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Thank you for the invitation!
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In this talk we will discuss the structure of the free boundary in the
obstacle problem for the fractional heat equation.

Our goal is to provide a systematic classification of free boundary points
based on the blowup limits of non-homogeneous Almgren-Poon type
rescalings.

We also establish new monotonicity formulas of Weiss- and Monneau-type,
which we employ to establish a structure theorem for the singular set of
the free boundary.

This is joint work with Agnid Banerjee (TIFR), Nicola Garofalo (University
of Padova), and Arshak Petrosyan (Purdue University).
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The Fractional Heat Operator

Our goal is to study the structure of the free boundary for the nonlocal
obstacle problem

min
{
u − ψ, (∂t −∆)su

}
= 0.

The function ψ is the obstacle, and

(∂t −∆)su(x , t) =

=
s

Γ(1− s)

ˆ t

−∞

ˆ
Rn

(t − τ)−s−1G (x − z , t − τ)[u(x , t)− u(z , τ)]dzdτ

denotes the fractional heat operator.

Here 0 < s < 1, u ∈ C 1(Rn ×R) ∩ L∞(Rn ×R), G (z , τ) = (4πτ)−
n
2 e−

|z|2
4τ

is the standard heat kernel and Γ(z) is Euler Gamma function.
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Motivation

The study of (∂t −∆)s was first proposed by M. Riesz in his fundamental
paper Intégrales de Riemann-Liouville et potentiels (1938).

An important motivation for the study of this nonlocal operator comes
from the fact that it models a stochastic jump process with arbitrary
distributions of both jump lengths and waiting times, such as the
continuous time random walk (CTRW) introduced by Montroll and Weiss
(1965).
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paper Intégrales de Riemann-Liouville et potentiels (1938).

An important motivation for the study of this nonlocal operator comes
from the fact that it models a stochastic jump process with arbitrary
distributions of both jump lengths and waiting times, such as the
continuous time random walk (CTRW) introduced by Montroll and Weiss
(1965).

Donatella Danielli (Purdue University) Obstacle Problems for the Fractional Heat April 14, 2019 6 / 29



The stationary case

The elliptic counterpart

min
{
u − ψ, (−∆)su

}
= 0.

has a rich history.

In 2007 Caffarelli and Silvestre introduced a remarkable extension
procedure which allows to convert problems involving the fractional
Laplacian (−∆)s acting on functions of x ∈ Rn, into ones involving a
local degenerate elliptic operator acting on functions of the variable
X = (x , y) ∈ Rn+1

+ = Rn
x × R+

y .

This method opened the way to an exhaustive study of the regularity
properties of both the solution and the free boundary for the
time-independent obstacle problem for all 0 < s < 1.
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Statement of the Problem

Nystrom and Sande (2016) and - indipendently - Stinga and Torrea (2017)
showed that, at a local level, the nonlocal obstacle problem

min
{
u − ψ, (∂t −∆)su

}
= 0

is equivalent to the following lower-dimensional obstacle problem for the
degenerate parabolic operator La = ya ∂V∂t − divX (ya∇XV ):



LaV = 0 in Q+
1 ,

V (x , 0, t) ≥ ψ(x , t), for (x , t) ∈ Q1,

− lim
y→0+

ya ∂V∂y (x , y , t) ≥ 0, for (x , t) ∈ Q1,

lim
y→0+

ya ∂V∂y (x , y , t) = 0, on {(x , t) ∈ Q1 | V (x , 0, t) > ψ(x , t)}.

This is a thin obstacle problem since now the obstacle ψ lives on the thin
manifold Q1 in space-time Rn × (−1, 0).
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Notations:

Br = thick ball in the thick variable X ∈ Rn+1

Br = thin ball in the thin variable x ∈ Rn.

Qr = Br × (−r2, 0] = thick parabolic cylinder in the thick space
(X , t) ∈ Rn+1 × R
Qr = Br × (−r2, 0] = thin parabolic cylinder in the thin space
(x , t) ∈ Rn × R
B+
r = {X = (x , y) ∈ Br | y > 0} = thick half-ball

Q+
r = B+

r × (−r2, 0] = thick parabolic half-cylinder

Sr = {(X , t)|X ∈ Rn+1, −r2 < t < 0} = strip in thick space

Sr = {(x , t) | x ∈ Rn, −r2 < t < 0} = strip in thin space

S+r = {(X , t) | X ∈ Rn+1
+ , −r2 < t < 0} = half-strip in thick space
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The pioneering work of Chiarenza and Serapioni

The equation LaV = 0 is a special case of the class of degenerate
parabolic equations in divergence form

∂t(ω(X )V ) = div(A(X )∇V ),

where ω(X ) is a Muckenhoupt A2-weight which controls the degeneracy
of the matrix-valued function A(X ).

These equations were first studied by Chiarenza and Serapioni (1985).

If we take ω(X ) = |y |a, with a = 1− 2s, then we have ω ∈ A2(Rn+1)
since |a| < 1.
Using the Chiarenza-Serapioni result and the Signorini conditions we know
that local solutions to the thin obstacle problem satisfy a parabolic
Harnack inequality and are therefore Hölder continuous up to the thin set
(Rn × {0})× (−1, 0).
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The Signorini Problem

The case a = 0 corresponds to the Signorini problem:

What is the equilibrium configuration of an elastic body resting on a rigid
frictionless plane?
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Other applications include:

Optimal control of temperature across a surface

Modeling of semipermeable membranes (osmosis)

Probability and financial math (optimal stopping problems for
stochastic processes with jumps)

Geophysical fluid dynamics (quasi-geostrophic equations)
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Related Results

In joint work with Garofalo, Petrosyan and To (2017), we proved

Existence and homogeneity properties of blow-up limits (by means of
a monotonicity formula of Almgren-Poon type)

Optimal regularity of solutions

Classification of free boundary points

Regularity of the regular set

Structure of the singular set (by means of monotonicity formulas of
Weiss- and Monnau type)
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The parabolic nonlocal obstacle problem

min{u − ψ, (−∆)su + ut} = 0

has been treated by Caffarelli and Figalli (2013) and Barrios, Figalli, and
Ros-Oton (2018). However, even if the stationary versions are the same,
this problem is fundamentally different from the one we are considering.

In recent work Athanasopoulos, Caffarelli and Milakis (2018) establish the
optimal regularity of solutions, as well as C 1,α-regularity of the free
boundary at certain non-singular points for solutions to

min
{
u − ψ, (∂t −∆)su

}
= 0,

using the correspondence with the local degenerate problem.
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Reduction to zero obstacle and globalization

It is very important to reduce the problem to the case of zero obstacle
while at the same time globalizing the problem (globalization is needed to
use analysis in Gaussian spaces).

This is accomplished by subtracting the obstacle, and multiplying by a
cut-off ζ(X ) = ζ?(|X |) ∈ C∞0 (B1), 0 ≤ ζ ≤ 1, and then considering the
new function

U(X , t) = ζ(X )(V (X , t)− ψ(x , t)).

Important observation: Since ζ is smooth and ζ(x ,−y) = ζ(x , y) one has

lim
y→0+

ya
∂V

∂y
(x , y , t) = lim

y→0+
ya
∂U

∂y
(x , y , t).
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Therefore, the function U solves the following problem in the space-time
strip S+1 in thick space



LaU = yaF in S+1 ,

U(x , 0, t) ≥ 0, for (x , t) ∈ S+
1 ,

− lim
y→0+

ya ∂U∂y (x , y , t) ≥ 0, for (x , t) ∈ S+
1 ,

lim
y→0+

ya ∂U∂y (x , y , t) = 0, on the set {(x , t) ∈ S+
1 | U(x , 0, t) > 0}
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If ψ ∈ C 2
x ,t , then not only F ∈ L∞(S+1 ) but also Ft ∈ L∞(S+1 )!

This allows us to prove the crucial fact

Ut ∈ L∞(S+1 )

.

For a = 0⇔ s = 1/2 this was by Petrosyan and Zeller, and independently
by Athanasopoulos, Caffarelli and Milakis.

With this information we can bring yaUt to the right-hand side and then,
setting F − Ut −→ F , consider the elliptic problem for the function
u(X ) = U(X , t̄) at each fixed time-level t̄:



divX (ya∇Xu) = yaF in B+
1 ,

u(x , 0) ≥ 0, for x ∈ B+
1 ,

− lim
y→0+

ya ∂u∂y (x , y) ≥ 0, for x ∈ B+
1 ,

lim
y→0+

ya ∂U∂y (x , y) = 0, on the set {x ∈ B+
1 | u(x , 0) > 0}
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Regularity of Solutions

Using the elliptic regularity results of Caffarelli, De Silva and Savin (2017),
and the fact that the estimates are uniform in t̄ ∈ (−1, 0), we prove that

∇xU ∈ H
1−a
2
, 1−a

4 (S+1 ∪ (S1 × {0}))

(Hα,α/2 = intrinsic parabolic Hölder classes)
In addition, thanks to some delicate W 2,2(Q+

1 , y
adXdt) estimates, we

show that

|∇Uxi |
2 ∈ L2(S+1 , y

adXdt).
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The free boundary: Preliminaries

Denote by
Ga(X , t) = Ga(X , 0, |t|), t < 0,

the Neumann fundamental solution of the backward operator

L?a = ya
∂

∂t
+ divX (ya∇X )

with pole at 0 = (0, 0, 0). One has the remarkable formula

Ga(X , t) =
(4π)−

n
2

2aΓ(a+1
2 )
|t|−

n+a+1
2 e

− |X |
2

4|t| .

We now introduce the quantities

H(U, r) =
1

r2

ˆ
S+r

U2 GayadXdt, D(U, r) =
1

r2

ˆ
S+r
|t||∇U|2 GayadXdt.
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One-parameter Almgren-Poon type monotonicity formula

One of our main tools is the following result:

Theorem 1 (Truncated monotonicity formula of Almgren-Poon type)

Suppose that |F (X , t)| ≤ C`|(X , t)|`−2 for every (X , t) ∈ S+1 , for ` ≥ 2
and some constant C` > 0. Then, for every σ ∈ (0, 1) there exist a
constant C > 0, depending on n, a,C` and σ, such that the function

r 7→ Φ`,σ(U, r)
def
= reCr

1−σ d

dr
log max

{
H(U, r), r2`−2+2σ

}
+ 4(eCr

1−σ − 1),

is monotone nondecreasing on (0, 1). In particular, it exists

Φ`,σ(U, 0+)
def
= lim

r→0+
Φ`,σ(U, r).
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The Almgren-Poon type monotonicity formula plays a crucial role in the
blowup analysis of a solution to the problem.

We define the parabolic Almgren rescalings of U as

Ur =
U ◦ δr

H(U, r)1/2
.

The Almgren rescalings are used at regular points.

We fix σ ∈ (1−a2 , 1) and let κ = Φ2,σ(U, 0+) (note ` = 2). Then:

There exists a sequence rj → 0 and a function U0 ∈ S+∞ such thatˆ
S+R

ya((Urj − U0)2 + |t||∇Urj −∇U0|2)Ga → 0

U0 is parabolically homogeneous of degree κ and is a global solution
of the thin obstacle problem, i.e.,LaU0 = 0 in S+∞

U0 ≥ 0, lim
y→0+

ya∂yU0 ≤ 0, U0

(
lim

y→0+
ya∂yU0

)
= 0.

(0.1)
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Frequency gap

We have the following basic result:

Let σ ∈ (0, 1), ` ≥ 4 and κ = Φ`,σ(U, 0+) be such that κ < `− 1 + σ.
Then

either κ = 1 +
1− a

2
=

3− a

2
, or κ ≥ 2.

Definition 2

The set Λψ(u) = {x ∈ Rn : u(x) = 0} is the coincidence set, and its
boundary Γψ(u) = ∂Λψ(u) is the free boundary.

An important consequence of the gap theorem is:

The set of free boundary points which have minimal frequency κ = 3−a
2 is

a relatively open subset of the free boundary.
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The regular free boundary

Definition 3

We define the regular part of the free boundary as the collection of all free
boundary points (X0, t0) = (x0, 0, t0) at which

κ =
3− a

2
.

.

Theorem 4

The regular free boundary is locally a Hα,α/2 hypersurface.

Proof: Reduction to elliptic case.
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The singular set

Definition 1 (Singular points)

A free boundary point X0 = (x0, 0, t0) is singular if

lim
r→0+

Hn+1(Λ(v) ∩ Qr (X0))

Hn+1(Qr (X0))
= 0.

We denote the set of singular points by Σ(v) and call it the singular set.
We can further classify singular points according to the homogeneity of
their blowup, by defining

Σκ(v) := Σ(v) ∩ Γ(`)
κ (v), κ ≤ `.

Important fact: X0 is singular ⇔ κ = 2m, m ∈ N.

Donatella Danielli (Purdue University) Obstacle Problems for the Fractional Heat April 14, 2019 24 / 29



The singular set

Definition 1 (Singular points)

A free boundary point X0 = (x0, 0, t0) is singular if

lim
r→0+

Hn+1(Λ(v) ∩ Qr (X0))

Hn+1(Qr (X0))
= 0.

We denote the set of singular points by Σ(v) and call it the singular set.
We can further classify singular points according to the homogeneity of
their blowup, by defining

Σκ(v) := Σ(v) ∩ Γ(`)
κ (v), κ ≤ `.

Important fact: X0 is singular ⇔ κ = 2m, m ∈ N.

Donatella Danielli (Purdue University) Obstacle Problems for the Fractional Heat April 14, 2019 24 / 29



The singular set

Definition 1 (Singular points)

A free boundary point X0 = (x0, 0, t0) is singular if

lim
r→0+

Hn+1(Λ(v) ∩ Qr (X0))

Hn+1(Qr (X0))
= 0.

We denote the set of singular points by Σ(v) and call it the singular set.
We can further classify singular points according to the homogeneity of
their blowup, by defining

Σκ(v) := Σ(v) ∩ Γ(`)
κ (v), κ ≤ `.

Important fact: X0 is singular ⇔ κ = 2m, m ∈ N.

Donatella Danielli (Purdue University) Obstacle Problems for the Fractional Heat April 14, 2019 24 / 29



Weiss type monotonicity formula in Gaussian space

To study the singular set we first prove the following

Theorem 5

Suppose that ` ≥ 2 is such that for some constant C` > 0 one has
|F (X , t)| ≤ C`|(X , t)|`−2 for every (X , t) ∈ S+1 .
For κ ∈ (0, `) we define the parabolic κ-Weiss type functional

Wκ(U, r)
def
= r−2κ

{
D(U, r)− κ

2
H(U, r)

}
.

Then, for any 0 < σ ≤ `− κ there exists C > 0 depending on n, a, `,C`
such that the function r −→ Wκ(U, r) + Cr2σ is monotonically
nondecreasing in (0, 1), and therefore the limit

Wκ(U, 0+)
def
= lim

r→0+
Wκ(U, r)

exists.
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Monneau type monotonicity formula in Gaussian space

A direct consequence of the Weiss monotonicity formula is the main tool
to analyze singular points.

Theorem 6

Assume that for some ` ≥ 3 the function F satisfies the bounds
|F (X , t)| ≤ C`|(X , t)|`−2 in S+1 , |∇F (X , t)| ≤ C ?` |(X , t)|`−3 in Q+

1/2.

Suppose that 0 ∈ Σκ(U) with κ = 2m < `, for m ∈ N. For any
parabolically κ-homogeneous polynomial pκ in S∞ we define the Monneau
type functional

Mκ
def
=

1

r2κ+2

ˆ
S+r

(U − pκ)2 Gaya, r ∈ (0, 1).

Then, for any 0 < σ < `− κ there exists a constant C > 0, depending on
n, a, `,C`, σ, such that the function r →Mκ + Crσ is monotonically
nondecreasing on (0, 1).
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The Monneau monotonicity formula implies a fundamental piece of
information:

the uniqueness of the homogeneous blowups at singular
points, that is, the limit of the κ-homogeneous rescalings of U defined as

Ũr =
U ◦ δr
rκ

.

We show that at a singular point of homogeneity κ = 2m such
homogeneous blowup must be a parabolically κ-homogeneous polynomial
pκ satisfying

Lapκ = 0, pκ(x , 0, t) ≥ 0, pκ(x ,−y , t) = pκ(x , y , t).

Monneau monotonicity formula also implies another important piece of
information: The continuous dependence of the blowup from the free
boundary points.
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Ũr =
U ◦ δr
rκ

.

We show that at a singular point of homogeneity κ = 2m such
homogeneous blowup must be a parabolically κ-homogeneous polynomial
pκ satisfying

Lapκ = 0, pκ(x , 0, t) ≥ 0, pκ(x ,−y , t) = pκ(x , y , t).

Monneau monotonicity formula also implies another important piece of
information: The continuous dependence of the blowup from the free
boundary points.

Donatella Danielli (Purdue University) Obstacle Problems for the Fractional Heat April 14, 2019 27 / 29



Structure of the singular set

Combining these results with a parabolic Whitney type extension theorem
we are able to establish the rectifiable structure of the singular set

Theorem 7

Let F ∈ H`,`/2(Q1), ` ≥ 3. Then, for any κ = 2m < `, m ∈ N, we have
Γκ(U) = Σκ(U).

Moreover, for every d = 0, 1, . . . , n − 2, the set Σd
κ(U) is

contained in a countable union of (d + 1)-dimensional space-like C 1,0

manifolds and Σn−1
κ (v) is contained in a countable union of

(n − 1)-dimensional time-like C 1 manifolds.
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Thank you for your attention!
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