Strong Comparison Principle for p-harmonic functions in Carnot-Caratheodory spaces

Xiaodan Zhou
Worcester Polytechnic Institute
Joint work with Luca Capogna

April 22, 2018

Introduction

Let $\Omega \subset \mathbb{R}^{n}$ be an open, connected set and $u: \Omega \rightarrow \mathbb{R}$.

$$
-\Delta u=0
$$

Strong Comparison Principle: Suppose $u, v \in C^{2}(\Omega) \cup C(\bar{\Omega})$ are harmonic in Ω. If $u \geq v$ in Ω, then either $u=v$ or $u>v$ in Ω.

Introduction

Let $\Omega \subset \mathbb{R}^{n}$ be an open, connected set and $u: \Omega \rightarrow \mathbb{R}$.

$$
-\Delta u=0 .
$$

Strong Comparison Principle: Suppose $u, v \in C^{2}(\Omega) \cup C(\bar{\Omega})$ are harmonic in Ω. If $u \geq v$ in Ω, then either $u=v$ or $u>v$ in Ω.

For $1 \leq p<\infty$, the p-Laplace equation is defined by

$$
L_{p} u=-\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)=0 .
$$

Strong Comparison Principle remains open for $n \geq 3$.
See [Manfredi, '88] for the proof in \mathbb{R}^{2}. See [Tolksdorf, '83] with extra condition that $|\nabla v| \geq \delta$ for some positive constant $\delta>0$ in $\Omega \subset \mathbb{R}^{n}$.

Subelliptic p-Laplacian

Let $\Omega \subset \mathbb{R}^{n}$ be an open and connected set, and consider a family of smooth vector fields X_{1}, \cdots, X_{m} in \mathbb{R}^{n} satisfying Hörmander's finite rank condition,

$$
\begin{equation*}
\operatorname{rank} \operatorname{Lie}\left[X_{1}, \cdots, X_{m}\right](x)=n \tag{1}
\end{equation*}
$$

for all $x \in \Omega$. We set

$$
X u=\left(X_{1} u, \cdots, X_{m} u\right)
$$

We study the following class of equations

$$
\begin{equation*}
L_{p} u=\sum_{j=1}^{m} X_{j}^{*}\left(A_{j}(X u)\right)=\sum_{j=1}^{m} X_{j}^{*}\left(|X u|^{p-2} X_{j} u\right)=f(x, u) \tag{2}
\end{equation*}
$$

where X_{j}^{*} denote the L^{2} adjoint of the operator X_{j} with respect to the Lebesgue measure and we can write $X_{j}^{*} u=-X_{j} u-d_{j}(x) u$.

Structure conditions

The functions $A_{j}\left(A_{j}(\xi)=|\xi|^{p-2} \xi_{j}\right)$ satisfy the following ellipticity and growth condition: For $p>1$, for a.e. $\xi \in \mathbb{R}^{m}$ and for every $\eta \in \mathbb{R}^{m}$,

$$
\begin{align*}
& \sum_{i, j=1}^{m} \frac{\partial A_{j}}{\partial \xi_{i}}(\xi) \eta_{i} \eta_{j} \geq \beta(\kappa+|\xi|)^{p-2}|\eta|^{2} \\
& \sum_{i, j=1}^{m}\left|\frac{\partial A_{j}}{\partial \xi_{i}}(\xi)\right| \leq \gamma(\kappa+|\xi|)^{p-2} \tag{3}
\end{align*}
$$

for some positive constants β, γ, and for $\kappa \geq 0$.

Structure conditions

The functions $A_{j}\left(A_{j}(\xi)=|\xi|^{p-2} \xi_{j}\right)$ satisfy the following ellipticity and growth condition: For $p>1$, for a.e. $\xi \in \mathbb{R}^{m}$ and for every $\eta \in \mathbb{R}^{m}$,

$$
\begin{align*}
& \sum_{i, j=1}^{m} \frac{\partial A_{j}}{\partial \xi_{i}}(\xi) \eta_{i} \eta_{j} \geq \beta(\kappa+|\xi|)^{p-2}|\eta|^{2} \\
& \sum_{i, j=1}^{m}\left|\frac{\partial A_{j}}{\partial \xi_{i}}(\xi)\right| \leq \gamma(\kappa+|\xi|)^{p-2} \tag{3}
\end{align*}
$$

for some positive constants β, γ, and for $\kappa \geq 0$. One can deduce that there exists positive constant λ, C such that for all $\xi \in \mathbb{R}^{m}$,

$$
\left\langle A_{j}(\xi)-A_{j}\left(\xi^{\prime}\right), \xi-\xi^{\prime}\right\rangle \geq \begin{cases}\lambda\left(1+|\xi|+\left|\xi^{\prime}\right|\right)^{p-2}\left|\xi-\xi^{\prime}\right|^{2} & \text { if } 1 \leq p \leq 2 \tag{4}\\ \lambda\left|\xi-\xi^{\prime}\right|^{p} & \text { if } 2 \leq p<\infty\end{cases}
$$

and

$$
\begin{equation*}
\left|A_{j}(\xi)\right| \leq C(\kappa+|\xi|)^{p-2}|\xi| \tag{5}
\end{equation*}
$$

A Weak Comparison Principle

The following lemma is an immediate consequence of the monotonicity inequality (4).

Lemma (Weak Comparison Principle)

Let $\Omega \subset \mathbb{R}^{n}$ be an open and connected set and $v_{1}, v_{2} \in C^{1}(\Omega)$ satisfy in a weak sense

$$
\left\{\begin{array}{l}
L_{p} v_{2} \leq f\left(x, v_{2}\right) \quad \text { in } \Omega \\
L_{p} v_{1} \geq f\left(x, v_{1}\right) \quad \text { in } \Omega
\end{array}\right.
$$

with A_{j} satisfying the structure conditions (3) and $\partial_{u} f(x, u) \leq 0$. If $v_{2} \leq v_{1}$ in $\partial \Omega$, then $v_{2} \leq v_{1}$ in Ω.

Strong Comparison Principle

In addition to the structure conditions (3), our strong comparison principle holds under the following hypothesis:
(i) $\partial_{u} f \leq 0$ in Ω,
(ii) $\left|f\left(x, u_{2}+\epsilon\right)-f\left(x, u_{2}\right)\right| \leq L \epsilon$, for any $\epsilon \in\left[0, \epsilon_{0}\right], x \in \Omega$

Theorem (Strong Comparison Principle)

Let $\Omega \subset \mathbb{R}^{n}$ be a connected open set and consider two weak solutions $u_{1} \in C^{1}(\bar{\Omega})$, and $u_{2} \in C^{2}(\bar{\Omega})$ of (2) in Ω, with $\left|X u_{2}\right| \geq \delta$ in Ω for some $\delta>0$. We assume that the structure conditions (3), and the hypothesis (6) are satisfied. If

$$
u_{1} \geq u_{2} \text { in } \Omega
$$

then either $u_{1}=u_{2}$ or

$$
u_{1}>u_{2} \text { in } \Omega
$$

Bony's Propagation Method

Definition

Let F be a relatively closed subset of Ω. We say that a vector $\mathbf{v} \in \mathbb{R}^{n} \backslash\{0\}$ is (exterior) normal to F at a point $y \in \Omega \cap \partial F$ if

$$
\overline{B(y+\mathbf{v},|\mathbf{v}|)} \subset(\Omega \backslash F) \cup\{y\}
$$

If this inclusion holds, we write $\mathbf{v} \perp F$ at y. Set

$$
F^{*}=\{y \in \Omega \cap \partial F: \text { there exists } \mathbf{v} \text { such that } \mathbf{v} \perp F \text { at } y\} .
$$

Note when Ω is connected and $\emptyset \neq F \neq \Omega$, we have $F^{*} \neq \emptyset$.

Definition

Let X be vector field in Ω and $F \subset \Omega$ be a closed set. We say that X is tangent to F if, for all $x_{0} \in F^{*}$ and all vectors v normal to F at x_{0} one has that their Euclidean product vanishes, i.e. $\left\langle X\left(x_{0}\right), v\right\rangle=0$.

Bony's Propagation Method

Theorem (Bony, 1969)

Let $\Omega \subset \mathbb{R}^{n}$ be an open set and $F \subset \Omega$ a closed subset. Let X be a Lipschitz vector field in Ω. Then X is tangent to F iff all its integral curves that intersect F are entirely contained in F.

Theorem (Bony, 1969)

Let $\Omega \subset \mathbb{R}^{n}$ be an open set and $F \subset \Omega$ a closed subset. Let X_{1}, \ldots, X_{m} be smooth vector fields in Ω. If X_{1}, \ldots, X_{m} are tangent to F then so is the Lie algebra they generate.

As a corollary, if X_{1}, \ldots, X_{m} satisfy Hörmander finite rank condition (1) and are all tangent to F then every curve that touches F is entirely contained in F, so that either F is the empty set or $F=\Omega$.

A Hopf-type Comparison Principle

The key to the Strong Comparison Principle is the following result:

Lemma (A Hopf-type Comparison Principle)

Let $\Omega \subset \mathbb{R}^{n}$ be an open and connected set and $v_{1} \in C^{1}(\Omega), v_{2} \in C^{2}(\Omega)$ with $\left|X v_{2}\right| \geq \delta$ in Ω satisfy

$$
\begin{cases}v_{2} \leq v_{1} & \text { in } \Omega \tag{7}\\ L_{p} v_{2} \leq f\left(x, v_{2}\right) & \text { in } \Omega \\ L_{p} v_{1} \geq f\left(x, v_{1}\right) & \text { in } \Omega\end{cases}
$$

Set $F=\left\{x \in \Omega: v_{2}(x)=v_{1}(x)\right\}$. If the structure conditions (3) and hypothesis (6) are satisfied and $\emptyset \neq F \neq \Omega$, then for every $y \in F^{*}$ and $\mathbf{v} \perp F$ at y, it follows that

$$
\left\langle X_{i}(y), \mathbf{v}\right\rangle=0
$$

for all $i=1, \cdots, m$.

Proof of the Hopf-type Comparison Principle

We argue by contradiction and suppose that there exists $y \in F^{*}$, a vector $\mathbf{v} \perp F$ at y, and $i \in\{1, \cdots m\}$ such that $\left\langle X_{i}(y), \mathbf{v}\right\rangle \neq 0$.
Let $z=y+\mathbf{v}$ and $r=|\mathbf{v}|$. We define

$$
\begin{array}{rl}
\sigma_{i}(x):=\left\langle X_{i}(x), x-z\right\rangle & \sigma(x)=\left(\sigma_{1}(x), \ldots, \sigma_{m}(x)\right) \\
\tilde{b}(x)=e^{-\alpha|x-z|^{2}} & b(x)=\alpha^{-2}\left(\tilde{b}(x)-e^{-\alpha r^{2}}\right)
\end{array}
$$

Let V be a neighborhood of y and $U=V \cap B(z, r)$ and express its boundary as the union of two components

$$
\partial U=\Gamma_{1} \cup \Gamma_{2},
$$

where $\Gamma_{1}=\overline{B(z, r)} \cap \partial V$ and $\Gamma_{2}=\bar{V} \cap \partial B(z, r)$.

Proof of the Hopf-type Comparison Principle

By direct calculation and applying structure conditions (3), one obtains

$$
L_{p} b(x) \leq-\tilde{b}(x)(\kappa+|X b|)^{p-2}\left(4 \beta|\sigma|^{2}-2 \alpha^{-1} M_{1} \gamma\right)
$$

Proof of the Hopf-type Comparison Principle

By direct calculation and applying structure conditions (3), one obtains

$$
L_{p} b(x) \leq-\tilde{b}(x)(\kappa+|X b|)^{p-2}\left(4 \beta|\sigma|^{2}-2 \alpha^{-1} M_{1} \gamma\right)
$$

Further calculation combined with (6) and $\left|X v_{2}\right| \geq \delta$ in Ω imply that

$$
\begin{aligned}
L_{p}\left(b+v_{2}\right) & =-\sum_{i, j=1}^{m} \frac{\partial A_{j}}{\partial \xi_{i}}\left(X\left(b+v_{2}\right)\right) X_{j} X_{i}\left(b+v_{2}\right)+d_{j} A_{j}\left(X b+X v_{2}\right) \\
& =-\sum_{i, j=1}^{m}\left(\frac{\partial A_{j}}{\partial \xi_{i}}\left(X\left(b+v_{2}\right)\right)-\frac{\partial A_{j}}{\partial \xi_{i}}\left(X v_{2}\right)\right) X_{j} X_{i}\left(b+v_{2}\right) \\
& -\sum_{i, j=1}^{m} \frac{\partial A_{j}}{\partial \xi_{i}}\left(X v_{2}\right) X_{j} X_{i} b-\sum_{i, j=1}^{m} \frac{\partial A_{j}}{\partial \xi_{i}}\left(X v_{2}\right) X_{j} X_{i} v_{2}+d_{j} A_{j}\left(X b+X v_{2}\right) \\
& \leq\left(-\epsilon_{1}+M_{2} \epsilon_{2} \alpha^{-1}+C \alpha^{-1}|\sigma(x)|\right) \tilde{b}(x)+L|b|+f\left(x, b+v_{2}\right) .
\end{aligned}
$$

Proof of the Hopf-type Comparison Principle

By choosing α sufficiently large, one obtains

$$
\begin{cases}v_{2}+b \leq v_{1} & \text { in } \partial U \\ L_{p}\left(v_{2}+b\right) \leq f\left(x, b+v_{2}\right) & \text { in } U \\ L_{p} v_{1} \geq f\left(x, v_{1}\right) & \text { in } U\end{cases}
$$

The Weak Comparison Principle in Lemma 1 implies that $v_{2}+b \leq v_{1}$ in U. Finally, we observe that

$$
\begin{aligned}
0=\left\langle\mathbf{v}, \nabla\left(v_{2}-v_{1}\right)(y)\right\rangle & =\lim _{t \rightarrow 0^{+}} \frac{v_{2}(y+t \mathbf{v})-v_{1}(y+t \mathbf{v})-\left(v_{2}(y)-v_{1}(y)\right)}{t} \\
& \leq-\langle\mathbf{v}, \nabla b(y)\rangle \\
& =-2 \alpha^{-1} r^{2} e^{-\alpha r^{2}}<0
\end{aligned}
$$

Strong Maximum Principle

We also prove a non-homogenous strong maximum/minimum principle. We suppose that f satisfy the following conditions: for all $x \in \Omega$ and $u \in \mathbb{R}$,

$$
\begin{align*}
& \text { (i) } \partial_{u} f \leq 0 \\
& \text { (ii) }|f(x, u)| \leq \bar{C}(\kappa+|u|)^{p-2}|u| \tag{8}
\end{align*}
$$

for some positive constant \bar{C} and κ as in the structure conditions (3).

Theorem (Strong Maximum Principle)

Let $\Omega \subset \mathbb{R}^{n}$ be a connected open set and consider a weak solution $u \in C^{1}(\bar{\Omega})$ of (2) in Ω. We assume that the structure conditions (3) and the hypothesis (8) hold. If

$$
u \geq 0 \text { in } \Omega
$$

then either $u=0$ or

$$
u>0 \text { in } \Omega \text {. }
$$

Thank you!

