The Brunn-Minkowski inequality and a Minkowski problem for \mathcal{A}-harmonic Green's functions

Andrew Vogel

SYRACUSE UNIVERSITY

College of Arts \& Sciences
Mathematics

April 14, Hartford AMS special special session

The question and the plan

This was joint work with Murat Akman, John Lewis, Olli Saari and just accepted in Advances in Calculus of Variations.

Background: For $1<p<n$, in \mathbb{R}^{n}, using a generalization of p-capacity for operators \mathcal{A} of p-Laplace type an \mathcal{A}-capacitary function (for E compact, convex with positive capacity) was used to solve the Brunn-Minkowski inequality and a Minkowski problem in The Brunn-Minkowski inequality and a Minkowski problem for nonlinear capacity with Akman, Gong, Hineman, Lewis, which followed Jerison and CNSXYZ.
Question: What to do when $n \leq p<\infty$ since p-capacity is no longer useful?
Plan: Try to generalize logarithmic capacity when $p=n$ to $n<p<\infty$ for p-Laplace type operators.

\mathcal{A}-harmonic equations, solutions

- For $p, \alpha \in(1, \infty), \mathcal{A}: \mathcal{R}^{n} \backslash\{0\} \rightarrow \mathcal{R}^{n}$ belongs to the class $\mathcal{M}_{p}(\alpha)$ if it has continuous derivatives and satisfies ellipticity and homogeneity conditions
(i) $\frac{1}{\alpha}|\eta|^{p-2}|\boldsymbol{n}|^{2} \leq \sum_{i, j=1}^{n} \frac{\partial \mathcal{A}_{i}}{\partial \eta_{j}}(\eta) \boldsymbol{n}_{i} \boldsymbol{n}_{j}$ and $\sum_{i=1}^{n}\left|\nabla \mathcal{A}_{i}(\eta)\right| \leq \alpha|\eta|^{p-2}$
(ii) $\mathcal{A}(\eta)=|\eta|^{p-1} \mathcal{A}\left(\frac{\eta}{|\eta|}\right)$, for all $\eta \neq 0$ set $\mathcal{A}(0)=0$.
- $u \in W_{\text {loc }}^{1, p}(U)$ is \mathcal{A}-harmonic in open set $U \subset \mathcal{R}^{n}$ means: for all open G with $\bar{G} \subset U$

$$
\int \mathcal{A}(\nabla u(y)) \cdot \nabla \theta(y) d y=0 \text { for all } \theta \in W_{0}^{1, p}(G)
$$

shorthand version is $\nabla \cdot \nabla \mathcal{A}(\nabla u)=0$

Examples of $\mathcal{A} \in \mathcal{M}_{p}(\alpha)$

- p-Laplace: Let $f(\eta)=\frac{1}{p}|\eta|^{p}$ set $\mathcal{A}(\eta)=\nabla f(\eta)=|\eta|^{p-2} \eta$ this gives the equation $\nabla \cdot|\nabla u|^{p-2} \nabla u=0$
- Whenever f is p-homogeneous and $\mathcal{A}(\eta)=\nabla f(\eta)$, then the ellipticity condition on \mathcal{A} says $\eta \cdot D^{2} f(\eta) \eta=p(p-1) f(\eta) \geq \frac{1}{\alpha}|\eta|^{p}$.
- For $f(\eta)=\left(1+\frac{\epsilon \eta_{1}}{|\eta|}\right)|\eta|^{p}$ with $\epsilon>0$ small enough $\mathcal{A}(\eta)=\nabla f(\eta)$ is not rotationally invariant.
- For $u \mathcal{A}$-harmonic on U and $T: V \rightarrow U$ a rotation then $\tilde{u}(z)=u(T z)$ is $\tilde{\mathcal{A}}$-harmonic in V where $\tilde{\mathcal{A}} \in \mathcal{M}_{p}(\alpha)$

In particular: if u is \mathcal{A}-harmonic then $1-u$ is $\tilde{\mathcal{A}}$-harmonic where $\tilde{\mathcal{A}}(\eta)=-\mathcal{A}(-\eta)$, here \mathcal{A} and $\tilde{\mathcal{A}}$ are in the same class $\mathcal{M}_{p}(\alpha)$

The associated \mathcal{A}-harmonic measure

For $E \subset B(0, R)$ a nonempty, convex, compact set (containing at least two points when $p=n$) and $u>0$ an \mathcal{A}-harmonic function in $B(0,4 R) \backslash E$ with $u=0$ on ∂E in an appropriate Sobolev sense there is a unique positive finite Borel measure ν with support in E associated to u so that

$$
\int \mathcal{A}(\nabla u(y)) \cdot \nabla \phi(y) d y=-\int \phi d \nu \text { for all } \phi \in C_{0}^{\infty}(B(0,2 R))
$$

In the harmonic case $p=2$ and $\mathcal{A}(\eta)=\nabla \frac{1}{2}|\eta|^{2}$

$$
d \nu(y)=2|\nabla u(y)| d H^{n-1}(y)
$$

In case $\mathcal{A}(\eta)=\nabla f(\eta)$ and there is enough regularity (Lemma 8.2)

$$
d \nu(y)=p \frac{f(\nabla u(y))}{|\nabla u(y)|} d H^{n-1}(y)
$$

Capacity when $p=n$?

- When $\mathcal{A}(\eta)=\nabla \frac{1}{p}|\eta|^{p}$ the p-capacity of a compact, convex set E with nonempty interior is

$$
\operatorname{Cap}_{p}(E)=\inf \left\{\int|\nabla v(x)|^{p} d x \mid v \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right), v=1 \text { on } E\right\}
$$

and the infimum is attained by a function u called the p-capacitary function. For $1<p<n$ this is the function considered in the previous work on Brunn-Minkowski and Minkowski.

- For $p \geq n$ the p-capacity of any ball is 0 , see HKM.
- Borell for $p=n=2$, Colesanti and Salani for $p=n>2$ consider the logarithmic capacity and study it in the Brunn-Minkowski inequality.

The plan for $p \geq n$ and $\mathcal{A} \in \mathcal{M}_{p}(\alpha)$

1. Get a \mathcal{A}-harmonic fundamental solution $F(x)$ with pole at 0 .
2. For a compact convex set E (containing at least two points if $p=n$), get a \mathcal{A}-harmonic Green's function $G(x)$ with pole at infinity
3. Show that $G(x)=F(x)+k(x)$ and $k(\infty)$ exists. $k(\infty) \leq 0$ when $n<p<\infty$
4. for $p=n$ set $C(E)=e^{-k(\infty) / \gamma}$ then C is homogeneous of degree one
5. for $n<p<\infty$ set $C(E)=(-k(\infty))^{p-1}$ then $C^{\frac{1}{p-n}}$ is homogeneous of degree one
6. show Brunn-Minkowski for these 1-homogeneous set functions

More explicitly for $p=n, \mathcal{A} \in \mathcal{M}_{n}(\alpha)$

There is a unique, set $F\left(e_{1}\right)=1$, fundamental solution with pole at $0, F(x)$, satisfying
F is \mathcal{A}-harmonic in $\mathbb{R}^{n} \backslash\{0\}$

$$
\int \mathcal{A}(\nabla F(x)) \cdot \nabla \theta(x) d x=-\theta(0) \text { for all } \theta \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)
$$

$$
F(x)=\gamma \log |x|+b(x /|x|) \quad \text { for } x \neq 0, \gamma>0, b \in C^{1, \sigma} \text { of a }
$$

nhbd of the unit sphere, $\frac{1}{c} \leq \nabla F(z) \cdot z \leq|z||\nabla F(z)| \leq c$
Given a compact, convex set E containing at least two points there is a unique Green's function with pole at infinity $G(x)$ satisfying
G is \mathcal{A}-harmonic in E^{c} with continuous boundary value 0 on ∂E
$G(x)=F(x)+k(x), k$ bounded in a nhbd of infinity and $k(\infty)$ exists, $|k(x)-k(\infty)| \leq \hat{r}_{0}|x|^{-\beta},|x| \geq \hat{r}_{0}$

$C(E)$ for $p=n$ is 1-homogeneous

Define $C(E)=e^{-k(\infty) / \gamma}$ note that C is homogeneous of degree one. Write G_{E}, k_{E} for the Green's function on E^{c} with pole at ∞, consider

$$
\begin{aligned}
G_{E}(x / t) & =F(x / t)+k_{E}(x / t) \\
& =\gamma \log |x / t|+b(x /|x|)+k_{E}(x / t) \\
& =\gamma \log |x|+b(x /|x|)+k_{E}(x / t)-\gamma \log t
\end{aligned}
$$

This is the Green's function for $t E$, with $k(\infty)=k_{E}(\infty)-\gamma \log t$ so that

$$
C(t E)=e^{\left(-k_{E}(\infty)-\gamma \log t\right) / \gamma}=t C(E)
$$

More explicitly for $p>n, \mathcal{A} \in \mathcal{M}_{p}(\alpha)$

There is a unique fundamental solution $F(x)$ with pole at ∞, satisfying F is \mathcal{A}-harmonic in $\mathbb{R}^{n} \backslash\{0\}, F(0)=0, F(x)>0$ for $x \neq 0$,

$$
\int \mathcal{A}(\nabla F(x)) \cdot \nabla \theta(x) d x=-\theta(0) \text { for all } \theta \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)
$$

$$
F(x)=|x|^{\frac{p-n}{p-1}} \psi(x /|x|) \text { where } \psi \text { is } C^{1, \sigma} \text { on the unit sphere. }
$$

$$
\frac{1}{c} F(z) \leq \nabla F(z) \cdot z \leq|z||\nabla F(z)| \leq c F(z)
$$

Given a nonempty compact, convex set E there is a unique \mathcal{A}-harmonic Green's function on E^{c} with pole at ∞ and continuous boundary value 0 on ∂E satisfying

$$
G(x)=F(x)+k(x) \quad \text { where } k(x) \text { is bounded in a nbhd of } \infty
$$

and $k(\infty)$ exists, $|k(x)-k(\infty)| \leq \hat{r}_{0}|x|^{-\beta},|x| \geq \hat{r}_{0}$

$C(E)$ for $p>n$ is $p-n$ homogeneous

Define $C(E)=(-k(\infty))^{p-1}$ let's show that C is homogeneous of degree $p-n$. Write G_{E} for the Green's function of E with pole at ∞, consider

$$
\begin{aligned}
t^{\frac{p-n}{p-1}} G_{E}(x / t) & =t^{\frac{p-n}{p-1}}\left(F(x / t)+k_{E}(x / t)\right) \\
& =t^{\frac{p-n}{p-1}}\left(|x / t|^{\frac{p-n}{p-1}} \psi(x /|x|)+k_{E}(x / t)\right) \\
& =|x|^{\frac{p-n}{p-1}}+t^{\frac{p-n}{p-1}} k_{E}(x / t)
\end{aligned}
$$

So this is Green's function for $t E$ with pole at ∞, $k(\infty)=t^{\frac{p-n}{p-1}} k_{E}(\infty)$ and

$$
C(t E)=\left(-t^{\frac{p-n}{p-1}} k_{E}(\infty)\right)^{p-1}=t^{p-n} C(E)
$$

the Brunn-Minkowski inequality: for all E_{1}, E_{2} compact, convex sets (with at least two points when $p=n)$ for all $\lambda \in(0,1)$

When $p=n$

$$
C\left((1-\lambda) E_{1}+\lambda E_{2}\right) \geq(1-\lambda) C\left(E_{1}\right)+\lambda C\left(E_{2}\right)
$$

When $p>n$

$$
C\left((1-\lambda) E_{1}+\lambda E_{2}\right)^{\frac{1}{p-n}} \geq(1-\lambda) C\left(E_{1}\right)^{\frac{1}{p-n}}+\lambda C\left(E_{2}\right)^{\frac{1}{p-n}}
$$

By clever choices of sets and parameters these are equivalent to

$$
C\left((1-\lambda) E_{1}+\lambda E_{2}\right) \geq \min \left\{C\left(E_{1}\right), C\left(E_{2}\right)\right\}
$$

Proof, convert this situation, Green's functions, to the one in the previous paper, capacitary functions.

The Brunn-Minkowski Theorem

Theorem A. Let E_{1} and E_{2} be compact convex sets in $\mathbb{R}^{n}, n \geq 2$. Assume that both sets contain at least two points when $p=n$ and that both sets are nonempty when $p>n$. If $\lambda \in[0,1]$ and if $p=n$ then

$$
\begin{equation*}
\mathcal{C}_{\mathcal{A}}\left(\lambda E_{1}+(1-\lambda) E_{2}\right) \geq \lambda \mathcal{C}_{\mathcal{A}}\left(E_{1}\right)+(1-\lambda) \mathcal{C}_{\mathcal{A}}\left(E_{2}\right) \tag{2.4}
\end{equation*}
$$

While if $n<p<\infty$ then

$$
\begin{equation*}
\left[\mathcal{C}_{\mathcal{A}}\left(\lambda E_{1}+(1-\lambda) E_{2}\right)\right]^{\frac{1}{p-n}} \geq \lambda \mathcal{C}_{\mathcal{A}}\left(E_{1}\right)^{\frac{1}{p-n}}+(1-\lambda) \mathcal{C}_{\mathcal{A}}\left(E_{2}\right)^{\frac{1}{p-n}} \tag{2.5}
\end{equation*}
$$

If equality holds in (2.4) or in (2.5) and \mathcal{A} satisfies
(i) There exists $1 \leq \Lambda<\infty$ such that $\left|\frac{\partial \mathcal{A}_{i}}{\partial \eta_{j}}(\eta)-\frac{\partial \mathcal{A}_{i}}{\partial \eta_{j}^{\prime}}\left(\eta^{\prime}\right)\right| \leq \Lambda\left|\eta-\eta^{\prime}\right||\eta|^{p-3}$

$$
\text { whenever } 0<\frac{1}{2}|\eta| \leq\left|\eta^{\prime}\right| \leq 2|\eta| \text { and } 1 \leq i \leq n \text {, }
$$

(ii) $\mathcal{A}_{i}(\eta)=\frac{\partial f}{\partial \eta_{i}}$ for $1 \leq i \leq n$ where $f(t \eta)=t^{p} f(\eta)$ when $t>0$ and $\eta \in \mathbb{R}^{n} \backslash\{0\}$,
then E_{2} is a translation and dilation of E_{1} provided that both sets contain at least two points.

Equality in Brunn-Minkowski

This relies on some ideas of Colesanti and Salani. $f(\eta)=(k(\eta))^{p}, k$ is 1-homogeneous, k^{2} is strictly convex Set $B_{k}=\{\eta \mid k(\eta) \leq 1\}$ and let $h(X)=\sup _{\eta \in B_{k}} X \cdot \eta$ be the support function, it's 1-homogeneous.
Then $k \nabla k$ and $h \nabla h$ are inverses of each other on $\mathbb{R}^{n} \backslash\{0\}$ and

$$
\hat{F}(X)= \begin{cases}h(X)^{\frac{p-n}{p-1}} & n<p<\infty \\ \log h(X) & p=n\end{cases}
$$

is a constant multiple of the fundamental solutions above! See remark 6.3.

Hadamard formula, Proposition 10.1 Remark 10.2

For convex compact sets E_{1}, E_{2} with $0 \in E_{1}$, (not necessarily $0 \in E_{1}^{\circ}$) and $0 \in E_{2}^{\circ}$, and $t \geq 0$ we have $n<p<\infty$ $\frac{d}{d t} C\left(E_{1}+t E_{2}\right)=p(p-1) C\left(E_{1}+t E_{2}\right)^{\frac{p-2}{p-1}} \int_{\partial\left(E_{1}+t E_{2}\right)} h_{2}(g(x)) f(\nabla u(x)) d H^{n-1}$
h_{2} is the support function of E_{2}, g is the Gauss map of $E_{1}+t E_{2}$ and u is the \mathcal{A}-harmonic Green's function of $E_{1}+t E_{2}$. While for $p=n$ this is

$$
\frac{d}{d t} C\left(E_{1}+t E_{2}\right)=\frac{n}{\gamma} C\left(E_{1}+t E_{2}\right) \int_{\partial\left(E_{1}+t E_{2}\right)} h_{2}(g(x)) f(\nabla u(x)) d H^{n-1}
$$

note that Brunn-Minkowski says $C\left(E_{1}+t E_{2}\right)^{\frac{1}{p-n}}$ or $C\left(E_{1}+t E_{2}\right)$ are concave.

Polyhedron, Gauss map, support function.

Gauss map: 2 red faces (right, left) and 3 blue faces (front, bottom $=F_{1}$, back) for $x \in F_{1}, g(x)=-e_{3}, g^{-1}\left(-e_{3}\right)=F_{1}$. Support function: for $x \in$ bottom face, $h(g(x))$ is the distance of the face to the origin, the length of the vertical thick blue segment.
Next Slide: Move the 3 blue faces to the origin, the solid blue segments shrink to zero, call this E_{1}. Make all the solid segments the same length, call this E_{2}.

Polyhedron example E_{1}, E_{2} and $E_{1}+t E_{2}$

- E_{2} has five unit normals $\boldsymbol{n}_{1}, \ldots, \boldsymbol{n}_{5}$ all with $h_{2}\left(\boldsymbol{n}_{k}\right)=a$ On the faces $F_{i}, i=1, \ldots, 5$ of $E_{1}+t E_{2}$ the integrals above for $\frac{d}{d t} C\left(E_{1}+t E_{2}\right)$ are

$$
\begin{cases}p(p-1) C\left(E_{1}+t E_{2}\right)^{\frac{p-2}{p-1}} \sum_{i=1}^{5} a \int_{F_{i}} f(\nabla u(x)) d H^{n-1} & n<p<\infty \\ \frac{n}{\gamma} C\left(E_{1}+t E_{2}\right) \sum_{i=1}^{5} a \int_{F_{i}} f(\nabla u(x)) d H^{n-1} & p=n\end{cases}
$$

Hadamard capacity formula

In case $E_{1}=E_{2}=E_{0}$ and $t=0$ using the homogeneity of $C\left((1+t) E_{0}\right)$ and taking the derivative at $t=0$ we have for $n<p<\infty$

$$
\frac{(p-n)}{(p-1)} C\left(E_{0}\right)^{\frac{1}{p-1}}=p \int_{\partial E_{0}} h(g(x)) f(\nabla u(x)) d H^{n-1}
$$

Where h, g and u are the support, Gauss, and \mathcal{A}-harmonic Green's functions for E_{0}.
While for $p=n$

$$
\gamma=n \int_{\partial E_{0}} h(g(x)) f(\nabla u(x)) d H^{n-1}
$$

For a polyhedron, Hadamard capacity formula

For E_{0} a polyhedron with $0 \in E_{0}^{\circ}$, with faces F_{k} with unit outer normals \boldsymbol{n}_{k} and distance to the origin q_{k} this gives (say $k=1, \ldots, m)$ for $n<p<\infty$

$$
\frac{(p-n)}{(p-1)} C\left(E_{0}\right)^{\frac{1}{p-1}}=\sum_{i=1}^{m} \int_{F_{i}} h\left(\boldsymbol{n}_{i}\right) f(\nabla u) d H^{n-1}=\sum_{i=1}^{m} q_{i} c_{i}
$$

where $c_{i}=\int_{F_{i}} f(\nabla u) d H^{n-1}$ think of this as the mass of each face.
While for $p=n$

$$
\gamma=n \sum_{i=1}^{m} q_{i} c_{i}
$$

C is Translation invariant

Translating E_{0} by x, then the equations above are invariant, except that the support function of $E_{0}+x$ is $h(\boldsymbol{n})+x \cdot \boldsymbol{n}$ so that

$$
\sum_{i=1}^{m} q_{i} c_{i}=\sum_{i=1}^{m}\left(q_{i}+x \cdot \boldsymbol{n}_{i}\right) c_{i}
$$

which gives, for all x,

$$
\sum_{i=1}^{m}\left(x \cdot \boldsymbol{n}_{i}\right) c_{i}=0
$$

and therefore

$$
\sum_{i=1}^{m} \boldsymbol{n}_{i} c_{i}=0
$$

The Minkowski Theorem

The function $\mathbf{g}(\cdot, E): \partial E \mapsto \mathbb{S}^{n-1}$ (whenever defined) is called the Gauss map for ∂E. Let μ be a finite positive Borel measure on \mathbb{S}^{n-1} satisfying

$$
\begin{align*}
& \text { (i) } \int_{\mathbb{S}^{n-1}}|\langle\theta, \zeta\rangle| d \mu(\zeta)>0 \text { for all } \theta \in \mathbb{S}^{n-1} \tag{7.1}\\
& \text { (ii) } \int_{\mathbb{S}^{n-1}} \zeta d \mu(\zeta)=0
\end{align*}
$$

We prove
Theorem B. Let μ be as in (7.1) and p be fixed, $n \leq p<\infty$. Let $\mathcal{A}=\nabla f$ be as in (2.6) and Definition 2.1. Then there exists a compact convex set E with nonempty interior and \mathcal{A}-harmonic Green's function u for $\mathbb{R}^{n} \backslash E$ with a pole at infinity satisfying
(a) $\lim _{y \rightarrow x} \nabla u(y)=\nabla u(x)$ exists for \mathcal{H}^{n-1}-almost every $x \in \partial E$ as $y \in \mathbb{R}^{n} \backslash E$ approaches x non-tangentially.
(b) $\int_{\partial E} f(\nabla u(x)) d \mathcal{H}^{n-1}<\infty$.
(c) $\int_{\mathbf{g}^{-1}(K, E)} f(\nabla u(x)) d \mathcal{H}^{n-1}=\mu(K) \quad$ whenever $K \subset \mathbb{S}^{n-1}$ is a Borel set.
(d) E is the unique set up to translation for which (c) holds.

The Minkowski theorem in the discrete case, existence.

Let μ be a finite positive Borel measure on the unit sphere \mathbb{S}^{n-1} with masses $c_{i}>0$ at distinct points \boldsymbol{n}_{i} for $i=1, \ldots, m$.
If (i) $\sum_{i=1}^{m} c_{i}\left|\theta \cdot \boldsymbol{n}_{i}\right|>0$ for all $\theta \in \mathbb{S}^{n-1}$ and (ii) $\sum_{i=1}^{m} c_{i} \boldsymbol{n}_{i}=0$ then there is a compact, convex, set E_{0} with nonempty interior so that

$$
\mu(K)=\int_{g^{-1}(K)} f(\nabla u) d H^{n-1}
$$

where g and u are the Gauss and \mathcal{A}-harmonic Green's functions for E_{0}.
E_{0} is unique up to translation.
Generally folks assume no antipodal point masses at this point, it rules out getting $n-1$ sets in the upcoming minimization. Later on these sets are considered in the continuous measure case.

The minimization procedure

For $q_{i} \geq 0$ let

$$
\begin{aligned}
E(q) & =\bigcap_{i=1}^{m}\left\{x \mid x \cdot \boldsymbol{n}_{i} \leq q_{i}\right\} \text { intersection of half spaces } \\
\Phi & =\{E(q) \mid C(E(q)) \geq 1\} \text { with capacity } \geq 1 \\
\lambda(q) & =\sum_{i=1}^{m} q_{i} c_{i} \text { Hadamard capacity formula } \\
\lambda & =\inf _{E(q) \in \Phi} \lambda(q) \text { minimize it }
\end{aligned}
$$

Because of condition (i) the $E(q) \in \Phi$ are bounded, compact, convex sets.
There is a sequence $q^{k} \rightarrow \hat{q}$ so that $E\left(q^{k}\right) \rightarrow E(\hat{q})=E_{1}$ a convex, compact set with $\lambda=\lambda(\hat{q})$
Is E_{1}° nonempty? Do we have $\hat{q}_{i}>0$ for $i=1, \ldots, m$?

Recall the examples

- Imagine the 3 blue faces moving to the origin and giving the minimizer E_{1} as the black 1-d segment. The \hat{q}_{i} for the blue faces are all 0 .

- Or imagine that the two red faces are parallel and that they move to the origin, giving a 2 -d set for the minimizer E_{1}. The \hat{q}_{i} for the red faces are now 0 . But this is ruled out by no antipodal masses!
- In either case, maybe $C\left(E_{1}\right)=1$ is possible!

The minimizer E_{1} has nonempty interior $p>n$

For $1 \leq \operatorname{dim}\left(E_{1}\right)<n-1$, a situation illustrated here

We set $E_{2}=\bigcap_{i=1}^{m}\left\{x \mid x \cdot \boldsymbol{n}_{i} \leq a\right\}$ and consider $E_{1}+t E_{2}$ It turns out that we can study a $k(t)$ with $k(0)=\lambda$ and $\lambda(q(t)) \leq k(t)<\lambda$ for $t>0$ close to zero This contradicts λ being the minimum, so this situation does not occur!

The minimizer E_{1} has nonempty interior, $p>n$

Here's $k(t)=C\left(E_{1}+t E_{2}\right)^{-1 /(p-n)} \sum_{i=1}^{m} c_{i}\left(\hat{q}_{i}+a t\right)$ taking the derivative we get a negative term involving the derivative of the capacity which blows up as $t \rightarrow 0^{+}$(hence k is decreasing and $k(t)<k(0)=\lambda$ for $\left.t \rightarrow 0^{+}\right)$.

$$
\lim _{t \rightarrow 0^{+}} \int_{\partial\left(E_{1}+t E_{2}\right)} h_{2}(g(x, t)) f(\nabla u(x, t)) d H^{n-1}=\infty
$$

where g and u are the Gauss and \mathcal{A}-harmonic Green's functions of $E_{1}+t E_{2}$ and h_{2} is the support function of E_{2} so always $\geq a$ so we only need to show

$$
\lim _{t \rightarrow 0} \int_{\partial\left(E_{1}+t E_{2}\right)} f(\nabla u(x, t)) d H^{n-1}=\infty
$$

the argument for $1 \leq \operatorname{dim}\left(E_{1}\right) \leq n-2$
A schematic for Equations (11.26) to (11.29)

notes: $d S=d H^{n-1}, B(0,4 a) \cap \mathbb{R}^{l} \subset E_{1},|\Delta| \approx t^{n-1}, u=u(x, t)$

$$
t^{n-p} u(w)^{p-1} \approx \nu(\Delta) \approx \int_{\Delta} \frac{f(\nabla u)}{|\nabla u|} d S \leq\left(\int_{\Delta} f(\nabla u) d S\right)^{\frac{p-1}{p}} t^{\frac{n-1}{p}}
$$

finishing... $1 \leq \operatorname{dim}\left(E_{1}\right) \leq n-2$

Let $\psi=\frac{p-(n-l)}{p-1}$. Lemma 11.2 says $u(x, t) \gtrsim\left|x^{\prime \prime}\right|^{\psi}$ for $t \lesssim\left|x^{\prime \prime}\right|$, then Harnack $u(w, t) \approx u\left(x^{\prime}, x^{\prime \prime}, t\right) \gtrsim t^{\psi}$ and some arithmetic gives

$$
t^{p(\psi-1)+n-1} \lesssim \int_{\Delta} f(\nabla u(x, t)) d S
$$

There are at least t^{-l} disjoint such Δ giving

$$
t^{\frac{l+1-n}{p-1}} \lesssim \int_{\partial\left(E_{1}+t E_{2}\right)} f(\nabla u(x, t)) d S
$$

Now $1 \leq l \leq n-2$ so $l+1-n \leq-1$ showing that this integral blows up as $t \rightarrow 0$.

For $\operatorname{dim}\left(E_{1}\right)=n-1$
A schematic for (11.68) to (11.71), let the sidelength of $Q=Q(\tau)$ be τ, then $\operatorname{dist}\left(y_{Q}, z\right) \approx \operatorname{dist}\left(y_{Q}, Q\right) \approx \operatorname{dist}(Q, z) \approx \tau$.

$u(x) \geq v(x)$ in $B(0,2 \rho)$ where $v(x)=\hat{v}\left(x_{1}-z_{1}, x_{2}-z_{2}\right)$. Then, as above,

$$
\int_{Q} f\left(\nabla u_{+}\right) d S \gtrsim u^{p}\left(y_{Q}\right) \tau^{n-1-p} \gtrsim v^{p}\left(y_{Q}\right) \tau^{n-1-p} \gtrsim \tau^{p-1+n-1-p}
$$

or

$$
\int_{Q} f\left(\nabla u_{+}\right) d S \gtrsim \tau^{n-2}
$$

finishing... $\operatorname{dim}\left(E_{1}\right)=n-1$

For each large integer l the number of cubes $Q\left(\tau_{l}\right)$ with sidelength $2^{-l-1} a \leq \tau_{l} \leq 2^{-l} a$ is at least $\gtrsim 2^{l(n-2)}$ so that

$$
\begin{aligned}
\int_{E_{1}} f\left(\nabla u_{+}\right) d S & \gtrsim \sum_{l>N_{0}} \sum_{Q\left(\tau_{l}\right)} 2^{l(n-2)} \tau_{l}^{n-2} \\
& \gtrsim \sum_{l>N_{0}} 2^{l(n-2)-(l+1)(n-2)} \\
& \gtrsim \sum_{l>N_{0}} 2^{2-n}=\infty
\end{aligned}
$$

John's Talk

What about solutions in the complement of a ray in higher dimensions, what can you say about the homogeneity?

Answers could lead to regularity in the Minkowski problem.

That's John's talk, Next!

