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The question and the plan

This was joint work with Murat Akman, John Lewis, Olli Saari
and just accepted in Advances in Calculus of Variations.

Background: For 1 < p < n, in Rn, using a generalization of
p-capacity for operators A of p-Laplace type an A-capacitary
function (for E compact, convex with positive capacity) was
used to solve the Brunn-Minkowski inequality and a Minkowski
problem in The Brunn-Minkowski inequality and a Minkowski
problem for nonlinear capacity with Akman, Gong, Hineman,
Lewis, which followed Jerison and CNSXYZ.
Question: What to do when n ≤ p <∞ since p-capacity is no
longer useful?
Plan: Try to generalize logarithmic capacity when p = n to
n < p <∞ for p-Laplace type operators.



A-harmonic equations, solutions

• For p, α ∈ (1,∞), A : Rn \ {0} → Rn belongs to the class
Mp(α) if it has continuous derivatives and satisfies ellipticity
and homogeneity conditions

(i) 1
α |η|

p−2|n|2 ≤
∑n

i,j=1
∂Ai
∂ηj

(η)ninj and∑n
i=1 |∇Ai(η)| ≤ α|η|p−2

(ii) A(η) = |η|p−1A( η
|η|), for all η 6= 0 set A(0) = 0.

• u ∈W 1,p
loc (U) is A-harmonic in open set U ⊂ Rn means: for all

open G with G ⊂ U
ˆ
A(∇u(y)) · ∇θ(y) dy = 0 for all θ ∈W 1,p

0 (G)

shorthand version is ∇ · ∇A(∇u) = 0



Examples of A ∈Mp(α)

• p-Laplace: Let f(η) = 1
p |η|

p set A(η) = ∇f(η) = |η|p−2η this

gives the equation ∇ · |∇u|p−2∇u = 0

• Whenever f is p-homogeneous and A(η) = ∇f(η), then the
ellipticity condition on A says
η ·D2f(η) η = p(p− 1)f(η) ≥ 1

α |η|
p.

• For f(η) = (1 + εη1
|η| )|η|

p with ε > 0 small enough

A(η) = ∇f(η) is not rotationally invariant.

• For u A-harmonic on U and T : V → U a rotation then
ũ(z) = u(Tz) is Ã-harmonic in V where Ã ∈ Mp(α)

In particular: if u is A-harmonic then 1− u is Ã-harmonic
where Ã(η) = −A(−η), here A and Ã are in the same class
Mp(α)



The associated A-harmonic measure

For E ⊂ B(0, R) a nonempty, convex, compact set (containing
at least two points when p = n) and u > 0 an A-harmonic
function in B(0, 4R) \ E with u = 0 on ∂E in an appropriate
Sobolev sense there is a unique positive finite Borel measure ν
with support in E associated to u so that

ˆ
A(∇u(y)) · ∇φ(y) dy = −

ˆ
φdν for all φ ∈ C∞0 (B(0, 2R))

In the harmonic case p = 2 and A(η) = ∇1
2 |η|

2

dν(y) = 2|∇u(y)|dHn−1(y)

In case A(η) = ∇f(η) and there is enough regularity (Lemma
8.2)

dν(y) = p
f(∇u(y))

|∇u(y)|
dHn−1(y)



Capacity when p = n?

• When A(η) = ∇1
p |η|

p the p-capacity of a compact, convex set
E with nonempty interior is

Capp(E) = inf{
ˆ
|∇v(x)|pdx | v ∈ C∞0 (Rn), v = 1 on E}

and the infimum is attained by a function u called the
p-capacitary function. For 1 < p < n this is the function
considered in the previous work on Brunn-Minkowski and
Minkowski.

• For p ≥ n the p-capacity of any ball is 0, see HKM.

• Borell for p = n = 2, Colesanti and Salani for p = n > 2
consider the logarithmic capacity and study it in the
Brunn-Minkowski inequality.



The plan for p ≥ n and A ∈Mp(α)

1. Get a A-harmonic fundamental solution F (x) with pole at 0.
2. For a compact convex set E (containing at least two points if
p = n), get a A-harmonic Green’s function G(x) with pole at
infinity
3. Show that G(x) = F (x) + k(x) and k(∞) exists. k(∞) ≤ 0
when n < p <∞
4. for p = n set C(E) = e−k(∞)/γ then C is homogeneous of
degree one

5. for n < p <∞ set C(E) = (−k(∞))p−1 then C
1

p−n is
homogeneous of degree one
6. show Brunn-Minkowski for these 1-homogeneous set
functions



More explicitly for p = n, A ∈Mn(α)
There is a unique, set F (e1) = 1, fundamental solution with
pole at 0, F (x), satisfying
F is A-harmonic in Rn \ {0}

ˆ
A(∇F (x)) · ∇θ(x)dx = −θ(0) for all θ ∈ C∞0 (Rn)

F (x) = γ log |x|+ b(x/|x|) for x 6= 0, γ > 0, b ∈ C1,σ of a

nhbd of the unit sphere, 1
c ≤ ∇F (z) · z ≤ |z||∇F (z)| ≤ c

Given a compact, convex set E containing at least two points
there is a unique Green’s function with pole at infinity G(x)
satisfying
G is A-harmonic in Ec with continuous boundary value 0 on
∂E
G(x) = F (x) + k(x) , k bounded in a nhbd of infinity and

k(∞) exists, |k(x)− k(∞)| ≤ r̂0|x|−β, |x| ≥ r̂0



C(E) for p = n is 1-homogeneous

Define C(E) = e−k(∞)/γ note that C is homogeneous of degree
one. Write GE , kE for the Green’s function on Ec with pole at
∞, consider

GE(x/t) = F (x/t) + kE(x/t)

= γ log |x/t|+ b(x/|x|) + kE(x/t)

= γ log |x|+ b(x/|x|) + kE(x/t)− γ log t

This is the Green’s function for tE, with
k(∞) = kE(∞)− γ log t so that

C(tE) = e(−kE(∞)−γ log t)/γ = tC(E)



More explicitly for p > n, A ∈Mp(α)

There is a unique fundamental solution F (x) with pole at ∞,
satisfying F is A-harmonic in Rn \ {0}, F (0) = 0, F (x) > 0 for
x 6= 0,

ˆ
A(∇F (x)) · ∇θ(x)dx = −θ(0) for all θ ∈ C∞0 (Rn)

F (x) = |x|
p−n
p−1 ψ(x/|x|) where ψ is C1,σ on the unit sphere.

1
cF (z) ≤ ∇F (z) · z ≤ |z||∇F (z)| ≤ cF (z)
Given a nonempty compact, convex set E there is a unique
A-harmonic Green’s function on Ec with pole at ∞ and
continuous boundary value 0 on ∂E satisfying

G(x) = F (x) + k(x) where k(x) is bounded in a nbhd of ∞
and k(∞) exists, |k(x)− k(∞)| ≤ r̂0|x|−β, |x| ≥ r̂0



C(E) for p > n is p− n homogeneous

Define C(E) = (−k(∞))p−1 let’s show that C is homogeneous
of degree p− n. Write GE for the Green’s function of E with
pole at ∞, consider

t
p−n
p−1GE(x/t) = t

p−n
p−1 (F (x/t) + kE(x/t))

= t
p−n
p−1 (|x/t|

p−n
p−1 ψ(x/|x|) + kE(x/t))

= |x|
p−n
p−1 + t

p−n
p−1 kE(x/t)

So this is Green’s function for tE with pole at ∞,

k(∞) = t
p−n
p−1 kE(∞) and

C(tE) = (−t
p−n
p−1 kE(∞))p−1 = tp−nC(E)



the Brunn-Minkowski inequality: for all E1, E2

compact, convex sets (with at least two points when
p = n) for all λ ∈ (0, 1)

When p = n

C((1− λ)E1 + λE2) ≥ (1− λ)C(E1) + λC(E2)

When p > n

C((1− λ)E1 + λE2)
1

p−n ≥ (1− λ)C(E1)
1

p−n + λC(E2)
1

p−n

By clever choices of sets and parameters these are equivalent to

C((1− λ)E1 + λE2) ≥ min{C(E1), C(E2)}

Proof, convert this situation, Green’s functions, to the one in
the previous paper, capacitary functions.



The Brunn-Minkowski Theorem



Equality in Brunn-Minkowski

This relies on some ideas of Colesanti and Salani.
f(η) = (k(η))p, k is 1-homogeneous, k2 is strictly convex
Set Bk = {η | k(η) ≤ 1} and let h(X) = supη∈Bk

X · η be the
support function, it’s 1-homogeneous.
Then k∇k and h∇h are inverses of each other on Rn \ {0} and

F̂ (X) =

{
h(X)

p−n
p−1 n < p <∞

log h(X) p = n

is a constant multiple of the fundamental solutions above! See
remark 6.3.



Hadamard formula, Proposition 10.1 Remark 10.2

For convex compact sets E1, E2 with 0 ∈ E1, (not necessarily
0 ∈ E◦1) and 0 ∈ E◦2 , and t ≥ 0 we have n < p <∞

d

dt
C(E1+tE2) = p(p−1)C(E1+tE2)

p−2
p−1

ˆ

∂(E1+tE2)

h2(g(x))f(∇u(x))dHn−1

h2 is the support function of E2, g is the Gauss map of
E1 + tE2 and u is the A-harmonic Green’s function of E1 + tE2.
While for p = n this is

d

dt
C(E1 + tE2) =

n

γ
C(E1 + tE2)

ˆ

∂(E1+tE2)

h2(g(x))f(∇u(x))dHn−1

note that Brunn-Minkowski says C(E1 + tE2)
1

p−n or
C(E1 + tE2) are concave.



Polyhedron, Gauss map, support function.

Gauss map: 2 red faces (right, left) and 3 blue faces (front,
bottom = F1, back) for x ∈ F1, g(x) = −e3, g−1(−e3) = F1.
Support function: for x ∈ bottom face, h(g(x)) is the distance
of the face to the origin, the length of the vertical thick blue
segment.
Next Slide: Move the 3 blue faces to the origin, the solid blue
segments shrink to zero, call this E1. Make all the solid
segments the same length, call this E2.



Polyhedron example E1, E2 and E1 + tE2

• E2 has five unit normals n1, . . . ,n5 all with h2(nk) = a
On the faces Fi, i = 1, . . . , 5 of E1 + tE2 the integrals above for
d
dtC(E1 + tE2) are{
p(p− 1)C(E1 + tE2)

p−2
p−1

∑5
i=1 a

´
Fi
f(∇u(x))dHn−1 n < p <∞

n
γC(E1 + tE2)

∑5
i=1 a

´
Fi
f(∇u(x))dHn−1 p = n



Hadamard capacity formula

In case E1 = E2 = E0 and t = 0 using the homogeneity of
C((1 + t)E0) and taking the derivative at t = 0 we have for
n < p <∞

(p− n)

(p− 1)
C(E0)

1
p−1 = p

ˆ
∂E0

h(g(x))f(∇u(x))dHn−1

Where h, g and u are the support, Gauss, and A-harmonic
Green’s functions for E0.
While for p = n

γ = n

ˆ
∂E0

h(g(x))f(∇u(x))dHn−1



For a polyhedron, Hadamard capacity formula

For E0 a polyhedron with 0 ∈ E◦0 , with faces Fk with unit outer
normals nk and distance to the origin qk this gives (say
k = 1, . . . ,m) for n < p <∞

(p− n)

(p− 1)
C(E0)

1
p−1 =

m∑
i=1

ˆ
Fi

h(ni)f(∇u)dHn−1 =

m∑
i=1

qici

where ci =
´
Fi
f(∇u)dHn−1 think of this as the mass of each

face.
While for p = n

γ = n

m∑
i=1

qici



C is Translation invariant

Translating E0 by x, then the equations above are invariant,
except that the support function of E0 +x is h(n) +x ·n so that

m∑
i=1

qici =

m∑
i=1

(qi + x · ni)ci

which gives, for all x,

m∑
i=1

(x · ni)ci = 0

and therefore
m∑
i=1

nici = 0



The Minkowski Theorem



The Minkowski theorem in the discrete case, existence.

Let µ be a finite positive Borel measure on the unit sphere Sn−1

with masses ci > 0 at distinct points ni for i = 1, . . . ,m.
If (i)

∑m
i=1 ci|θ · ni| > 0 for all θ ∈ Sn−1 and (ii)

∑m
i=1 cini = 0

then there is a compact, convex, set E0 with nonempty interior
so that

µ(K) =

ˆ
g−1(K)

f(∇u)dHn−1

where g and u are the Gauss and A-harmonic Green’s functions
for E0.
E0 is unique up to translation.
Generally folks assume no antipodal point masses at this point,
it rules out getting n− 1 sets in the upcoming minimization.
Later on these sets are considered in the continuous measure
case.



The minimization procedure

For qi ≥ 0 let

E(q) =

m⋂
i=1

{x | x · ni ≤ qi} intersection of half spaces

Φ ={E(q) | C(E(q)) ≥ 1} with capacity ≥ 1

λ(q) =

m∑
i=1

qici Hadamard capacity formula

λ = inf
E(q)∈Φ

λ(q) minimize it

Because of condition (i) the E(q) ∈ Φ are bounded, compact,
convex sets.
There is a sequence qk → q̂ so that E(qk)→ E(q̂) = E1 a
convex, compact set with λ = λ(q̂)
Is E◦1 nonempty? Do we have q̂i > 0 for i = 1, . . . ,m?



Recall the examples

• Imagine the 3 blue faces moving to the origin and giving the
minimizer E1 as the black 1-d segment. The q̂i for the blue
faces are all 0.

• Or imagine that the two red faces are parallel and that they
move to the origin, giving a 2-d set for the minimizer E1. The
q̂i for the red faces are now 0. But this is ruled out by no
antipodal masses!
• In either case, maybe C(E1) = 1 is possible!



The minimizer E1 has nonempty interior p > n

For 1 ≤ dim(E1) < n− 1, a situation illustrated here

We set E2 =
⋂m
i=1{x | x · ni ≤ a} and consider E1 + tE2

It turns out that we can study a k(t) with k(0) = λ and
λ(q(t)) ≤ k(t) < λ for t > 0 close to zero
This contradicts λ being the minimum, so this situation does
not occur!



The minimizer E1 has nonempty interior, p > n

Here’s k(t) = C(E1 + tE2)−1/(p−n)
∑m

i=1 ci(q̂i + at)
taking the derivative we get a negative term involving the
derivative of the capacity which blows up as t→ 0+ ( hence k is
decreasing and k(t) < k(0) = λ for t→ 0+).

lim
t→0+

ˆ
∂(E1+tE2)

h2(g(x, t))f(∇u(x, t))dHn−1 =∞

where g and u are the Gauss and A-harmonic Green’s functions
of E1 + tE2 and h2 is the support function of E2 so always ≥ a
so we only need to show

lim
t→0

ˆ
∂(E1+tE2)

f(∇u(x, t))dHn−1 =∞



the argument for 1 ≤ dim(E1) ≤ n− 2
A schematic for Equations (11.26) to (11.29)

x′ ∈ Rl

x′′ ∈ Rn−l

E1

E1+tE2

E1+E2

B(0,a)

w
|x′′|=2C1t

B(0,4a)

B(0,ρ)

notes: dS = dHn−1, B(0, 4a) ∩ Rl ⊂ E1, |∆| ≈ tn−1, u = u(x, t)

tn−pu(w)p−1 ≈ ν(∆) ≈
ˆ

∆

f(∇u)

|∇u|
dS ≤

ˆ
∆

f(∇u)dS


p−1
p

t
n−1
p



finishing... 1 ≤ dim(E1) ≤ n− 2

Let ψ = p−(n−l)
p−1 . Lemma 11.2 says u(x, t) ' |x′′|ψ for t / |x′′|,

then Harnack u(w, t) ≈ u(x′, x′′, t) ' tψ and some arithmetic
gives

tp(ψ−1)+n−1 /
ˆ

∆

f(∇u(x, t))dS

There are at least t−l disjoint such ∆ giving

t
l+1−n
p−1 /

ˆ
∂(E1+tE2)

f(∇u(x, t))dS

Now 1 ≤ l ≤ n− 2 so l + 1− n ≤ −1 showing that this integral
blows up as t→ 0.



For dim(E1) = n− 1

A schematic for (11.68) to (11.71), let the sidelength of
Q = Q(τ) be τ , then dist(yQ, z) ≈ dist(yQ, Q) ≈ dist(Q, z) ≈ τ .

x1

Rn−2

x2

E1⊂Rn−1

Q

yQ

z
x1

x2

v̂=1v̂=0

∇·A(∇v̂)=0

v̂>0

v̂(sx)=s
1− 1

p v̂(x)

there exists v̂
By Lemma 11.6

u(x) ≥ v(x) in B(0, 2ρ) where v(x) = v̂(x1 − z1, x2 − z2) . Then,
as above,

ˆ
Q
f(∇u+)dS ' up(yQ)τn−1−p ' vp(yQ)τn−1−p ' τp−1+n−1−p

or ˆ
Q
f(∇u+)dS ' τn−2



finishing... dim(E1) = n− 1

For each large integer l the number of cubes Q(τl) with
sidelength 2−l−1a ≤ τl ≤ 2−la is at least ' 2l(n−2) so that

ˆ
E1

f(∇u+)dS '
∑
l>N0

∑
Q(τl)

2l(n−2)τn−2
l

'
∑
l>N0

2l(n−2)−(l+1)(n−2)

'
∑
l>N0

22−n =∞



John’s Talk

What about solutions in the complement of a ray in higher
dimensions, what can you say about the homogeneity?

Answers could lead to regularity in the Minkowski problem.

That’s John’s talk, Next!


