$ on RHS.
- I.e., weak– A_∞ is A_∞ but w/o doubling.

A_{∞} more precisely:

• $\omega \in A_{\infty}(\sigma)$ means that $\forall B$ centered on $\partial \Omega$ with $r_B < \operatorname{diam}(\partial \Omega)$, and \forall Borel $E \subset \Delta := B \cap \partial \Omega$, $X \in \Omega \setminus 4B$

$$\omega^{X}(E) \lesssim \left(rac{\sigma(E)}{\sigma(\Delta)}
ight)^{ heta} \omega^{X}(\Delta).$$

• weak- A_{∞} is the same but with $\omega^{X}(2\Delta)$ on RHS.

I.e., weak– A_{∞} is A_{∞} but w/o doubling.

• Note that A_{∞} and weak- A_{∞} are each quantitative, scale invariant versions of absolute continuity.

ヨト イヨト イヨト

David-Jerison (1990), and independently Semmes: Ω
 "chord-arc" domain (aka CAD) in ℝⁿ⁺¹, then ω ∈ A_∞(σ).

Definition: CAD = NTA + ADR boundary

ADR: $\sigma(\Delta(x, r)) \approx r^n$

NTA = int. and ext. Corkscrew(CS) + Harnack Chains(HC)

David-Jerison (1990), and independently Semmes: Ω
 "chord-arc" domain (aka CAD) in ℝⁿ⁺¹, then ω ∈ A_∞(σ).

Definition: CAD = NTA + ADR boundary

ADR: $\sigma(\Delta(x, r)) \approx r^n$

NTA = int. and ext. Corkscrew(CS) + Harnack Chains(HC)

- CS: $\exists B' \subset B \cap \Omega$, with $r_{B'} \approx r_B$; denote by X_B = center of B'; this is a "CS point relative to B".
- HC: quantitative scale invariant path connectedness.

伺 と く ヨ と く ヨ と

• Ω_B is a Lipschitz domain, with constants uniform in *B*.

- Ω_B is a Lipschitz domain, with constants uniform in *B*.
- \exists CS point $X_B \in \Omega_B$, w/ dist $(X_B, \partial \Omega_B) \gtrsim r_B$.

伺下 イヨト イヨト ニヨ

- Ω_B is a Lipschitz domain, with constants uniform in B.
- \exists CS point $X_B \in \Omega_B$, w/ dist $(X_B, \partial \Omega_B) \gtrsim r_B$.
- $\sigma(\partial \Omega_B \cap \partial \Omega) \gtrsim \sigma(\Delta) \approx r_B^n$ (uniformly in *B*).

(Here, as usual $\Delta = B \cap \partial \Omega$).

- Ω_B is a Lipschitz domain, with constants uniform in B.
- \exists CS point $X_B \in \Omega_B$, w/ dist $(X_B, \partial \Omega_B) \gtrsim r_B$.
- $\sigma(\partial \Omega_B \cap \partial \Omega) \gtrsim \sigma(\Delta) \approx r_B^n$ (uniformly in *B*).

(Here, as usual $\Delta = B \cap \partial \Omega$).

• Remark: ∃ a refinement of this result due to M. Badger in absence of upper ADR bound.

Intro/History (continued)

Q: why does this give A_{∞} ?

IBPLSD implies: by Dahlberg (applied in Ω_B), plus maximum principle, obtain ∃η ∈ (0,1) s.t. for Borel E ⊂ Δ,

(*)
$$\sigma(E) \ge (1 - \eta)\sigma(\Delta) \implies \omega^{X_B}(E) \gtrsim 1.$$

(Note: non-degeneracy at *one* scale).

Intro/History (continued)

Q: why does this give A_{∞} ?

IBPLSD implies: by Dahlberg (applied in Ω_B), plus maximum principle, obtain ∃η ∈ (0, 1) s.t. for Borel E ⊂ Δ,

(*)
$$\sigma(E) \ge (1 - \eta)\sigma(\Delta) \implies \omega^{X_B}(E) \gtrsim 1.$$

(Note: non-degeneracy at *one* scale).

Then use pole change formula for harmonic measure (uses HC), to change scales, i.e., to improve to ω ∈ A_∞(σ).

伺下 イヨト イヨト

 Bennewitz-Lewis (2004): Ω 2-sided CS w/ ADR boundary, then ω ∈ weak-A_∞(σ) (Note: no HC assumption).

- Bennewitz-Lewis (2004): Ω 2-sided CS w/ ADR boundary, then ω ∈ weak-A_∞(σ) (Note: no HC assumption).
- Again by [DJ] have IBPLSD, hence again have (*).

- Bennewitz-Lewis (2004): Ω 2-sided CS w/ ADR boundary, then ω ∈ weak-A_∞(σ) (Note: no HC assumption).
- Again by [DJ] have IBPLSD, hence again have (*).
- w/o HC, pole change formula unavailable; [BL] argument "changes pole w/o pole change formula", this (necessarily) introduces errors which result in non-doubling; weak- A_{∞} is best possible conclusion.

伺い イラト イラト

Some Converse results:

• Lewis - Vogel (2007): $\partial \Omega$ ADR, $\omega \approx \sigma$; i.e., $k := \frac{d\omega}{d\sigma} \approx 1$ (after normalizing). Then $\partial \Omega$ is Uniformly Rectifiable (UR) (quantitative scale invariant version of rectifiability - David-Semmes).

Some Converse results:

- Lewis Vogel (2007): $\partial \Omega$ ADR, $\omega \approx \sigma$; i.e., $k := \frac{d\omega}{d\sigma} \approx 1$ (after normalizing). Then $\partial \Omega$ is Uniformly Rectifiable (UR) (quantitative scale invariant version of rectifiability David-Semmes).
- S.H. Martell (2016): same result under weaker assumption $\omega \in \text{weak-}A_{\infty}(\sigma)$

Some Converse results:

- Lewis Vogel (2007): $\partial \Omega$ ADR, $\omega \approx \sigma$; i.e., $k := \frac{d\omega}{d\sigma} \approx 1$ (after normalizing). Then $\partial \Omega$ is Uniformly Rectifiable (UR) (quantitative scale invariant version of rectifiability David-Semmes).
- S.H. Martell (2016): same result under weaker assumption $\omega \in \text{weak-}A_{\infty}(\sigma)$

Proof idea (both papers), based on Alt-Caffarelli technique: small oscillation of ∇G plus non-degeneracy of ∇G implies flatness.

• J. Azzam: $\partial \Omega$ ADR, then

 $\omega \in A_{\infty}(\sigma) \quad \iff \quad \partial \Omega \text{ UR and } \Omega \text{ "semi-uniform" (S-U)}.$

S-U almost like interior CS + HC (uniform domain) except only assume HC joining interior points to boundary points (e.g., allows "slit disk").

伺 と く ヨ と く ヨ と … ヨ

• J. Azzam: $\partial \Omega$ ADR, then

 $\omega \in A_{\infty}(\sigma) \quad \iff \quad \partial \Omega \text{ UR and } \Omega \text{ "semi-uniform" (S-U)}.$

S-U almost like interior CS + HC (uniform domain) except only assume HC joining interior points to boundary points (e.g., allows "slit disk").

Proof ingredients:

• ω doubling $\iff \Omega$ is S-U (improved Aikawa result). (Remark: doubling of $\omega \implies$ interior CS "cheaply".)

伺 と く ヨ と く ヨ と … ヨ

• J. Azzam: $\partial \Omega$ ADR, then

 $\omega \in A_{\infty}(\sigma) \quad \iff \quad \partial \Omega \text{ UR and } \Omega \text{ "semi-uniform" (S-U)}.$

S-U almost like interior CS + HC (uniform domain) except only assume HC joining interior points to boundary points (e.g., allows "slit disk").

Proof ingredients:

• ω doubling $\iff \Omega$ is S-U (improved Aikawa result). (Remark: doubling of $\omega \implies$ interior CS "cheaply".)

• $\omega \in A_{\infty} \implies \partial \Omega$ UR by S.H. - Martell.

▲冊 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ● の Q (や

• J. Azzam: $\partial \Omega$ ADR, then

 $\omega \in A_{\infty}(\sigma) \quad \iff \quad \partial \Omega \text{ UR and } \Omega \text{ "semi-uniform" (S-U)}.$

S-U almost like interior CS + HC (uniform domain) except only assume HC joining interior points to boundary points (e.g., allows "slit disk").

Proof ingredients:

- ω doubling $\iff \Omega$ is S-U (improved Aikawa result). (Remark: doubling of $\omega \implies$ interior CS "cheaply".)
- $\omega \in A_{\infty} \implies \partial \Omega$ UR by S.H. Martell.
- UR + S-U implies IBPCAD; so, get (*) by M.P. + [DJ], improve to weak- A_{∞} by [BL], then S-U gives doubling, hence A_{∞} .

Remark: note that connectivity in Azzam's result (S-U condition) is about *doubling*, not about absolute continuity.

OTOH, in light of Bishop-Jones example, the question remains: what is minimal connectivity assumption, which, in conjunction with UR, yields quantitative absolute continuity of harmonic measure?

Remark: note that connectivity in Azzam's result (S-U condition) is about *doubling*, not about absolute continuity.

OTOH, in light of Bishop-Jones example, the question remains: what is minimal connectivity assumption, which, in conjunction with UR, yields quantitative absolute continuity of harmonic measure?

• Combining work of two different groups of authors, we can now answer this.

Theorem

Let $\Omega \subset \mathbb{R}^{n+1}$ be an open set with interior CS, and ADR boundary. Then TFAE:

- ∂Ω is UR, and Ω satisfies "Weak Local John" (WLJ) condition.
- Ω satisfies Interior Big Pieces of Chord-Arc Domains (IBPCAD).
- $\mathbf{O} \ \omega \in weak-A_{\infty}(\sigma).$

WLJ entails connected non-tangential path from CS point X_B to a "big piece" portion of $\Delta = B \cap \partial \Omega$; (could also be thought of as "Weak Local S-U").

- 4 同 6 4 日 6 - 日 6 - 日

• (1)
$$\implies$$
 (2) new result of S.H. - Martell

伺 ト く ヨ ト く ヨ ト

- (1) \implies (2) new result of S.H. Martell
- (2) \implies (3) immediate from M.P. plus [DJ] plus [BL] as described above.

- (1) \implies (2) new result of S.H. Martell
- (2) \implies (3) immediate from M.P. plus [DJ] plus [BL] as described above.
- (3) \implies (1) has two parts: weak- $A_{\infty} \implies$ UR is S.H. -Martell result mentioned earlier; weak- $A_{\infty} \implies$ WLJ is new result of Azzam-Mourgoglou-Tolsa.

▲冊 ▲ 国 ▶ ▲ 国 ▶ → 国 → の Q ()

- (1) \implies (2) new result of S.H. Martell
- (2) \implies (3) immediate from M.P. plus [DJ] plus [BL] as described above.
- (3) \implies (1) has two parts: weak- $A_{\infty} \implies$ UR is S.H. -Martell result mentioned earlier; weak- $A_{\infty} \implies$ WLJ is new result of Azzam-Mourgoglou-Tolsa.

Remark: direct proof $(1) \implies (3)$ is slightly earlier result (a few months ago) of S.H. - Martell.

Remark: background hypotheses (upper and lower ADR, interior CS are in nature of best possible - \exists C.E. in absence of any one of them.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

Proof ingredients:

- (1) ⇒ (2): Corona approximation of UR set by CAD's (S.H. - Martell - Mayboroda 2016) plus 2-parameter bootstrapping scheme based on "extrapolation of Carleson measures" (J. Lewis).
- (3) ⇒ (1): (new part of [AMT]) use of Alt-Caffarelli-Friedman monotonicity formula to establish connectivity.

(同) (日) (日) 日

Thank you

Thank you!

Steve Hofmann (joint work with J. M. Martell) On quantitative absolute continuity of harmonic measure and big

- ● ● ●

э