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The Euclidean Sobolev inequality

In other words, we have the Sobolev inequality
IVullp = Sliullp-

for all u € WLHP(R™).
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Extremal functions

For p > 1, equality is achieved, i.e. ||Vvl|, = S|v||,~ for
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All equality cases are

M ={cv(AMx —xzp)) :c € RN € Ry, 9 € R}
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Normalize so |lul|,- = 1 and define the deficit

IVullp = SPllully-  if p€[2,n)

5(U> = / , /
IVullp — SP|lull-  ifp € (1,2)
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Quantitative stability for the Sobolev inequality

Want to prove an estimate of the type
6(u) 2 w (d(u, M))
Expected optimal result:

W (t) _ tmax{Q,p}



Stability in the sense of second

variation
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So does this work?

If p > 2, then a spectral analysis shows that
second variation > c/ |Vo|P~2|Vu — Vul2.

(p = 2 Bianchi-Egnell, p > 2 Figalli, N.)
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If p=2, yes

If p = 2, then this shows that &(u) > cd(u, M)?.
(Bianchi-Egnell)
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If p > 2, then kind of

If p > 2, then this strategy combined with an interpolation
argument shows that 0(u) > ed(u, M)“.

(Figalli, N.)
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If p € (1,2), then absolutely not

If p € (1,2), we cannot cannot write down the second variation,
the function ¢ — tP is not twice differentiable at ¢t = 0.
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Quantitative stability in terms of

the LP norm




Quantitative stability in terms of the L”" norm

Theorem (Cianchi, Fusco, Maggi, Pratelli ’07)
For p e (1,n) and u € WP, we have

S(u) > ¢ inf |ju—v||>..
(U)_cvlenMHu vl

14



Quantitative stability in terms of the L”" norm

Theorem (Cianchi, Fusco, Maggi, Pratelli ’07)
For p e (1,n) and u € WP, we have

S(u) > ¢ inf |ju—v||>..
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Optimal transport and symmetrization techniques. Control of
gradients seems out of reach with this approach.
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Main result




A general reduction theorem

Theorem (N. ’19)

For any p € (1,n) and u € WP, and v € M with
ullp> = [lvllpr =1,
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A general reduction theorem

Theorem (N. ’19)

For any p € (1,n) and u € WP, and v € M with
lullp = [Jv||px = 1, we have

[Vu = V|5 < C16(u) + Callu —v

p* -

Here, a =p' ifpe (1,2) and a=p if p € [2,n).

15



Corollary: strong-form quantitative stability

Corollary (N. ’19)
For all p € (1,n) and u € WYP(R™), we have

8(u) > cd(u, M)?" .
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A bit on the proof




Proof.
Convexity and the Sobolev inequality. [
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Clarkson’s inequalities

Let F,G : R® — R" with |F|, |G| € LP(R").
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Clarkson’s inequalities

Let F,G : R® — R" with |F|, |G| € LP(R"). Then

|

if p € (1,2), and

if p> 2.

/

|

F+ G p+'F—G
2 |, 2
F+G|P F-G
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p

/

p
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p
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1 1 P'/p
(3171z+ 3161E)
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11+ SIGIE:
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Proof sketch, p € (1,2)

Take p € (1,2), normalize so |lul[,+ = 1.

19



Proof sketch, p € (1,2)

Take p € (1,2), normalize so |lul[,+ = 1.

Vu — Vo
2

p/

p

19



Proof sketch, p € (1,2)

Take p € (1,2), normalize so |lul[,+ = 1.

2 p
1 1 p'/p Yu + Vv P’
Clarkson’s inequality S (Zlvuug —|— 2”V’UH§> — H2 )

19



Proof sketch, p € (1,2)

Take p € (1,2), normalize so |lul[,+ = 1.

Vu— Vo
2 p
1 1 P Vu+ Vo
Clarkson’s inequality S (Zlvuug —|— 2”V’UH§> — H2 )
c | Vu+ Vo ||
Sobolev inequality S Hvu”g — H %
p

19



Proof sketch, p € (1,2)

Take p € (1,2), normalize so |lul[,+ = 1.

H Vu— Vol”
2 p
7 /
1 1 p'/p v Vo llP
Clarkson’s inequality S (Zlvuug + 2”V’UH§> — HU;_U ;
/
\Y Vo P
Sobolev inequality S Hvu”gl — H M
2
p
p/
Sobolev inequality S Hvu”gl — Sp/ L—H}
2 o

19



Proof sketch, p € (1,2)

Take p € (1,2), normalize so |lul[,+ = 1.

p/

Vu — Vo
2

p

Clarkson’s inequality S (
/
Sobolev inequality S HVUH% -

Sobolev inequality S HVUHg - Sp/

Minkowski + convexity of tpl S HVUHg - Sp/ ||u

1 PPV + Vo
vulg + 51velg)” - |

pl

2

p
P’

Vu+ Vo
2

P

/
u+vl|P

2

p*
u—v

P P 0
p*+Spp”u 2

p'—1
p*

p*

19



Proof sketch, p € (1,2)

Take p € (1,2), normalize so |lul[,+ = 1.

H Vu— Vol”
2 p
7 /
1 1 p'/p v Vo llP
Clarkson’s inequality S (Zlvuug + 2”V’UH§> — HU;_U ;
/
\Y Vo P
Sobolev inequality S Hvu”gl — H M
2
p
p/
Sobolev inequality S Hvu”gl — Sp/ L—H}
2 o
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Definition — (5(u) + CHU - UHp*.
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Thank you for your attention!
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