Discrete curvatures and geometry of measures

Max Goering

University of Washington

mlgoering@gmail.com

April 13, 2019

Given three points $x, y, z \in \mathbb{R}^m$ define

$$c(x,y,z)=\frac{1}{R(x,y,z)}$$

where R(x, y, z) is the radius of the unique circle containing x, y, z. If x, y, z are colinear, c(x, y, z) = 0.

A Borel measure μ on \mathbb{R}^m is said to be countably *n*-rectifiable if $\mu \ll \mathcal{H}^n$ and there exist Lipschitz maps $f_i : \mathbb{R}^n \to \mathbb{R}^m$ such that

$$\mu\left(\mathbb{R}^m\setminus\bigcup_{i=1}^{\infty}f_i(\mathbb{R}^n)\right)=0.$$

A set $E \subset \mathbb{R}^m$ is said to be countably *n*-rectifiable if $\mathcal{H}^n \sqcup E$ is countably *n*-rectifiable.

Theorem (Leger '99)

If μ is a 1-Ahlfors regular Borel measure on \mathbb{R}^m , then μ is countably 1-rectifiable if and only if μ has σ -finite integral Menger curvature in the sense that there are countably many sets F_j such that $\mu_j = \mu \bigsqcup F_j$ satisfy

$$\iiint c^2(x,y,z)d\mu_j^3(x,y,z) < \infty \qquad \forall j$$

Corollary

Let E be a compact 1-Ahlfors regular subset of \mathbb{C} . The following three are equivalent:

- (i) E is removable for bounded analytic functions
- (ii) E is removable for Lipschitz harmonic functions
- (iii) *E* is purely unrectifiable

Corollary

Let E be a compact 1-Ahlfors regular subset of \mathbb{C} . The following three are equivalent:

- (i) E is removable for bounded analytic functions
- (ii) E is removable for Lipschitz harmonic functions
- (iii) *E* is purely unrectifiable

Theorem (Long history, Mattila, Melnikov, Verdera '96)

Let E be a closed 1-Ahlfors regular subset of $\mathbb{C}.$ Then, the following are equivalent

(a)
$$\int_{B\cap E} \int_{B\cap E} \int_{B\cap E} c(x,y,z)^2 d\mathcal{H}^1(x) d\mathcal{H}^1(y) d\mathcal{H}^1(z) \leq C \operatorname{diam}(B), \forall B.$$

- (b) $\int_{E} \left| \int_{E \setminus B(x,\epsilon)} \frac{x-y}{|x-y|^2} g(y) d\mathcal{H}^1(y) \right|^2 d\mathcal{H}^1(x) \le C \int_{E} |g|^2 d\mathcal{H}^1 \text{ for all } g \in L^2(E)$ for all $\epsilon > 0$, and some C independent of ϵ .
- (c) E is contained in an Ahlfors upper-regular curve Γ .

An identity due to Melnikov in 1995 shows

$$c^{2}(z_{1}, z_{2}, z_{3}) = \sum_{\sigma \in S_{3}} \frac{1}{\left(z_{\sigma(1)} - z_{\sigma(3)}\right) \overline{\left(z_{\sigma(2)} - z_{\sigma(3)}\right)}}$$

which directly relates Menger curvature to the L^2 -boundedness of the Cauchy kernel in \mathbb{C} . This can be seen roughly because

$$\begin{split} \int \left| \int \frac{d\mu(\zeta)}{\zeta - z} \right|^2 d\mu(z) &= \int \left\{ \int \frac{d\mu(\zeta)}{(\zeta - z)} \int \frac{d\mu(\xi)}{\left(\overline{\xi - z}\right)} \right\} d\mu(z) \\ &= \iiint \frac{1}{(\zeta - z)\left(\overline{\xi - z}\right)} d\mu(\zeta) d\mu(\xi) d\mu(z). \end{split}$$

Theorem (Farag, 2000)

"Curvatures" who look remotely like any reasonable higher-dimensional generalization of

$$\sum_{\sigma} \frac{1}{\left(z_{\sigma(1)} - z_{\sigma(3)}\right) \left(\overline{z_{\sigma(2)} - z_{\sigma(3)}}\right)}$$

fail to be non-negative.

The Jones β -numbers detect how far a set or measure is from being (contained in) a plane at a given location and scale.

$$\beta_{\mu;2}^n(x,r) = \inf_L \left(\frac{1}{r^n} \int_{B(x,r)} \left(\frac{\operatorname{dist}(y,L)}{r} \right)^2 d\mu(y) \right)^{\frac{1}{2}},$$

where the infimum is taken over all *n*-planes.

Theorem (Tolsa, Azzam and Tolsa, 2015)

Let μ be a Radon measure in \mathbb{R}^m such that $0 < \limsup_{r \to 0} \frac{\mu(B(x,r))}{r^n} < \infty$ for μ almost every $x \in \mathbb{R}^m$. Then, μ is countably n-rectifiable if and only if

$$\int_0^1 \beta_{\mu;2}^n (x,r)^2 \frac{dr}{r} < \infty \qquad \mu - a.e. \ x \in \mathbb{R}^m$$

Theorem (Leger '99)

If μ is a 1-Ahlfors regular Borel measure on \mathbb{R}^m , then μ is countably 1-rectifiable if and only if μ has σ -finite integral Menger curvature in the sense that there are countably many sets F_i such that $\mu_i = \mu \sqcup F_i$ satisfy

$$\iiint c^2(x,y,z)d\mu_j^3(x,y,z) < \infty \qquad \forall j$$

Generalizing Menger curvature

1 For $x_0, \ldots, x_{n+1} \in \mathbb{R}^m$ let

$$\mathcal{K}^{2}(x_{0},\ldots,x_{n+1}) = \frac{h_{\min}(x_{0},\ldots,x_{n+1})^{2}}{\operatorname{diam}\{x_{0},\ldots,x_{n+1}\}^{n(n+1)+2}}$$

where $h_{\min}(x_0, \ldots, x_{n+1}) = \min\{\text{dist}(x_i, \text{aff}\{x_0, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n+1}\})\}$

Generalizing Menger curvature

1 For
$$x_0, \ldots, x_{n+1} \in \mathbb{R}^m$$
 let

$$\mathcal{K}^{2}(x_{0},\ldots,x_{n+1}) = \frac{h_{\min}(x_{0},\ldots,x_{n+1})^{2}}{\operatorname{diam}\{x_{0},\ldots,x_{n+1}\}^{n(n+1)+2}}$$

where $h_{\min}(x_0, \ldots, x_{n+1}) = \min\{\text{dist}(x_i, \text{aff}\{x_0, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n+1}\})\}$

$$c(x_0, x_1, x_2)^2 = \frac{4\sin^2(\alpha_0)}{|x_1 - x_2|^2} = \frac{4\sin^2(\alpha_0)|x_0 - x_2|^2}{|x_1 - x_2|^2|x_0 - x_2|^2}$$

Generalizing Menger curvature

1 For
$$x_0, \ldots, x_{n+1} \in \mathbb{R}^m$$
 let

$$\mathcal{K}^{2}(x_{0},\ldots,x_{n+1}) = \frac{h_{\min}(x_{0},\ldots,x_{n+1})^{2}}{\operatorname{diam}\{x_{0},\ldots,x_{n+1}\}^{n(n+1)+2}}$$

where $h_{\min}(x_0, \ldots, x_{n+1}) = \min\{\text{dist}(x_i, \text{aff}\{x_0, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n+1}\})\}$

$$c(x_0, x_1, x_2)^2 = \frac{4\sin^2(\alpha_0)}{|x_1 - x_2|^2} = \frac{4\sin^2(\alpha_0)|x_0 - x_2|^2}{|x_1 - x_2|^2|x_0 - x_2|^2}$$

③ Question: Why not define MC in terms of the radius of the circumsphere containing the (n + 2)-points?

We define the integral Menger curvature of $\boldsymbol{\mu}$ by

$$\mathcal{M}_{\mathcal{K}}(\mu) = \int_{(\mathbb{R}^m)^{n+2}} \mathcal{K}^2(x_0, \dots, x_{n+1}) d\mu^{n+2}(x_0, \dots, x_{n+1})$$

We define the integral Menger curvature of μ by

$$\mathcal{M}_{\mathcal{K}}(\mu) = \int_{(\mathbb{R}^m)^{n+2}} \mathcal{K}^2(x_0, \dots, x_{n+1}) d\mu^{n+2}(x_0, \dots, x_{n+1})$$

We define the pointwise Menger curvature of μ at x and scale r by

$$\operatorname{curv}_{\mu}(x,r) = \int_{\mathcal{B}(x,r)^{n+1}} \mathcal{K}^2(x,x_1,\ldots,x_{n+1}) d\mu^{n+1}(x_1,\ldots,x_{n+1})$$

We define the integral Menger curvature of μ by

$$\mathcal{M}_{\mathcal{K}}(\mu) = \int_{(\mathbb{R}^m)^{n+2}} \mathcal{K}^2(x_0, \dots, x_{n+1}) d\mu^{n+2}(x_0, \dots, x_{n+1})$$

We define the pointwise Menger curvature of μ at x and scale r by

$$\operatorname{curv}_{\mu}(x,r) = \int_{B(x,r)^{n+1}} \mathcal{K}^2(x,x_1,\ldots,x_{n+1}) d\mu^{n+1}(x_1,\ldots,x_{n+1})$$

Notably,

$$\frac{\mathcal{M}_{\mathcal{K}}(\mu \, \sqcup \, B(x, r))}{r^n} = \mathcal{M}_{\mathcal{K}}(\mu_{x, r} \, \sqcup \, B(0, 1)) \text{ and } \operatorname{curv}_{\mu}(x, r) = \operatorname{curv}_{\mu_{x, r}}(0, 1)$$

where

$$\mu_{x,r}(A) = \mu(rA + x)$$

Higher-dimensional Menger curvatures

A sufficient condition for rectifiable sets

Theorem (Meurer '15)

If E is a Borel set on \mathbb{R}^m and

$$\mathcal{M}_{\mathcal{K}^2}(\mathcal{H}^n \, \sqsubseteq \, \mathcal{E}) < \infty,$$

then E is countably n-rectifiable. (Also, $\mathcal{H}^n(E \cap K) < \infty$ for all compact sets K.)

Menger curvature and β -numbers

Theorem (Kolasinski '16)

Let μ be a Borel measure on \mathbb{R}^m with some density conditions. Then,

$$\operatorname{curv}_{\mu}(x,R) \lesssim \int_{0}^{\Gamma R} \hat{\beta}_{\mu;2}^{n}(x,r)^{2} \frac{\mathrm{d}r}{r}$$

for some dimensional constant Γ . In particular, if μ is countably n-rectifiable, then

 $\operatorname{curv}_{\mu}(x,1) < \infty$ μ a.e. $x \in \mathbb{R}^m$

Menger curvature and β -numbers

Theorem (Kolasinski '16)

Let μ be a Borel measure on \mathbb{R}^m with some density conditions. Then,

$$\operatorname{curv}_{\mu}(x,R) \lesssim \int_{0}^{\Gamma R} \hat{\beta}_{\mu;2}^{n}(x,r)^{2} \frac{\mathrm{d}r}{r}$$

for some dimensional constant Γ . In particular, if μ is countably n-rectifiable, then

$$\operatorname{curv}_{\mu}(x,1) < \infty$$
 μ a.e. $x \in \mathbb{R}^m$

Lemma (Kolasinski, 2016)

If μ satisfifes $0 < \Theta_*^n(\mu, x) \le \Theta^{n,*}(\mu, x) < \infty$, the following are equivalent: 1. $\int_0^1 \beta_{\mu;2}^n(x, r)^2 \frac{dr}{r} < \infty$ for μ almost every x2. $\int_0^1 \hat{\beta}_{\mu;2}^n(x, r)^2 \frac{dr}{r} < \infty$ for μ almost every x. Notably,

$$\frac{\mathcal{M}_{\mathcal{K}}(\mu \, \sqcup \, B(x, r))}{r^n} = \mathcal{M}_{\mathcal{K}}(\mu_{x, r} \, \sqcup \, B(0, 1)) \text{ and } \operatorname{curv}_{\mu}(x, r) = \operatorname{curv}_{\mu_{x, r}}(0, 1)$$

where

$$\mu_{x,r}(A) = \mu(rA + x)$$

Theorem (Meurer '15)

If E is a Borel set on \mathbb{R}^m and

 $\mathcal{M}_{\mathcal{K}^2}(\mathcal{H}^n \, \sqcup \, E) < \infty,$

then E is countably n-rectifiable. (Also, $\mathcal{H}^n(E \cap K) < \infty$ for all compact sets K.)

Theorem (Kolasinski '16)

Let μ be a Borel measure on \mathbb{R}^m with some density conditions. If μ is countably *n*-rectifiable, then

$$\operatorname{curv}_{\mu}(x,1) < \infty$$
 μ a.e. $x \in \mathbb{R}^m$

Max Goering (UW)

Theorem (Meurer '15)

If E is a Borel set on \mathbb{R}^m and

$$\mathcal{M}_{\mathcal{K}^2}(\mathcal{H}^n \, {\sqsubseteq} \, E) < \infty,$$

then E is countably n-rectifiable. (Also, $\mathcal{H}^n(E \cap K) < \infty$ for all compact sets K.)

Theorem (Kolasinski '16)

Let μ be a Borel measure on \mathbb{R}^m with some density conditions. If μ is countably n-rectifiable, then

 $\operatorname{curv}_{\mu}(x,1) < \infty$ μ a.e. $x \in \mathbb{R}^m$

Question 1: Can you characterize rectifiable sets in terms of $\lim_{r\downarrow 0} \frac{\mathcal{M}_{\mathcal{K}}(\mu \sqcup B(x,r))}{r^n}$?

Theorem (Meurer '15)

If E is a Borel set on \mathbb{R}^m and

$$\mathcal{M}_{\mathcal{K}^2}(\mathcal{H}^n \, {\sqsubseteq} \, E) < \infty,$$

then E is countably n-rectifiable. (Also, $\mathcal{H}^n(E \cap K) < \infty$ for all compact sets K.)

Theorem (Kolasinski '16)

Let μ be a Borel measure on \mathbb{R}^m with some density conditions. If μ is countably n-rectifiable, then

 $\operatorname{curv}_{\mu}(x,1) < \infty$ $\mu \text{ a.e. } x \in \mathbb{R}^m$

Question 1: Can you characterize rectifiable sets in terms of $\lim_{r\downarrow 0} \frac{\mathcal{M}_{\mathcal{K}}(\mu \sqcup B(x,r))}{r^n}$? Question 2: Can you extend Meurer's theorem to some class of measures?

Theorem (Meurer '15)

If E is a Borel set on \mathbb{R}^m and

 $\mathcal{M}_{\mathcal{K}^2}(\mathcal{H}^n \, \sqsubseteq \, E) < \infty,$

then E is countably n-rectifiable. (Also, $\mathcal{H}^n(E \cap K) < \infty$ for all compact sets K.)

Theorem (Kolasinski '16)

Let μ be a Borel measure on \mathbb{R}^m with some density conditions. If μ is countably n-rectifiable, then

 $\operatorname{curv}_{\mu}(x,1) < \infty$ $\mu \text{ a.e. } x \in \mathbb{R}^m$

Question 1: Can you characterize rectifiable sets in terms of $\lim_{r\downarrow 0} \frac{\mathcal{M}_{\mathcal{K}}(\mu \sqcup B(x,r))}{r^n}$? Question 2: Can you extend Meurer's theorem to some class of measures? Question 3: Can you characterize rectifiable measures with MC in any form? Higher-dimensional Menger curvatures

Answer 1: Failure of density of $\mathcal{M}_{\mathcal{K}}(\mu \sqcup B(x, r))$

Theorem (G. and McCurdy 2019)

There exists a 1-Ahlfors regular set $A_0 \subset [0,1]^2$ such that $\mu = \mathcal{H}^1 \sqcup A_0$ satisfies $0 < \mu(\mathbb{R}^2) < \infty$ and μ is countably 1-rectifiable, but

 $\mathcal{M}_{\mathcal{K}}(\mu \, \sqsubseteq \, B(x, \delta)) \equiv +\infty \qquad \forall x \in A_0, \quad \forall \delta > 0$

Answers 2 and 3

Theorem (G. '17)

If μ is a Radon measure with $0 < \Theta^{*,n}(\mu, x) < \infty$ for μ a.e. $x \in \mathbb{R}^m$ and $\mathcal{M}_{\mathcal{K}}(\mu) < \infty$ then μ is countably n-rectifiable.

Answers 2 and 3

Theorem (G. '17)

If μ is a Radon measure with $0 < \Theta^{*,n}(\mu, x) < \infty$ for μ a.e. $x \in \mathbb{R}^m$ and $\mathcal{M}_{\mathcal{K}}(\mu) < \infty$ then μ is countably n-rectifiable.

Theorem (G. '17)

Let μ be a Radon measure with $0 < \Theta^n_*(\mu, x) \le \Theta^{*,n}(\mu, x) < \infty$ for μ a.e. $x \in \mathbb{R}^m$ then the following are equivalent:

- 1) μ is countably n-rectifiable.
- 2) For μ almost every $x \in \mathbb{R}^m$, $\operatorname{curv}_{\mu}^n(x, 1) < \infty$.
- 3) μ has σ -finite integral Menger curvature in the sense that μ can be written as

$$\mu = \sum_{j=1}^\infty \mu_j$$
 where $\mathcal{M}_\mathcal{K}(\mu_j) < \infty$ $orall j$.

Theorem (Kolasinski 2017, Ghinassi, G. 2018)

Let

$$\operatorname{curv}_{\mu;2}^{\alpha}(x,r) = \int_{(B(x,r))^{n+1}} \frac{h_{\min}(x,x_1,\ldots,x_{n+1})^2}{\operatorname{diam}\left(\{x,x_1,\ldots,x_{n+1}\}\right)^{n(n+1)+2+2\alpha}} d\mu^{n+1}(x_1,\ldots,x_{n+1})$$

Let μ be a Radon measure on \mathbb{R}^m such that $0 < \Theta^{n,*}(\mu, x) < \infty$ for μ -almost every $x \in \mathbb{R}^m$ and $\alpha \in [0, 1)$. Moreover, suppose that for μ - a.e. $x \in \mathbb{R}^m$

 $\operatorname{curv}_{\mu;2}^{\alpha}(x,1) < \infty.$

Then μ is countably $(n, C^{1,\alpha})$ -rectifiable.

Thank you!