# On quantitative absolute continuity of harmonic measure and big piece approximation by chord-arc domains 

Steve Hofmann (joint work with J. M. Martell)

April 21, 2018

## Introduction/History

- F. and M. Riesz (1916): $\Omega \subset \mathbb{C}$, simply connected. Then $\partial \Omega$ rectifiable implies $\omega \ll \sigma$.
- C.E. due to C. Bishop and P. Jones (1990): conclusion need not hold w/o some connectivity.

Notation: $\omega=$ harmonic measure (at generic point in $\Omega$ ), $\sigma=\mathcal{H}^{1}{ }_{\partial}{ }_{\partial \Omega}\left(\right.$ or $\sigma=\mathcal{H}^{d-1} L_{\partial \Omega}$ in $\mathbb{R}^{d}$ ).

Recall: $\partial \Omega$ rectifiable $=$ covered by a countable union of Lipschitz graphs, up to a set of $\mathcal{H}^{1}\left(\right.$ or $\left.\mathcal{H}^{d-1}\right)$ measure 0.

## Introduction/History (continued)

What about higher dimensions? (note: $d=n+1$ from now on)

- Dahlberg (1977): $\Omega$ Lipschitz domain in $\mathbb{R}^{n+1}$, then $\omega \in A_{\infty}(\sigma)$.


## Introduction/History (continued)

What about higher dimensions? (note: $d=n+1$ from now on)

- Dahlberg (1977): $\Omega$ Lipschitz domain in $\mathbb{R}^{n+1}$, then $\omega \in A_{\infty}(\sigma)$.
- $A_{\infty}$ is quantitative, scale invariant version of absolute continuity.


## Introduction/History (continued)

What about higher dimensions? (note: $d=n+1$ from now on)

- Dahlberg (1977): $\Omega$ Lipschitz domain in $\mathbb{R}^{n+1}$, then $\omega \in A_{\infty}(\sigma)$.
- $A_{\infty}$ is quantitative, scale invariant version of absolute continuity.

Remark: it follows that Dirichlet problem solvable with $L^{p}$ data, some $p<\infty$ (in fact, in Lip domain can take $p=2$ or even $2-\varepsilon$ ).

## Introduction/History (continued)

$A_{\infty}$ more precisely:

- $\omega \in A_{\infty}(\sigma)$ means that $\forall B$ centered on $\partial \Omega$ with $r_{B}<\operatorname{diam}(\partial \Omega)$, and $\forall$ Borel $E \subset \Delta:=B \cap \partial \Omega, X \in \Omega \backslash 4 B$

$$
\omega^{x}(E) \lesssim\left(\frac{\sigma(E)}{\sigma(\Delta)}\right)^{\theta} \omega^{x}(\Delta)
$$

## Introduction/History (continued)

$A_{\infty}$ more precisely:

- $\omega \in A_{\infty}(\sigma)$ means that $\forall B$ centered on $\partial \Omega$ with $r_{B}<\operatorname{diam}(\partial \Omega)$, and $\forall$ Borel $E \subset \Delta:=B \cap \partial \Omega, X \in \Omega \backslash 4 B$

$$
\omega^{x}(E) \lesssim\left(\frac{\sigma(E)}{\sigma(\Delta)}\right)^{\theta} \omega^{x}(\Delta)
$$

- weak- $A_{\infty}$ is the same but with $\omega^{X}(2 \Delta)$ on RHS.
I.e., weak $-A_{\infty}$ is $A_{\infty}$ but w/o doubling.


## Introduction/History (continued)

$A_{\infty}$ more precisely:

- $\omega \in A_{\infty}(\sigma)$ means that $\forall B$ centered on $\partial \Omega$ with $r_{B}<\operatorname{diam}(\partial \Omega)$, and $\forall$ Borel $E \subset \Delta:=B \cap \partial \Omega, X \in \Omega \backslash 4 B$

$$
\omega^{x}(E) \lesssim\left(\frac{\sigma(E)}{\sigma(\Delta)}\right)^{\theta} \omega^{x}(\Delta)
$$

- weak- $A_{\infty}$ is the same but with $\omega^{X}(2 \Delta)$ on RHS.
I.e., weak $-A_{\infty}$ is $A_{\infty}$ but w/o doubling.
- Note that $A_{\infty}$ and weak- $A_{\infty}$ are each quantitative, scale invariant versions of absolute continuity.


## Intro/History (continued)

- David-Jerison (1990), and independently Semmes: $\Omega$ "chord-arc" domain (aka CAD) in $\mathbb{R}^{n+1}$, then $\omega \in A_{\infty}(\sigma)$.

Definition: CAD $=$ NTA + ADR boundary

$$
\text { ADR: } \quad \sigma(\Delta(x, r)) \approx r^{n}
$$

NTA $=$ int. and ext. Corkscrew $(\mathrm{CS})+$ Harnack Chains (HC)

## Intro/History (continued)

- David-Jerison (1990), and independently Semmes: $\Omega$ "chord-arc" domain (aka CAD) in $\mathbb{R}^{n+1}$, then $\omega \in A_{\infty}(\sigma)$.

Definition: CAD $=$ NTA + ADR boundary

$$
\text { ADR: } \quad \sigma(\Delta(x, r)) \approx r^{n}
$$

NTA $=$ int. and ext. Corkscrew $(\mathrm{CS})+$ Harnack Chains $(H C)$

- CS: $\exists B^{\prime} \subset B \cap \Omega$, with $r_{B^{\prime}} \approx r_{B}$; denote by $X_{B}=$ center of $B^{\prime}$; this is a "CS point relative to $B$ ".
- HC: quantitative scale invariant path connectedness.


## Intro/History (continued)

Method of proof of [DJ]: ADR + 2-sided CS implies "Interior Big Pieces of Lipschitz Sub-Domains" (IBPLSD); i.e., for every $B$ centered on $\partial \Omega$, with $r_{B}<\operatorname{diam}(\partial \Omega), \exists$ subdomain $\Omega_{B} \subset \Omega \cap B$ s.t.

- $\Omega_{B}$ is a Lipschitz domain, with constants uniform in $B$.


## Intro/History (continued)

Method of proof of [DJ]: ADR + 2-sided CS implies "Interior Big Pieces of Lipschitz Sub-Domains" (IBPLSD); i.e., for every $B$ centered on $\partial \Omega$, with $r_{B}<\operatorname{diam}(\partial \Omega), \exists$ subdomain $\Omega_{B} \subset \Omega \cap B$ s.t.

- $\Omega_{B}$ is a Lipschitz domain, with constants uniform in $B$.
- $\exists \mathrm{CS}$ point $X_{B} \in \Omega_{B}, \mathrm{w} / \operatorname{dist}\left(X_{B}, \partial \Omega_{B}\right) \gtrsim r_{B}$.


## Intro/History (continued)

Method of proof of [DJ]: ADR + 2-sided CS implies "Interior Big Pieces of Lipschitz Sub-Domains" (IBPLSD); i.e., for every $B$ centered on $\partial \Omega$, with $r_{B}<\operatorname{diam}(\partial \Omega), \exists$ subdomain $\Omega_{B} \subset \Omega \cap B$ s.t.

- $\Omega_{B}$ is a Lipschitz domain, with constants uniform in $B$.
- $\exists \mathrm{CS}$ point $X_{B} \in \Omega_{B}, \mathrm{w} / \operatorname{dist}\left(X_{B}, \partial \Omega_{B}\right) \gtrsim r_{B}$.
- $\sigma\left(\partial \Omega_{B} \cap \partial \Omega\right) \gtrsim \sigma(\Delta) \approx r_{B}^{n}$ (uniformly in $B$ ).
(Here, as usual $\Delta=B \cap \partial \Omega$ ).


## Intro/History (continued)

Method of proof of [DJ]: ADR + 2-sided CS implies "Interior Big Pieces of Lipschitz Sub-Domains" (IBPLSD); i.e., for every $B$ centered on $\partial \Omega$, with $r_{B}<\operatorname{diam}(\partial \Omega), \exists$ subdomain $\Omega_{B} \subset \Omega \cap B$ s.t.

- $\Omega_{B}$ is a Lipschitz domain, with constants uniform in $B$.
- $\exists \mathrm{CS}$ point $X_{B} \in \Omega_{B}, \mathrm{w} / \operatorname{dist}\left(X_{B}, \partial \Omega_{B}\right) \gtrsim r_{B}$.
- $\sigma\left(\partial \Omega_{B} \cap \partial \Omega\right) \gtrsim \sigma(\Delta) \approx r_{B}^{n}$ (uniformly in $B$ ).
(Here, as usual $\Delta=B \cap \partial \Omega$ ).
- Remark: $\exists$ a refinement of this result due to M . Badger in absence of upper ADR bound.


## Intro/History (continued)

Q: why does this give $A_{\infty}$ ?

- IBPLSD implies: by Dahlberg (applied in $\Omega_{B}$ ), plus maximum principle, obtain $\exists \eta \in(0,1)$ s.t. for Borel $E \subset \Delta$,
(*) $\quad \sigma(E) \geq(1-\eta) \sigma(\Delta) \quad \Longrightarrow \quad \omega^{X_{B}}(E) \gtrsim 1$.
(Note: non-degeneracy at one scale).


## Intro/History (continued)

Q: why does this give $A_{\infty}$ ?

- IBPLSD implies: by Dahlberg (applied in $\Omega_{B}$ ), plus maximum principle, obtain $\exists \eta \in(0,1)$ s.t. for Borel $E \subset \Delta$,
(*) $\quad \sigma(E) \geq(1-\eta) \sigma(\Delta) \quad \Longrightarrow \quad \omega^{X_{B}}(E) \gtrsim 1$.
(Note: non-degeneracy at one scale).
- Then use pole change formula for harmonic measure (uses HC ), to change scales, i.e., to improve to $\omega \in A_{\infty}(\sigma)$.


## Intro/History (continued)

- Bennewitz-Lewis (2004): $\Omega$ 2-sided CS w/ ADR boundary, then $\omega \in$ weak- $A_{\infty}(\sigma)$ (Note: no HC assumption).


## Intro/History (continued)

- Bennewitz-Lewis (2004): $\Omega$ 2-sided CS w/ ADR boundary, then $\omega \in$ weak $-A_{\infty}(\sigma)$ (Note: no HC assumption).
- Again by [DJ] have IBPLSD, hence again have (*).


## Intro/History (continued)

- Bennewitz-Lewis (2004): $\Omega$ 2-sided CS w/ ADR boundary, then $\omega \in$ weak $-A_{\infty}(\sigma)$ (Note: no HC assumption).
- Again by [DJ] have IBPLSD, hence again have (*).
- w/o HC, pole change formula unavailable; [BL] argument "changes pole w/o pole change formula", this (necessarily) introduces errors which result in non-doubling; weak- $A_{\infty}$ is best possible conclusion.


## Converses

## Some Converse results:

- Lewis - Vogel (2007): $\partial \Omega$ ADR, $\omega \approx \sigma$; i.e., $k:=\frac{d \omega}{d \sigma} \approx 1$ (after normalizing). Then $\partial \Omega$ is Uniformly Rectifiable (UR) (quantitative scale invariant version of rectifiability -David-Semmes).


## Converses

## Some Converse results:

- Lewis - Vogel (2007): $\partial \Omega$ ADR, $\omega \approx \sigma$; i.e., $k:=\frac{d \omega}{d \sigma} \approx 1$ (after normalizing). Then $\partial \Omega$ is Uniformly Rectifiable (UR) (quantitative scale invariant version of rectifiability -David-Semmes).
- S.H. - Martell (2016): same result under weaker assumption $\omega \in$ weak- $A_{\infty}(\sigma)$


## Converses

## Some Converse results:

- Lewis - Vogel (2007): $\partial \Omega$ ADR, $\omega \approx \sigma$; i.e., $k:=\frac{d \omega}{d \sigma} \approx 1$ (after normalizing). Then $\partial \Omega$ is Uniformly Rectifiable (UR) (quantitative scale invariant version of rectifiability -David-Semmes).
- S.H. - Martell (2016): same result under weaker assumption $\omega \in$ weak- $A_{\infty}(\sigma)$

Proof idea (both papers), based on Alt-Caffarelli technique: small oscillation of $\nabla G$ plus non-degeneracy of $\nabla G$ implies flatness.

## Recent Results (posted late 2017- early 2018)

- J. Azzam: $\partial \Omega$ ADR, then

$$
\omega \in A_{\infty}(\sigma) \quad \Longleftrightarrow \quad \partial \Omega \text { UR and } \Omega \text { "semi-uniform" }(\mathrm{S}-\mathrm{U}) .
$$

S-U almost like interior CS + HC (uniform domain) except only assume HC joining interior points to boundary points (e.g., allows "slit disk").

## Recent Results (posted late 2017- early 2018)

- J. Azzam: $\partial \Omega$ ADR, then
$\omega \in A_{\infty}(\sigma) \quad \Longleftrightarrow \quad \partial \Omega$ UR and $\Omega$ "semi-uniform" (S-U).
S-U almost like interior CS + HC (uniform domain) except only assume HC joining interior points to boundary points (e.g., allows "slit disk").

Proof ingredients:

- $\omega$ doubling $\Longleftrightarrow \Omega$ is S-U (improved Aikawa result). (Remark: doubling of $\omega \Longrightarrow$ interior CS "cheaply".)


## Recent Results (posted late 2017- early 2018)

- J. Azzam: $\partial \Omega$ ADR, then
$\omega \in A_{\infty}(\sigma) \quad \Longleftrightarrow \quad \partial \Omega$ UR and $\Omega$ "semi-uniform" (S-U).
S-U almost like interior CS + HC (uniform domain) except only assume HC joining interior points to boundary points (e.g., allows "slit disk").

Proof ingredients:

- $\omega$ doubling $\Longleftrightarrow \Omega$ is S-U (improved Aikawa result).
(Remark: doubling of $\omega \Longrightarrow$ interior CS "cheaply".)
- $\omega \in A_{\infty} \Longrightarrow \partial \Omega$ UR by S.H. - Martell.


## Recent Results (posted late 2017- early 2018)

- J. Azzam: $\partial \Omega$ ADR, then

$$
\omega \in A_{\infty}(\sigma) \quad \Longleftrightarrow \quad \partial \Omega \text { UR and } \Omega \text { "semi-uniform" }(\mathrm{S}-\mathrm{U}) .
$$

S-U almost like interior CS + HC (uniform domain) except only assume HC joining interior points to boundary points (e.g., allows "slit disk").

Proof ingredients:

- $\omega$ doubling $\Longleftrightarrow \Omega$ is S-U (improved Aikawa result). (Remark: doubling of $\omega \Longrightarrow$ interior CS "cheaply".)
- $\omega \in A_{\infty} \Longrightarrow \partial \Omega$ UR by S.H. - Martell.
- UR + S-U implies IBPCAD; so, get (*) by M.P. + [DJ], improve to weak $-A_{\infty}$ by [BL], then S-U gives doubling, hence $A_{\infty}$.


## Recent Results (continued)

Remark: note that connectivity in Azzam's result (S-U condition) is about doubling, not about absolute continuity.

OTOH, in light of Bishop-Jones example, the question remains: what is minimal connectivity assumption, which, in conjunction with UR, yields quantitative absolute continuity of harmonic measure?

## Recent Results (continued)

Remark: note that connectivity in Azzam's result (S-U condition) is about doubling, not about absolute continuity.

OTOH, in light of Bishop-Jones example, the question remains: what is minimal connectivity assumption, which, in conjunction with UR, yields quantitative absolute continuity of harmonic measure?

- Combining work of two different groups of authors, we can now answer this.


## Recent Results (continued)

## Theorem

Let $\Omega \subset \mathbb{R}^{n+1}$ be an open set with interior $C S$, and ADR boundary. Then TFAE:
(1) $\partial \Omega$ is UR, and $\Omega$ satisfies "Weak Local John" (WLJ) condition.
(2) $\Omega$ satisfies Interior Big Pieces of Chord-Arc Domains (IBPCAD).
(3) $\omega \in$ weak $-A_{\infty}(\sigma)$.

WLJ entails connected non-tangential path from CS point $X_{B}$ to a "big piece" portion of $\Delta=B \cap \partial \Omega$; (could also be thought of as "Weak Local S-U").

## Recent Results (continued)

## Evolution of this result:

- $(1) \Longrightarrow(2)$ new result of S.H. - Martell


## Recent Results (continued)

## Evolution of this result:

- $(1) \Longrightarrow(2)$ new result of S.H. - Martell
- $(2) \Longrightarrow(3)$ immediate from M.P. plus [DJ] plus [BL] as described above.


## Recent Results (continued)

## Evolution of this result:

- $(1) \Longrightarrow(2)$ new result of S.H. - Martell
- $(2) \Longrightarrow(3)$ immediate from M.P. plus [DJ] plus [BL] as described above.
- (3) $\Longrightarrow$ (1) has two parts: weak $-A_{\infty} \Longrightarrow$ UR is S.H. Martell result mentioned earlier; weak $-A_{\infty} \Longrightarrow$ WLJ is new result of Azzam-Mourgoglou-Tolsa.


## Recent Results (continued)

## Evolution of this result:

- $(1) \Longrightarrow(2)$ new result of S.H. - Martell
- $(2) \Longrightarrow(3)$ immediate from M.P. plus [DJ] plus [BL] as described above.
- (3) $\Longrightarrow$ (1) has two parts: weak $-A_{\infty} \Longrightarrow$ UR is S.H. Martell result mentioned earlier; weak $-A_{\infty} \Longrightarrow$ WLJ is new result of Azzam-Mourgoglou-Tolsa.

Remark: direct proof $(1) \Longrightarrow(3)$ is slightly earlier result (a few months ago) of S.H. - Martell.
Remark: background hypotheses (upper and lower ADR, interior CS are in nature of best possible $-\exists$ C.E. in absence of any one of them.

## Recent Results (continued)

## Proof ingredients:

- $(1) \Longrightarrow(2)$ : Corona approximation of UR set by CAD's (S.H. - Martell - Mayboroda 2016) plus 2-parameter bootstrapping scheme based on "extrapolation of Carleson measures" (J. Lewis).
- $(3) \Longrightarrow(1):$ (new part of $[A M T])$ use of Alt-Caffarelli-Friedman monotonicity formula to establish connectivity.


## Thank you

## Thank you!

