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Optimal transport problem:

Data:
Ω1 and Ω2, bounded open sets in Rd with

|Ω1| = |Ω2|;

Find a map T : Ω1 → Ω2 that is
1. volume-preserving ( |T−1(E )| = |E | for all E ⊂ Ω2 ); and
2. minimizing ∫

Ω1

|T (x)− x |2dx

over the class of volume-preserving maps between the domains.
Motivation and applications.
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Regularity of the map?

In general, no continuity.

Theorem (Caffarelli)

For convex Ω1 and Ω2, T ∈ C∞loc(Ω1) ∩ Cαd (Ω1).

Here αd ∈ (0, 1) is a dimensional constant.

Theorem (Caffarelli, Urbas, Delanoë, Chen-Liu-Wang)

If Ω1 and Ω2 are convex and C 1,1, then T ∈ C 1,αd (Ω1).

Q: What is the best global regularity between convex domains (no
extra assumptions)?
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Q: Best global regularity between convex domains (no extra
assumptions)?

Equation for the map:
T = ∇u for a convex function u : Rd → R. (Brenier)

det(D2u) = 1 in Ω1,
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Q: Best global regularity between convex domains (no extra
assumptions)?
Equation for the map:
T = ∇u for a convex function u : Rd → R. (Brenier){

det(D2u) = 1 in Ω1,

∇u(∂Ω1) = ∂Ω2.
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Q: Best global regularity between convex domains (no extra
assumptions)? {

det(D2u) = 1 in Ω1,

∇u(∂Ω1) = ∂Ω2.

For convex domains, ∂Ω2 is only Lipschitz. =⇒ u ∈ C 1,1(Ω1)???
False in general!
u ∈ C 1,α(Ω1) for all α ∈ (0, 1)?
Yes, in 2D.
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Theorem (Savin-Y.)

For convex Ω1 and Ω2 in R2, and p ∈ (0,+∞),

|D2u|Lp(Ω1) ≤ C = C (p, inner and outer radii of Ω1,Ω2).

=⇒ u ∈ C 1,α(Ω1) for all α ∈ (0, 1).
Estimate has to depend on the inner/ outer radii of the domains.
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Some ingredients:
Assume 0 ∈ ∂Ω1 ∩ ∂Ω2, u(0) = 0 and ∇u(0) = 0.

For h > 0, define

Sh = {x ∈ R2|u(x) < p · x + h},

where p ∈ R2 is chosen such that Sh is centered at 0.
John’s lemma: There is an ellipse Eh such that Eh ⊂ Sh ⊂ CdEh.
The more Eh looks like B√h, the better estimate we have for u at
0.
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Sh ∼ Eh. The more Eh looks like B√h, the better estimate...

Proposition

1) |Sh| ∼ h, |Sh ∩ Ω1| ∼ h, |∇u(Sh) ∩ Ω2| ∼ h.

2) If Sh ∼ Eh, then ∇u(Sh) ∼ E⊥h .
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How to control the ratio long axis
short axis ?

Lemma (Obliqueness)

The left tangents of Ω1 and Ω2 form an acute angle.
The right tangents....
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Thank you!
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