The fractional unstable obstacle problem

Mariana Smit Vega Garcia Joint work with Mark Allen

AMS Spring Eastern Sectional Meeting - Special Session on Regularity Theory of PDEs and Calculus of Variations on Domains with Rough Boundaries

University of Connecticut Hartford
Mariana.SmitVegaGarcia@wwu.edu

April 13th, 2019

The study of the classical obstacle problem began in the 60's with the pioneering works of G. Stampacchia, H. Lewy, J. L. Lions. During the past five decades it has led to beautiful and deep developments in calculus of variations and geometric partial differential equations.

The study of the classical obstacle problem began in the 60's with the pioneering works of G. Stampacchia, H. Lewy, J. L. Lions. During the past five decades it has led to beautiful and deep developments in calculus of variations and geometric partial differential equations.

One of its crowning achievements has been the development, due to L. Caffarelli, of the theory of free boundaries. Nowadays, the obstacle problem continues to offer many challenges and its study is as active as ever.

The study of the classical obstacle problem began in the 60's with the pioneering works of G. Stampacchia, H. Lewy, J. L. Lions. During the past five decades it has led to beautiful and deep developments in calculus of variations and geometric partial differential equations.

One of its crowning achievements has been the development, due to L. Caffarelli, of the theory of free boundaries. Nowadays, the obstacle problem continues to offer many challenges and its study is as active as ever.

In this talk I will overview the fractional unstable obstacle problem.

Connections to other problems

Classical obstacle problem

$$
\Delta u=\chi_{\{u>0\}} .
$$

Connections to other problems

Classical obstacle problem

$$
\Delta u=\chi_{\{u>0\}}
$$

Interior reaction for combustion

$$
\begin{equation*}
\partial_{t} u-\Delta u=\chi_{\{u>0\}} . \tag{0.1}
\end{equation*}
$$

Connections to other problems

Classical obstacle problem

$$
\Delta u=\chi_{\{u>0\}} .
$$

Interior reaction for combustion

$$
\begin{equation*}
\partial_{t} u-\Delta u=\chi_{\{u>0\}} . \tag{0.1}
\end{equation*}
$$

Monneau \& Weiss, 2007:
Unstable obstacle problem: study traveling waves of (0.1) by studying the stationary equation

$$
-\Delta u=\chi_{\{u>0\}} .
$$

Connections to other problems

Classical obstacle problem

$$
\Delta u=\chi_{\{u>0\}} .
$$

Interior reaction for combustion

$$
\begin{equation*}
\partial_{t} u-\Delta u=\chi_{\{u>0\}} . \tag{0.1}
\end{equation*}
$$

Monneau \& Weiss, 2007:
Unstable obstacle problem: study traveling waves of (0.1) by studying the stationary equation

$$
-\Delta u=\chi_{\{u>0\}} .
$$

Allen \& SVG: fractional unstable obstacle problem

$$
(-\Delta)^{s} u=\chi_{\{u>c\}}, \quad 0<s<1
$$

The action of $(-\Delta)^{s}$ on $\psi \in C_{0}^{2}\left(\mathbb{R}^{n}\right)$ is given by

$$
(-\Delta)^{s} \psi(x)=c_{n, s} \text { p.v. } \int_{\mathbb{R}^{n}} \frac{\psi(x)-\psi(y)}{|x-y|^{n+2 s}} d y
$$

understood in the sense of the principal value.

Connections to other problems

Two-phase obstacle problem: $\Delta u=\lambda_{+} \chi_{\{u>0\}}-\lambda_{-} \chi_{\{u<0\}}$.
Solutions can be obtained by minimizing the energy

$$
J(u)=\int_{\Omega}\left(|\nabla u|^{2}+2\left(\lambda_{+} u^{+}+\lambda_{-} u^{-}\right)\right) d x
$$

See Shahgholian-Uraltseva-Weiss $(2004,2007)$, Shahgholian-Weiss (2006), Uraltseva (2001), Weiss (2001).

Connections to other problems

Two-phase obstacle problem: $\Delta u=\lambda_{+} \chi_{\{u>0\}}-\lambda_{-} \chi_{\{u<0\}}$.
Solutions can be obtained by minimizing the energy

$$
J(u)=\int_{\Omega}\left(|\nabla u|^{2}+2\left(\lambda_{+} u^{+}+\lambda_{-} u^{-}\right)\right) d x
$$

See Shahgholian-Uraltseva-Weiss $(2004,2007)$, Shahgholian-Weiss (2006), Uraltseva (2001), Weiss (2001).

Two-phase fractional obstacle problem (Allen, Lindgren \& Petrosyan, 2015): Study minimizers of the energy

$$
\int_{\Omega^{+}}|\nabla u|^{2} x_{n}^{a}+2 \int_{\Omega^{\prime}}\left(\lambda_{+} u^{+}+\lambda_{-} u^{-}\right)
$$

where $\Omega \subset \mathbb{R}^{n}, \Omega^{+}=\Omega \cap\left\{x_{n}>0\right\}, \Omega^{\prime}=\Omega \cap\left\{x_{n}=0\right\}, \lambda_{ \pm}>0$.

Fractional unstable obstacle problem

Allen \& SVG, 2018:
Study minimizers of the energy

$$
J_{a}(u)=\int_{\Omega^{+}}|\nabla u|^{2} x_{n}^{a}-2 \int_{\Omega^{\prime}}\left(\lambda_{+} u^{+}+\lambda_{-} u^{-}\right) d \mathcal{H}^{n-1} .
$$

where $\Omega \subset \mathbb{R}^{n}, \Omega^{+}=\Omega \cap\left\{x_{n}>0\right\}, \Omega^{\prime}=\Omega \cap\left\{x_{n}=0\right\}, \lambda_{ \pm} \geq 0$.
Minimization occurs over $H^{1}\left(a, \Omega^{+}\right)$with fixed boundary data on $\partial \Omega \cap\left\{x_{n}>0\right\}$.

Temperature control through the boundary

When $s=1 / 2$, solutions of

$$
(-\Delta)^{s} u=\chi_{\{u>c\}}, \quad 0<s<1
$$

model temperature control on the boundary (see Duvaut-Lions, Inequalities in Mechanics and Physics).

More heat is injected when the temperature rises on the boundary corresponding to a boundary reaction.

Localization of the fractional Laplacian

$U \subset \mathbb{R}^{n-1}$ bounded, $\left(x^{\prime}, x_{n}\right) \in \mathbb{R}^{n}$.
Let $u\left(x^{\prime}\right)$ solve $(-\Delta)^{s} u=\chi_{\{u>c\}}$. Extend u to $U \times \mathbb{R}$ adding variable x_{n} :

$$
\begin{align*}
\operatorname{div}\left(x_{n}^{a} \nabla u\left(x^{\prime}, x_{n}\right)\right) & =0 \text { in } U \times \mathbb{R}^{+} \\
\lim _{x_{n} \rightarrow 0} x_{n}^{a} \partial_{x_{n}} u\left(x^{\prime}, x_{n}\right) & =\frac{1}{c_{n, a}} \chi_{\left\{u\left(x^{\prime}, 0\right)>c\right\}} \tag{0.2}
\end{align*}
$$

where $2 s=1-a$.
Solutions to (0.2) can be found by minimizing

$$
\int_{U \times \mathbb{R}^{+}}\left|\nabla v\left(x^{\prime}, x_{n}\right)\right|^{2} x_{n}^{a}-\frac{2}{-c_{n, a}} \int_{U}(v-c)^{+} d \mathcal{H}^{n-1}
$$

Generalized solution

$\Omega \subset \mathbb{R}^{n}$: bounded smooth domain, even in x_{n}, $\left(x^{\prime}, x_{n}\right) \in \mathbb{R}^{n-1} \times \mathbb{R}$, $\Omega^{\prime}=\Omega \cap\left\{x_{n}=0\right\}$, $\Omega^{+}=\Omega \cap\left\{x_{n}>0\right\}$, $\lambda_{ \pm} \geq 0$.
Goal: minimize

$$
\begin{equation*}
J_{a}\left(v, \lambda_{+}, \lambda_{-}\right)=\int_{\Omega^{+}}|\nabla v|^{2}\left|x_{n}\right|^{a}-2 \int_{\Omega^{\prime}}\left(\lambda_{+} v^{+}+\lambda_{-} v^{-}\right) d \mathcal{H}^{n-1}, \tag{0.3}
\end{equation*}
$$

over $\left\{v \in H^{1}\left(a, \Omega^{+}\right): v=\varphi\right.$ on $\left.\partial \Omega \cap\left\{x_{n}>0\right\}\right\}$.

Minimizing (0.3) is always a "two-phase" problem

Proposition
u is a minimizer of $J_{a}\left(v, \lambda_{+}, \lambda_{-}\right) \Longleftrightarrow u+c x_{n}^{1-a}$ is a minimizer of

$$
J_{a}\left(w, \lambda_{+}-c(1-a), \lambda_{-}+c(1-a)\right),
$$

for any c with $-\lambda_{-} \leq c(1-a) \leq \lambda_{+}$.

Minimizing (0.3) is always a "two-phase" problem

Proposition

u is a minimizer of $J_{a}\left(v, \lambda_{+}, \lambda_{-}\right) \Longleftrightarrow u+c x_{n}^{1-a}$ is a minimizer of

$$
J_{a}\left(w, \lambda_{+}-c(1-a), \lambda_{-}+c(1-a)\right),
$$

for any c with $-\lambda_{-} \leq c(1-a) \leq \lambda_{+}$.

Consequently: focus on minimizing

$$
J_{a}(v)=\int_{\Omega^{+}}|\nabla v|^{2}\left|x_{n}\right|^{a}-2 \int_{\Omega^{\prime}} v^{-} .
$$

Equations

Minimizers of J_{a} solve

$$
\int_{\Omega^{+}} x_{n}^{a}\langle\nabla u, \nabla \psi\rangle=\int_{\Omega^{\prime} \cap\{u<0\}}-\psi, \quad \forall \psi \in C_{0}^{1}(\Omega) .
$$

Moreover,

$$
\begin{aligned}
\operatorname{div}\left(x_{n}^{a} \nabla u\left(x^{\prime}, x_{n}\right)\right) & =0 \text { in } \Omega^{+} \\
\lim _{x_{n} \rightarrow 0} x_{n}^{a} \partial_{x_{n}} u\left(x^{\prime}, x_{n}\right) & =\chi_{\left\{u\left(x^{\prime}, 0\right)<0\right\} .} .
\end{aligned}
$$

Main goals

- Existence of minimizers;
- Regularity of minimizers;
- Topological properties of the free boundary;
- Upper bound for the Hausdorff dimension of the singular set of the free boundary.

Existence of minimizers to J_{a}

- Compactness of trace operators (Allen, Lindgren, Petrosyan, 2015);
- Boundedness of J_{a} from below;
- Convexity and closedness of set of candidates;
- Standard methods of calculus of variations.

Initial properties

Nondegeneracy in the full domain Ω^{+}:
If u minimizes J_{a} in $B_{R}\left(x_{0}, 0\right)^{+}$and $u\left(x_{0}, 0\right)=0$, then

$$
\sup _{B_{r}\left(x_{0}, 0\right)^{+}} u \geq C r^{1-a}, \quad \forall r<R .
$$

A non-degeneracy result for the thin space Ω^{\prime} is obtained later.

Initial properties

Nondegeneracy in the full domain Ω^{+}:
If u minimizes J_{a} in $B_{R}\left(x_{0}, 0\right)^{+}$and $u\left(x_{0}, 0\right)=0$, then

$$
\sup _{B_{r}\left(x_{0}, 0\right)^{+}} u \geq C r^{1-a}, \quad \forall r<R
$$

A non-degeneracy result for the thin space Ω^{\prime} is obtained later.
Weighted boundary derivative on Ω^{\prime} for u is constant in a measure theoretic sense when $u<0$:
Let u minimize J_{a} in Ω. Then $\forall \psi \in C_{0}^{2}(\Omega)$,

$$
\int_{\Omega^{+}} x_{n}^{a}\langle\nabla u, \nabla \psi\rangle=\int_{\Omega^{\prime} \cap\{u<0\}}-\psi .
$$

Regularity for minimizers of J_{a}

Case $0<s<\frac{1}{2}: u \in C^{0,1-a}\left(\Omega^{+} \cup \Omega^{\prime}\right)$ and

$$
\|u\|_{C^{0,1-a}\left(\overline{B_{r / 2}}\right)} \leq C\|u\|_{L^{2}\left(a, B_{r}^{+}\right)} .
$$

Allen-Lindgren-Petrosyan: (two-phase fractional obstable problem) $u \in C^{0,1-a}\left(\overline{B_{r / 2}^{+}}\right)$.

Regularity for minimizers of J_{a}

Case $0<s<\frac{1}{2}: u \in C^{0,1-a}\left(\Omega^{+} \cup \Omega^{\prime}\right)$ and

$$
\|u\|_{C^{0,1-a}\left(\overline{B_{r / 2}^{+}}\right)} \leq C\|u\|_{L^{2}\left(a, B_{r}^{+}\right)} .
$$

Allen-Lindgren-Petrosyan: (two-phase fractional obstable problem) $u \in C^{0,1-a}\left(\overline{B_{r / 2}^{+}}\right)$.

Case $\frac{1}{2}<s<1: u \in C^{1,-a}\left(\Omega^{+} \cup \Omega^{\prime}\right)$ and

$$
\|u\|_{C^{1,-a}\left(\overline{B_{r / 2}^{+}}\right)} \leq C\|u\|_{L^{2}\left(a, B_{r}^{+}\right)} .
$$

Allen-Lindgren-Petrosyan: $u \in C^{1,-a}\left(\overline{B_{r / 2}^{+}}\right)$.
Monneau-Weiss: (minimizers of the unstable obstacle problem) $u \in C_{\text {loc }}^{1,1}$.

Regularity for minimizers of J_{a}

Case $s=1 / 2: u \in C^{0, \alpha}\left(B_{1 / 2}^{+} \cup B_{1 / 2}^{\prime}\right)$ for every $0<\alpha<1$ and

$$
\|u\|_{C^{0, \alpha}\left(\overline{B_{1 / 2}^{+}}\right)} \leq C\|u\|_{L^{2}\left(B_{1}\right)} .
$$

Allen-Lindgren-Petrosyan: (minimizers of the two-phase fractional obstable problem) $u \in C^{0,1}\left(\overline{B_{r / 2}^{+}}\right)$.

Remark: In the fractional unstable obstacle problem, we may not expect Lipschitz regularity when $s=1 / 2$.

Free boundary

$$
\Gamma^{+}=\partial\{u(\cdot, 0)>0\}, \quad \Gamma^{-}=\partial\{u(\cdot, 0)<0\}, \quad \Gamma=\Gamma^{+} \cup \Gamma^{-} .
$$

Case $s>1 / 2$: minimizers are $C^{1,-a}$. Implicit function theorem $\Rightarrow \Gamma$ is $C^{1,-a}$ manifold wherever $|\nabla u| \neq 0$.

Free boundary

$$
\Gamma^{+}=\partial\{u(\cdot, 0)>0\}, \quad \Gamma^{-}=\partial\{u(\cdot, 0)<0\}, \quad \Gamma=\Gamma^{+} \cup \Gamma^{-} .
$$

Case $s>1 / 2$: minimizers are $C^{1,-a}$. Implicit function theorem $\Rightarrow \Gamma$ is $C^{1,-a}$ manifold wherever $|\nabla u| \neq 0$.

Case $s \leq 1 / 2$: minimizers are $C^{0,1-a}$. Minimizers are not differentiable. More complicated!

Free boundary

$$
\Gamma^{+}=\partial\{u(\cdot, 0)>0\}, \quad \Gamma^{-}=\partial\{u(\cdot, 0)<0\} .
$$

If u minimizes J_{a}, then

- $\{(x, 0) \mid u(x, 0)=0\}$ has no interior point in the topology of \mathbb{R}^{n-1},
- $\mathcal{H}^{n-1}\left(\Gamma^{+} \cup \Gamma^{-}\right)=0$.

This is what is expected, as it is true when $s=1$.

Weiss-type monotonicity formula:

$$
W(r)=\frac{1}{r^{n-a}} \int_{B_{r}^{+}} x_{n}^{a}|\nabla u|^{2}-\frac{2}{r^{n-a}} \int_{B_{r}^{\prime}} u^{-}-\frac{1-a}{r^{n+1-a}} \int_{\left(\partial B_{r}\right)^{+}} x_{n}^{a} u^{2}
$$

is nondecreasing for $0<r<1$.
W is constant on $\left[r_{1}, r_{2}\right] \Longleftrightarrow u$ is homogeneous of degree $2 s=1-a$ on $r_{1}<|x|<r_{2}$.

Allows us to show blow-ups are homogeneous of degree 2 s .

Convergence of rescalings

Let u be a minimizer of J_{a} with $u\left(x_{0}, 0\right)=0$.

- If $a=0$ assume

$$
\sup _{B_{r}\left(x_{0}, 0\right)}|u| \leq C r \quad \forall r<r_{0} \text { for some } r_{0} .
$$

Convergence of rescalings

Let u be a minimizer of J_{a} with $u\left(x_{0}, 0\right)=0$.

- If $a=0$ assume

$$
\sup _{B_{r}\left(x_{0}, 0\right)}|u| \leq C r \quad \forall r<r_{0} \text { for some } r_{0} .
$$

- If $a<0$, assume $\nabla_{x} u\left(x_{0}, 0\right)=0$.

Convergence of rescalings

Let u be a minimizer of J_{a} with $u\left(x_{0}, 0\right)=0$.

- If $a=0$ assume

$$
\sup _{B_{r}\left(x_{0}, 0\right)}|u| \leq C r \quad \forall r<r_{0} \text { for some } r_{0} \text {. }
$$

- If $a<0$, assume $\nabla_{x} u\left(x_{0}, 0\right)=0$.

Then for any $r_{k} \rightarrow 0$,

$$
u_{r_{k}}(x)=\frac{u\left(x_{0}+r_{k} x\right)}{r_{k}^{2 s}}
$$

converges (up to subsequence) to u_{0}, minimizer of J_{a} in every $K \subset \subset \mathbb{R}^{n}$. u_{0} is homogeneous of degree $2 s=1-a$.

Almgren's frequency formula

Let $u \in H^{1}\left(B_{1}\right)$ solve $\Delta u=0$. Then

$$
N(r)=r \frac{\int_{B_{r}}|\nabla u|^{2}}{\int_{\partial B_{r}} u^{2}}
$$

is nondecreasing for $r>0$. Moreover, $N(r) \equiv \kappa$ if and only if u is homogeneous of degree κ.

Convergence of rescalings when $a=0$

Fix $a=0(s=1 / 2)$. Let u minimize J_{a} with $u\left(x_{0}, 0\right)=0$ and not satisfy

$$
\sup _{B_{r}\left(x_{0}, 0\right)}|u| \leq C r, \forall r<r_{0} \text { for some } r_{0} .
$$

Then

$$
u_{r}(x)=\frac{u\left(r x+x_{0}\right)}{\left(r^{1-n} \int_{\partial B_{r}\left(x_{0}\right)} u^{2}\right)^{1 / 2}}
$$

is bounded in $H^{1}\left(B_{1}\right)$ and every limit u_{0} as $r \rightarrow 0$ is a linear function in the x^{\prime} variable.

Consequence of Weiss + Almgren.

Classification

If u is a-harmonic in Ω^{+}, if it is homogeneous of degree $1-a$ and

$$
\int_{\Omega^{+}} x_{n}^{a}\langle\nabla u, \nabla \psi\rangle=-c \int_{\Omega^{\prime}} \psi, \quad \forall \psi \in C_{0}^{1}(\Omega)
$$

then $u \equiv c x_{n}^{1-a} /(1-a)$.

Comparison of phases

Allen, Lindgren, Petrosyan (2015):
Let $a \geq 0$. For minimizers of

$$
\begin{gathered}
\int_{\Omega^{+}}|\nabla v|^{2} x_{n}^{a}+2 \int_{\Omega^{\prime}} \lambda_{+} u^{+}+\lambda_{-} u^{-} \\
\Gamma^{+} \cap \Gamma^{-}=\emptyset
\end{gathered}
$$

Comparison of phases

Allen, Lindgren, Petrosyan (2015):
Let $a \geq 0$. For minimizers of

$$
\begin{gathered}
\int_{\Omega^{+}}|\nabla v|^{2} x_{n}^{a}+2 \int_{\Omega^{\prime}} \lambda_{+} u^{+}+\lambda_{-} u^{-} \\
\Gamma^{+} \cap \Gamma^{-}=\emptyset
\end{gathered}
$$

Allen, SVG, 2018:
Let u be a minimizer of J_{a}. Then

$$
\Gamma^{+}=\Gamma^{-}
$$

Non-degeneracy for the thin space

Let u minimize J_{a} in B_{R} with $u(0,0)=0$.

- If $a \neq 0$, then for $C=C(n, a)$,

$$
\sup _{R^{\prime}} u^{+}, \sup _{R^{\prime}} u^{-} \geq C r^{1-a}, \quad \text { for } r<R / 2
$$

Non-degeneracy for the thin space

Let u minimize J_{a} in B_{R} with $u(0,0)=0$.

- If $a \neq 0$, then for $C=C(n, a)$,

$$
\sup _{R^{\prime}} u^{+}, \sup _{R^{\prime}} u^{-} \geq C r^{1-a}, \quad \text { for } r<R / 2
$$

- If $a=0$, then for $C=C\left(n,\|u\|_{L^{2}\left(B_{R}\right)}\right)$,

$$
\sup _{B_{r}^{\prime}} u^{+}, \sup _{B_{r}^{\prime}} u^{-} \geq C\left(r^{1-n} \int_{\partial S_{r}} u^{2}\right)^{1 / 2} \quad \text { for } r<R / 2
$$

SINGULAR POINTS

Singular points for $s>1 / 2$

For $s>1 / 2$, minimizers are $C^{1,-a}$.

Singular points for $s>1 / 2$

For $s>1 / 2$, minimizers are $C^{1,-a}$.

Definition
For $s>1 / 2$,

$$
S_{u}=\Gamma \cap\{\nabla u=0\} .
$$

Singular points for $s>1 / 2$

For $s>1 / 2$, minimizers are $C^{1,-a}$.

Definition
For $s>1 / 2$,

$$
S_{u}=\Gamma \cap\{\nabla u=0\} .
$$

Implicit function theorem $\Rightarrow \Gamma \backslash\{\nabla u=0\}$ is a $C^{1,-a}$ surface of co-dimension 2.

Classification of blow-ups, for $n=2$

For $a \neq 0$:
There exists at most one not identically zero global minimizer of J_{a} homogeneous of degree $1-a$.

Classification of blow-ups, for $n=2$

For $a \neq 0$:
There exists at most one not identically zero global minimizer of J_{a} homogeneous of degree $1-a$.

For $a=0(s=1 / 2)$:
It had already been shown that blow-ups are linear functions.

Singular points for $s \leq 1 / 2$

Definition

For $s \leq 1 / 2$: at most one non-zero global minimizer of J_{a} homogeneous of degree $2 s$ for $n=2, g\left(x_{1}, x_{2}\right)$. Define

$$
\check{g}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=g\left(x_{1}, x_{n}\right) .
$$

S_{u} : set of $x \in \Gamma$ such that if u_{0} is any blow-up of u at x, then u_{0} is a rotation in the first $n-1$ variables of \check{g}.

Monneau \& Weiss, 2007:
Let u be a minimizer of the unstable obstacle problem. The Hausdorff dimension of S_{u} is $\leq n-2$.

Allen, SVG, 2018:
Let $n=3$ and $s>1 / 2, u$ minimizer of J_{a} in Ω.
For any $K \subset \subset \Omega, K \cap S_{u}$ contains at most finitely many points.
Allen, SVG, 2018:
Let u be a minimizer of J_{a} with $s>1 / 2$. The Hausdorff dimension of S_{u} is $\leq n-3$.

Ingredients: $C^{1, \alpha}$ convergence of scalings to blow-ups; non-degeneracy; blow-ups are homogeneous of degree $1-a$; classification of global minimizers homogeneous of degree $1-a$ when $n=2$; dimension reduction argument of Federer.

Thank you!

