UCONN - Math 3150 - Fall 2018 - Problem set 1

Question 1 (1.4, Page 5) *a. Guess a formula for* 1 + 3 + ... + (2n - 1) *by evaluating the sum for* n = 1, 2, 3, 4.

b. Prove your formula using mathematical induction.

Solution:

(a) For n = 1 then the sum is just 1. For n = 2, then we have $1 + (2 \cdot 2 - 1) = 1 + 3 = 4$. For n = 3, then we have 1 + 3 + 5 = 9. For n = 4, then we have 1 + 3 + 5 + 7 = 16.

(b) It looks like for n = 1 sum is 1. For n = 2 the sum is 4 and it looks like $2^2 = 4$ and for 3 the sum is 9. Therefore we claim

$$(P_n)$$
 "The sum of $1 + 3 + \ldots + (2n - 1)$ is n^{2n} .

Using mathematical induction we shall prove this.

For n = 1 we have the base step;

 (P_1) sum of 1 is 1.

It is clearly true. We see that the base step (P_1) holds. We now assume that (P_n) holds and we will show that $(P_{n+1}$ holds as well. Consider

$$1+3+\ldots+(2n-1)+(2(n+1)-1=1+3+\ldots+(2n-1)+2n+1)$$
$$=n^2+2n+1=(n+1)^2.$$

This shows us the sum $1 + 3 + ... + (2n - 1) + (2(n + 1) - 1 \text{ is } (n + 1)^2$ which shows (P_{n+1}) is true. By mathematical induction we conclude that our statement is correct. Hence

$$1+3+\ldots+(2n-1)=n^2.$$

Question 2 (1.7, Page 5) Prove $7^n - 6n - 1$ is divisible by 36 for all positive integers n.

Solution: Now our statement is

$$(P_n)$$
 "7^{*n*} - 6*n* - 1 is divisible by 36 for $n = 1, 2, ...$ ".

We start with checking the base step, i.e., when n = 1. In this case we have $7^n - 6n - 1 = 0$ and it is clear that 0 is divisible by 36. Hence the base step P_1 is true. We next assume that P_n holds and want to prove that P_{n+1} is also true using P_n . As $(P_{n+1} \text{ is } 7(n+1)^2 - 6(n+1) - 1$ and we consider

$$7^{n+1} - 6(n+1) - 1 = 7^{n+1} - 6n - 6 - 1$$

= 7(7ⁿ - 1) - 6n
= 7(7ⁿ - 6n - 1 - 6n + 42n
= 7(7ⁿ - 6n - 1) - 36n.

Observe that the first part is $(7^n - 6n - 1)$ which is the induction hypothesis (i.e., (P_n)) and we know it is true. Hence it is divisible by 36. The remaining part i.e., -36n is obviously divisible by 36. Therefore, $7(7^n - 6n - 1) - 36n$ is divisible by 36. By mathematical induction we conclude that (P_n) is true;

 $7^n - 6n - 1$ is divisible by 36 for n = 1, 2, ...

Question 3 (1.11, Page 5) For each $n \in \mathbb{N}$, let P_n denote the assertion " $n^2 + 5n + 1$ is an even integer".

- a. Prove P_{n+1} is true whenever P_n is true.
- b. For which n is P_n actually true? What is the moral of the exercise?

Solution:

(a) If we assume P_n is true and consider P_{n+1} we have

$$(n+1)^2 + 5(n+1) + 1 = n^2 + 2n + 1 + 5n + 5 + 1 = n^2 + 5n + 1 + 2n + 6.$$

We observe from this that the red part $n^2 + 5n + 1$ is P_n i.e., induction hypothesis. Therefore it is even integer. The blue part 2n + 6 = 2(n + 2) also even. Therefore, the whole sum is even. This shows that P_{n+1} is also true.

(b) P_n is NOT true for any integer. In fact one can show that $n^2 + 5n + 1$ is odd integer for every *n*. The moral here is that we can not skip checking the base step.

Question 4 (2.3, Page 13) Show $\sqrt{2 + \sqrt{2}}$ is not a rational number.

Solution: We consider $x = \sqrt{2 + \sqrt{2}}$ or equivalently

 $x^{2} = 2 + \sqrt{2}$ equivalently $quad(x^{2} - 2)^{2} = 2$.

Hence we have

$$(x^{-}2)^{2} - 2 = x^{4} - 4x^{2} - 4 - 2 = x^{4} - 4x^{2} - 6.$$

From Corollary 2.3 we know that rational solutions of $x^4 - 4x^2 - 6$ should divide $c_0 = 6$. Those numbers are $\pm 1, \pm 2, \pm 3, \pm 6$ by the Rational Zeros Theorem.

When $x = \pm 1$ we have $1 - 4 - 6 \neq 0$.

When $x = \pm 2$ we have $16 - 16 - 6 \neq 0$.

When $x = \pm 3$ we have $81 - 36 - 6 \neq 0$.

When $x = \pm 6$ we have $6^4 - 46^2 - 6 \neq 0$.

Hence we conclude that $x^4 - 4x^2 - 6$ has no rational solution which in turn gives us $\sqrt{2 + \sqrt{2}}$ is not rational.

Question 5 (2.8, Page 13) *Find all rational solutions of the equation* $x^8 - 4x^5 + 13x^3 - 7x + 1$.

Solution: From Corollary 2.3 we know that the rational solutions of $x^8 - 4x^5 + 13x^3 - 7x + 1$ should divide $c_0 = 1$. In this case, if there are rational solutions they have to be ± 1 . For x = 1 we have $1 - 4 + 13 - 7 + 1 \neq 0$. For x = -1 we have 1 + 4 - 13 + 7 + 1 = 0. Hence we have x = -1 is a solution and it is the only rational solution.

Question 6 (3.6, Page 19) *a. Prove* $|a + b + c| \le |a| + |b| + |c|$ *for all* a, b, c.

b. Use induction to prove $|a_1 + a_2 + \ldots + a_n| \le |a_1| + |a_2| + \ldots + |a_n|$.

Solution: (a) We can use the triangle inequality as follows twice

 $|a+b+c| = |(a+b)+c| \le |a+b| + |c| \le |a| + |b| + |c|.$

This finishes the proof.

(b) We first step our inductions step. If P_n denote the assertion " $|a_1 + a_2 + ... + a_n| \le |a_1| + |a_2| + ... + |a_n|$ we then first show this is true for P_1 and assuming P_n is true then we show P_{n+1} is also true.

 P_1 is clearly true as $|a_1| = |a_1|$. Assume that P_n is true and consider P_{n+1}

$$|a_1 + a_2 + \dots + a_n + a_{n+1} = |(a_1 + a_2 + \dots + a_n) + a_{n+1}|$$

$$\leq |(a_1 + a_2 + \dots + a_n)| + |a_{n+1}|$$

$$\leq |a_1| + |a_2| + \dots + |a_n| + |a_{n+1}|$$

where we have used triangle inequality in the second line and the induction hypothesis that P_n is true. This finishes the proof.

Question 7 (3.7, Page 7) 1. Show |b| < a if and only if -a < b < a.

- 2. Show |a b| < c if and only if b c < a < b + c.
- 3. Show $|a b| \le c$ if and only if $b c \le a \le b + c$.

Solution: (a) Here there are two statements we need to prove. If |b| < a then -a < b < a and we also need to show -a < b < a then |b| < a. We first assume |b| < a. Since |b| < a then we also have -a < -|b| and since $-|b| \le 0 \le |b|$ we have $-a < -|b| \le |b| < a$. Finally *b* is either |b| or -|b| we conclude that -a < b < a. This finishes the first proof. We now return the second proof. Assume -a < b < a. Then if we multiply this by -1 we get -a < -b < a and since |b| is either -b or *b* we conclude that -a < |b| < a.

(b) We use part (a) (replace *b* by a - b we get |a - b| < c if and only if -c < a - b < c. Then adding *b* to this inequality we get b - c < a - b + b = a < b + c.

(c) We can reprove parts (a) with < replaced by \leq . We next reprove part (b) with < replaced by \leq which is (c). This finishes the proof of c.

Question 8 (4.14, Page 26) Let A and B be nonempty bounded subset of R.

a. Prove $\sup(A + B) = \sup(A) + \sup(B)$.

b. Prove inf(A + B) = inf(A) + inf(B).

Solution: (a) Let $M = \sup A$ and $N = \sup B$. Let $\epsilon > 0$ be given. Since $M - \epsilon/2 < M = \sup A$ we can $a \in A$ such that $M - \epsilon/2 < a$. Similarly, $N - \epsilon/2 < N = \sup B$ we can $b \in B$ such that $N - \epsilon/2 < b$. Now combining these two we get

$$M - \epsilon/2 + N - \epsilon/2 < a + b.$$

Note that $a \in A$ and $b \in B$ then by definition $a + b \in A + B$. Therefore, we have

$$M + N - \epsilon < a + b.$$

From this we observe that $M + N - \epsilon < a + b \le \sup(A + B)$. Since this is true for every $\epsilon > 0$ we see that $M + N \le \sup(A + B)$.

We proved inequality and we now prove the converse inequality. Let *c* be an element in A + B. Then there is $a \in A$ and $b \in B$ by definition. We also have $a \leq M = \sup A$ and $b \leq N = \sup B$. Combining these two we get $a + b \leq M + N$ (therefore, M + N is an upper bound for A + B) and since $\sup(A + B)$ is the least upper bound we see that $\sup(A + B) \leq M + N$. This finishes the converse inequality. Combining these two we have $\sup(A + B) = \sup(A) + \sup(B)$.

(b) One can similarly prove this.