The Bellman Equations

By Dawson Hettrick

Richard E. Bellman

- Lived 1920-1984
- Born in New York
 - BA at Brooklyn college
 - MA at University of Wisconsin
 - Ph.D at Princeton
- American applied mathematician
- RAND
 - Introduced dynamic programming
- Bellman prize in Mathematical Biosciences

Dynamic programming

Dynamic Programming Algorithm

goal

1. Characterize the structure of an optimal solution

20

25

5

11

start

- 2. Recursively define the value of an optimal solution
- 3. Compute the value of an optimal solution in a bottom-up fashion
- Construct an optimal solution from computed information (not always necessary)

- Finding a solution to a problem by breaking the problem into multiple smaller problems recursively
- Can be used in math and coding
- Relationship between smaller subproblems and original problem is called the Bellman equation

- Merton's portfolio problem
 - Investors choose between income today and future income
- Economic growth
- Taxation
- AI learning
- Reinforcement learning

observation

Important values

s=state

Value functions

State value function: \bigvee

$$/^{TT}(s) = \mathbb{E}_{\pi} \left[\mathbb{R}_{+} \right] s_{+} = s \right]$$

Action value function: $Q^{\dagger}(s, a) = \mathbb{E}_{\pi} [R_{+}|s_{+}=s, a_{+}=a]$

Bellman equation derivation

https://en.wikipedia.org/wiki/Richard_E._Bellman

https://joshgreaves.com/reinforcement-learning/understanding-rl-the-bellmanequations/

https://en.wikipedia.org/wiki/Bellman_equation