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Introduction/History

F. and M. Riesz (1916): Ω ⊂ C, simply connected. Then ∂Ω
rectifiable implies ω � σ.

C.E. due to C. Bishop and P. Jones (1990): conclusion need
not hold w/o some connectivity.

Notation: ω = harmonic measure (at generic point in Ω),
σ = H1b∂Ω (or σ = Hd−1b∂Ω in Rd).

Recall: ∂Ω rectifiable = covered by a countable union of Lipschitz
graphs, up to a set of H1 (or Hd−1) measure 0.
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Introduction/History (continued)

What about higher dimensions? (note: d = n + 1 from now on)

Dahlberg (1977): Ω Lipschitz domain in Rn+1, then
ω ∈ A∞(σ).

A∞ is quantitative, scale invariant version of absolute
continuity.

Remark: it follows that Dirichlet problem solvable with Lp data,
some p <∞ (in fact, in Lip domain can take p = 2 or even 2− ε).
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Introduction/History (continued)

A∞ more precisely:

ω ∈ A∞(σ) means that ∀B centered on ∂Ω with
rB < diam(∂Ω), and ∀ Borel E ⊂ ∆ := B ∩ ∂Ω, X ∈ Ω \ 4B

ωX (E ) .

(
σ(E )

σ(∆)

)θ
ωX (∆).

weak-A∞ is the same but with ωX (2∆) on RHS.

I.e., weak–A∞ is A∞ but w/o doubling.

Note that A∞ and weak-A∞ are each quantitative, scale
invariant versions of absolute continuity.
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Intro/History (continued)

David-Jerison (1990), and independently Semmes: Ω
“chord-arc” domain (aka CAD) in Rn+1, then ω ∈ A∞(σ).

Definition: CAD = NTA + ADR boundary

ADR : σ
(
∆(x , r)

)
≈ rn

NTA = int. and ext. Corkscrew (CS) + Harnack Chains (HC)

CS: ∃B ′ ⊂ B ∩ Ω, with rB′ ≈ rB ; denote by XB = center of
B ′; this is a “CS point relative to B”.

HC: quantitative scale invariant path connectedness.
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Intro/History (continued)

Method of proof of [DJ]: ADR + 2-sided CS implies “Interior Big
Pieces of Lipschitz Sub-Domains” (IBPLSD); i.e., for every B
centered on ∂Ω, with rB < diam(∂Ω), ∃ subdomain ΩB ⊂ Ω ∩ B
s.t.

ΩB is a Lipschitz domain, with constants uniform in B.

∃ CS point XB ∈ ΩB , w/ dist(XB , ∂ΩB) & rB .

σ(∂ΩB ∩ ∂Ω) & σ(∆) ≈ rnB (uniformly in B).

(Here, as usual ∆ = B ∩ ∂Ω).

Remark: ∃ a refinement of this result due to M. Badger in
absence of upper ADR bound.
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Intro/History (continued)

Q: why does this give A∞?

IBPLSD implies: by Dahlberg (applied in ΩB), plus maximum
principle, obtain ∃η ∈ (0, 1) s.t. for Borel E ⊂ ∆,

(*) σ(E ) ≥ (1− η)σ(∆) =⇒ ωXB (E ) & 1 .

(Note: non-degeneracy at one scale).

Then use pole change formula for harmonic measure (uses
HC), to change scales, i.e., to improve to ω ∈ A∞(σ).
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Intro/History (continued)

Bennewitz-Lewis (2004): Ω 2-sided CS w/ ADR boundary,
then ω ∈ weak-A∞(σ) (Note: no HC assumption).

Again by [DJ] have IBPLSD, hence again have (*).

w/o HC, pole change formula unavailable; [BL] argument
“changes pole w/o pole change formula”, this (necessarily)
introduces errors which result in non-doubling; weak-A∞ is
best possible conclusion.
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Converses

Some Converse results:

Lewis - Vogel (2007): ∂Ω ADR, ω ≈ σ; i.e., k := dω
dσ ≈ 1

(after normalizing). Then ∂Ω is Uniformly Rectifiable (UR)
(quantitative scale invariant version of rectifiability -
David-Semmes).

S.H. - Martell (2016): same result under weaker assumption
ω ∈ weak-A∞(σ)

Proof idea (both papers), based on Alt-Caffarelli technique: small
oscillation of ∇G plus non-degeneracy of ∇G implies flatness.
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Recent Results (posted late 2017- early 2018)

J. Azzam: ∂Ω ADR, then

ω ∈ A∞(σ) ⇐⇒ ∂Ω UR and Ω “semi-uniform” (S-U).

S-U almost like interior CS + HC (uniform domain) except only
assume HC joining interior points to boundary points (e.g., allows
“slit disk”).

Proof ingredients:

ω doubling ⇐⇒ Ω is S-U (improved Aikawa result).
(Remark: doubling of ω =⇒ interior CS “cheaply”.)

ω ∈ A∞ =⇒ ∂Ω UR by S.H. - Martell.

UR + S-U implies IBPCAD; so, get (*) by M.P. + [DJ],
improve to weak-A∞ by [BL], then S-U gives doubling, hence
A∞.
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Recent Results (continued)

Remark: note that connectivity in Azzam’s result (S-U condition)
is about doubling, not about absolute continuity.

OTOH, in light of Bishop-Jones example, the question remains:
what is minimal connectivity assumption, which, in conjunction
with UR, yields quantitative absolute continuity of harmonic
measure?

Combining work of two different groups of authors, we can
now answer this.
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Recent Results (continued)

Theorem

Let Ω ⊂ Rn+1 be an open set with interior CS, and ADR boundary.
Then TFAE:

1 ∂Ω is UR, and Ω satisfies “Weak Local John” (WLJ)
condition.

2 Ω satisfies Interior Big Pieces of Chord-Arc Domains
(IBPCAD).

3 ω ∈ weak-A∞(σ).

WLJ entails connected non-tangential path from CS point XB to a
“big piece” portion of ∆ = B ∩ ∂Ω; (could also be thought of as
“Weak Local S-U”).
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Recent Results (continued)

Evolution of this result:

(1) =⇒ (2) new result of S.H. - Martell

(2) =⇒ (3) immediate from M.P. plus [DJ] plus [BL] as
described above.

(3) =⇒ (1) has two parts: weak-A∞ =⇒ UR is S.H. -
Martell result mentioned earlier; weak-A∞ =⇒ WLJ is new
result of Azzam-Mourgoglou-Tolsa.

Remark: direct proof (1) =⇒ (3) is slightly earlier result (a few
months ago) of S.H. - Martell.

Remark: background hypotheses (upper and lower ADR, interior
CS are in nature of best possible - ∃ C.E. in absence of any one of
them.
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Recent Results (continued)

Proof ingredients:

(1) =⇒ (2): Corona approximation of UR set by CAD’s
(S.H. - Martell - Mayboroda 2016) plus 2-parameter
bootstrapping scheme based on “extrapolation of Carleson
measures” (J. Lewis).

(3) =⇒ (1): (new part of [AMT]) use of
Alt-Caffarelli-Friedman monotonicity formula to establish
connectivity.
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Thank you

Thank you!
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