Strong Comparison Principle for p-harmonic functions in Carnot-Caratheodory spaces

Xiaodan Zhou Worcester Polytechnic Institute

Joint work with Luca Capogna

April 22, 2018

X. Zhou (WPI)

Strong Comparison Principle

April 22, 2018 1 / 14

Let $\Omega \subset \mathbb{R}^n$ be an open, connected set and $u : \Omega \to \mathbb{R}$.

$$-\Delta u = 0.$$

Strong Comparison Principle: Suppose $u, v \in C^2(\Omega) \cup C(\overline{\Omega})$ are harmonic in Ω . If $u \ge v$ in Ω , then either u = v or u > v in Ω .

Let $\Omega \subset \mathbb{R}^n$ be an open, connected set and $u : \Omega \to \mathbb{R}$.

$$-\Delta u = 0.$$

Strong Comparison Principle: Suppose $u, v \in C^2(\Omega) \cup C(\overline{\Omega})$ are harmonic in Ω . If $u \ge v$ in Ω , then either u = v or u > v in Ω .

For $1 \leq p < \infty$, the *p*-Laplace equation is defined by

$$L_p u = -div(|\nabla u|^{p-2}\nabla u) = 0.$$

Strong Comparison Principle remains open for $n \geq 3$.

See [Manfredi, '88] for the proof in \mathbb{R}^2 . See [Tolksdorf, '83] with extra condition that $|\nabla v| \ge \delta$ for some positive constant $\delta > 0$ in $\Omega \subset \mathbb{R}^n$.

Subelliptic *p*-Laplacian

Let $\Omega \subset \mathbb{R}^n$ be an open and connected set, and consider a family of smooth vector fields X_1, \dots, X_m in \mathbb{R}^n satisfying Hörmander's finite rank condition,

$$\operatorname{rank} \operatorname{Lie}[X_1, \cdots, X_m](x) = n, \tag{1}$$

for all $x \in \Omega$. We set

$$Xu = (X_1u, \cdots, X_mu).$$

We study the following class of equations

$$L_{p}u = \sum_{j=1}^{m} X_{j}^{*}(A_{j}(Xu)) = \sum_{j=1}^{m} X_{j}^{*}(|Xu|^{p-2}X_{j}u) = f(x, u),$$
(2)

where X_j^* denote the L^2 adjoint of the operator X_j with respect to the Lebesgue measure and we can write $X_j^* u = -X_j u - d_j(x)u$.

Structure conditions

The functions A_j $(A_j(\xi) = |\xi|^{p-2}\xi_j)$ satisfy the following ellipticity and growth condition: For p > 1, for a.e. $\xi \in \mathbb{R}^m$ and for every $\eta \in \mathbb{R}^m$,

$$\sum_{i,j=1}^{m} \frac{\partial A_j}{\partial \xi_i}(\xi) \eta_i \eta_j \ge \beta (\kappa + |\xi|)^{p-2} |\eta|^2$$

$$\sum_{i,j=1}^{m} |\frac{\partial A_j}{\partial \xi_i}(\xi)| \le \gamma (\kappa + |\xi|)^{p-2}$$
(3)

for some positive constants β, γ , and for $\kappa \geq 0$.

Structure conditions

The functions A_j $(A_j(\xi) = |\xi|^{p-2}\xi_j)$ satisfy the following ellipticity and growth condition: For p > 1, for a.e. $\xi \in \mathbb{R}^m$ and for every $\eta \in \mathbb{R}^m$,

$$\sum_{i,j=1}^{m} \frac{\partial A_j}{\partial \xi_i}(\xi) \eta_i \eta_j \ge \beta (\kappa + |\xi|)^{p-2} |\eta|^2$$

$$\sum_{i,j=1}^{m} |\frac{\partial A_j}{\partial \xi_i}(\xi)| \le \gamma (\kappa + |\xi|)^{p-2}$$
(3)

for some positive constants β, γ , and for $\kappa \geq 0$. One can deduce that there exists positive constant λ, C such that for all $\xi \in \mathbb{R}^m$,

$$\langle A_{j}(\xi) - A_{j}(\xi'), \xi - \xi' \rangle \geq \begin{cases} \lambda (1 + |\xi| + |\xi'|)^{p-2} |\xi - \xi'|^{2} & \text{if } 1 \le p \le 2\\ \lambda |\xi - \xi'|^{p} & \text{if } 2 \le p < \infty, \end{cases}$$
(4)

and

$$|A_{j}(\xi)| \le C(\kappa + |\xi|)^{p-2} |\xi|.$$
(5)

The following lemma is an immediate consequence of the monotonicity inequality (4).

Lemma (Weak Comparison Principle)

Let $\Omega \subset \mathbb{R}^n$ be an open and connected set and $v_1, v_2 \in C^1(\Omega)$ satisfy in a weak sense

$$\begin{cases} L_{\rho}v_{2} \leq f(x, v_{2}) & \text{in } \Omega \\ L_{\rho}v_{1} \geq f(x, v_{1}) & \text{in } \Omega, \end{cases}$$

with A_j satisfying the structure conditions (3) and $\partial_u f(x, u) \leq 0$. If $v_2 \leq v_1$ in $\partial \Omega$, then $v_2 \leq v_1$ in Ω .

Strong Comparison Principle

In addition to the structure conditions (3), our strong comparison principle holds under the following hypothesis:

(i)
$$\partial_u f \leq 0 \text{ in } \Omega$$
,
(ii) $|f(x, u_2 + \epsilon) - f(x, u_2)| \leq L\epsilon$, for any $\epsilon \in [0, \epsilon_0], x \in \Omega$ (6)

Theorem (Strong Comparison Principle)

Let $\Omega \subset \mathbb{R}^n$ be a connected open set and consider two weak solutions $u_1 \in C^1(\overline{\Omega})$, and $u_2 \in C^2(\overline{\Omega})$ of (2) in Ω , with $|Xu_2| \ge \delta$ in Ω for some $\delta > 0$. We assume that the structure conditions (3), and the hypothesis (6) are satisfied. If

$$u_1 \geq u_2$$
 in Ω ,

then either $u_1 = u_2$ or

 $u_1 > u_2$ in Ω .

Definition

Let *F* be a relatively closed subset of Ω . We say that a vector $\mathbf{v} \in \mathbb{R}^n \setminus \{0\}$ is (exterior) normal to *F* at a point $y \in \Omega \cap \partial F$ if

$$\overline{B(y+\mathbf{v},|\mathbf{v}|)} \subset (\Omega \setminus F) \cup \{y\}.$$

If this inclusion holds, we write $\mathbf{v} \perp F$ at y. Set

 $F^* = \{ y \in \Omega \cap \partial F : \text{there exists } \mathbf{v} \text{ such that } \mathbf{v} \perp F \text{ at } y \}.$

Note when Ω is connected and $\emptyset \neq F \neq \Omega$, we have $F^* \neq \emptyset$.

Definition

Let X be vector field in Ω and $F \subset \Omega$ be a closed set. We say that X is tangent to F if, for all $x_0 \in F^*$ and all vectors v normal to F at x_0 one has that their Euclidean product vanishes, i.e. $\langle X(x_0), v \rangle = 0$.

Theorem (Bony, 1969)

Let $\Omega \subset \mathbb{R}^n$ be an open set and $F \subset \Omega$ a closed subset. Let X be a Lipschitz vector field in Ω . Then X is tangent to F iff all its integral curves that intersect F are entirely contained in F.

Theorem (Bony, 1969)

Let $\Omega \subset \mathbb{R}^n$ be an open set and $F \subset \Omega$ a closed subset. Let $X_1, ..., X_m$ be smooth vector fields in Ω . If $X_1, ..., X_m$ are tangent to F then so is the Lie algebra they generate.

As a corollary, if $X_1, ..., X_m$ satisfy Hörmander finite rank condition (1) and are all tangent to F then every curve that touches F is entirely contained in F, so that either F is the empty set or $F = \Omega$.

イロト 不得下 イヨト イヨト 二日

A Hopf-type Comparison Principle

The key to the Strong Comparison Principle is the following result:

Lemma (A Hopf-type Comparison Principle)

Let $\Omega \subset \mathbb{R}^n$ be an open and connected set and $v_1 \in C^1(\Omega)$, $v_2 \in C^2(\Omega)$ with $|Xv_2| \geq \delta$ in Ω satisfy

$$\begin{cases} v_2 \leq v_1 & \text{in } \Omega\\ L_p v_2 \leq f(x, v_2) & \text{in } \Omega\\ L_p v_1 \geq f(x, v_1) & \text{in } \Omega. \end{cases}$$

Set $F = \{x \in \Omega : v_2(x) = v_1(x)\}$. If the structure conditions (3) and hypothesis (6) are satisfied and $\emptyset \neq F \neq \Omega$, then for every $y \in F^*$ and $\mathbf{v} \perp F$ at y, it follows that

$$\langle X_i(y), \mathbf{v}
angle = 0$$

for all $i = 1, \cdots, m$.

X. Zhou (WPI)

(7)

We argue by contradiction and suppose that there exists $y \in F^*$, a vector $\mathbf{v} \perp F$ at y, and $i \in \{1, \dots, m\}$ such that $\langle X_i(y), \mathbf{v} \rangle \neq 0$.

Let $z = y + \mathbf{v}$ and $r = |\mathbf{v}|$. We define

$$\sigma_i(x) := \langle X_i(x), x - z \rangle \qquad \sigma(x) = (\sigma_1(x), ..., \sigma_m(x)),$$

$$\tilde{b}(x) = e^{-\alpha |x - z|^2} \qquad b(x) = \alpha^{-2} (\tilde{b}(x) - e^{-\alpha r^2}).$$

Let V be a neighborhood of y and $U = V \cap B(z, r)$ and express its boundary as the union of two components

$$\partial U = \Gamma_1 \cup \Gamma_2,$$

where $\Gamma_1 = \overline{B(z,r)} \cap \partial V$ and $\Gamma_2 = \overline{V} \cap \partial B(z,r)$.

Proof of the Hopf-type Comparison Principle

By direct calculation and applying structure conditions (3), one obtains

$$L_p b(x) \leq -\tilde{b}(x)(\kappa + |Xb|)^{p-2} \Big(4\beta |\sigma|^2 - 2\alpha^{-1}M_1\gamma\Big).$$

Proof of the Hopf-type Comparison Principle

By direct calculation and applying structure conditions (3), one obtains

$$L_p b(x) \leq -\tilde{b}(x)(\kappa + |Xb|)^{p-2} \bigg(4\beta |\sigma|^2 - 2\alpha^{-1}M_1\gamma\bigg).$$

Further calculation combined with (6) and $|X_{v_2}| \ge \delta$ in Ω imply that

$$\begin{split} \mathcal{L}_{p}(b+v_{2}) &= -\sum_{i,j=1}^{m} \frac{\partial A_{j}}{\partial \xi_{i}} (X(b+v_{2})) X_{j} X_{i}(b+v_{2}) + d_{j} A_{j} (Xb+Xv_{2}) \\ &= -\sum_{i,j=1}^{m} \left(\frac{\partial A_{j}}{\partial \xi_{i}} (X(b+v_{2})) - \frac{\partial A_{j}}{\partial \xi_{i}} (Xv_{2}) \right) X_{j} X_{i}(b+v_{2}) \\ &- \sum_{i,j=1}^{m} \frac{\partial A_{j}}{\partial \xi_{i}} (Xv_{2}) X_{j} X_{i} b - \sum_{i,j=1}^{m} \frac{\partial A_{j}}{\partial \xi_{i}} (Xv_{2}) X_{j} X_{i} v_{2} + d_{j} A_{j} (Xb+Xv_{2}) \end{split}$$

 $\leq (-\epsilon_1 + M_2\epsilon_2\alpha^{-1} + C\alpha^{-1}|\sigma(x)|)\tilde{b}(x) + L|b| + f(x, b + v_2).$

Proof of the Hopf-type Comparison Principle

By choosing α sufficiently large, one obtains

$$\begin{cases} v_2 + b \le v_1 & \text{in } \partial U \\ L_{\rho}(v_2 + b) \le f(x, b + v_2) & \text{in } U \\ L_{\rho}v_1 \ge f(x, v_1) & \text{in } U. \end{cases}$$

The Weak Comparison Principle in Lemma 1 implies that $v_2 + b \le v_1$ in U. Finally, we observe that

$$0 = \langle \mathbf{v}, \nabla(v_2 - v_1)(y) \rangle = \lim_{t \to 0^+} \frac{v_2(y + t\mathbf{v}) - v_1(y + t\mathbf{v}) - (v_2(y) - v_1(y))}{t}$$
$$\leq -\langle \mathbf{v}, \nabla b(y) \rangle$$
$$= -2\alpha^{-1}r^2e^{-\alpha r^2} < 0.$$

Strong Maximum Principle

We also prove a non-homogenous strong maximum/minimum principle. We suppose that f satisfy the following conditions: for all $x \in \Omega$ and $u \in \mathbb{R}$,

(i)
$$\partial_u f \leq 0,$$

(ii) $|f(x,u)| \leq \overline{C}(\kappa + |u|)^{p-2}|u|$
(8)

for some positive constant \overline{C} and κ as in the structure conditions (3).

Theorem (Strong Maximum Principle)

Let $\Omega \subset \mathbb{R}^n$ be a connected open set and consider a weak solution $u \in C^1(\overline{\Omega})$ of (2) in Ω . We assume that the structure conditions (3) and the hypothesis (8) hold. If

$$u \ge 0$$
 in Ω ,

then either u = 0 or

$$u > 0$$
 in Ω .

X. Zhou (WPI)

Thank you!

2

< 47 ▶