UCONN - Math 3150 - Fall 2018 - Problem set 1

Question 1 (1.4, Page 5) $n=1,2,3,4$.
a. Guess a formula for $1+3+\ldots+(2 n-1)$ by evaluating the sum for
b. Prove your formula using mathematical induction.

Solution:

(a) For $n=1$ then the sum is just 1 .

For $n=2$, then we have $1+(2.2-1)=1+3=4$.
For $n=3$, then we have $1+3+5=9$.
For $n=4$, then we have $1+3+5+7=16$.
(b) It looks like for $n=1$ sum is 1 . For $n=2$ the sum is 4 and it looks like $2^{2}=4$ and for 3 the sum is 9 . Therefore we claim

$$
\left(P_{n}\right) \quad \text { "The sum of } 1+3+\ldots+(2 n-1) \text { is } n^{2 "} .
$$

Using mathematical induction we shall prove this.
For $n=1$ we have the base step;

$$
\left(P_{1}\right) \quad \text { sum of } 1 \text { is } 1 .
$$

It is clearly true. We see that the base step $\left(P_{1}\right)$ holds. We now assume that $\left(P_{n}\right)$ holds and we will show that (P_{n+1} holds as well. Consider

$$
\begin{aligned}
1+3+\ldots+(2 n-1)+(2(n+1)-1 & =1+3+\ldots+(2 n-1)+2 n+1 \\
& =n^{2}+2 n+1=(n+1)^{2}
\end{aligned}
$$

This shows us the sum $1+3+\ldots+(2 n-1)+\left(2(n+1)-1\right.$ is $(n+1)^{2}$ which shows $\left(P_{n+1}\right)$ is true. By mathematical induction we conclude that our statement is correct. Hence

$$
1+3+\ldots+(2 n-1)=n^{2} .
$$

Question 2 (1.7, Page 5) Prove $7^{n}-6 n-1$ is divisible by 36 for all positive integers n.
Solution: Now our statement is

$$
\left(P_{n}\right) \quad " 7^{n}-6 n-1 \text { is divisible by } 36 \text { for } n=1,2, \ldots "
$$

We start with checking the base step, i.e., when $n=1$. In this case we have $7^{n}-6 n-1=0$ and it is clear that 0 is divisible by 36 . Hence the base step P_{1} is true. We next assume that P_{n} holds and want to prove that P_{n+1} is also true using P_{n}. As $\left(P_{n+1}\right.$ is $7(n+1)^{2}-6(n+1)-1$ and we consider

$$
\begin{aligned}
7^{n+1}-6(n+1)-1 & =7^{n+1}-6 n-6-1 \\
& =7\left(7^{n}-1\right)-6 n \\
& =7\left(7^{n}-6 n-1-6 n+42 n\right. \\
& =7\left(7^{n}-6 n-1\right)-36 n .
\end{aligned}
$$

Observe that the first part is $\left(7^{n}-6 n-1\right)$ which is the induction hypothesis (i.e., $\left.\left(P_{n}\right)\right)$ and we know it is true. Hence it is divisible by 36 . The remaining part i.e., $-36 n$ is obviously divisible by 36 . Therefore, $7\left(7^{n}-6 n-1\right)-36 n$ is divisible by 36 . By mathematical induction we conclude that $\left(P_{n}\right)$ is true;

$$
7^{n}-6 n-1 \text { is divisible by } 36 \text { for } n=1,2, \ldots
$$

Question 3 (1.11, Page 5) For each $n \in \mathbb{N}$, let P_{n} denote the assertion " $n^{2}+5 n+1$ is an even integer".
a. Prove P_{n+1} is true whenever P_{n} is true.
b. For which n is P_{n} actually true? What is the moral of the exercise?

Solution:

(a) If we assume P_{n} is true and consider P_{n+1} we have

$$
(n+1)^{2}+5(n+1)+1=n^{2}+2 n+1+5 n+5+1=n^{2}+5 n+1+2 n+6 .
$$

We observe from this that the the red part $n^{2}+5 n+1$ is P_{n} i.e., induction hypothesis. Therefore it is even integer. The blue part $2 n+6=2(n+2)$ also even. Therefore, the whole sum is even. This shows that P_{n+1} is also true.
(b) P_{n} is NOT true for any integer. In fact one can show that $n^{2}+5 n+1$ is odd integer for every n. The moral here is that we can not skip checking the base step.

Question 4 (2.3, Page 13) Show $\sqrt{2+\sqrt{2}}$ is not a rational number.
Solution: We consider $x=\sqrt{2+\sqrt{2}}$ or equivalently

$$
x^{2}=2+\sqrt{2} \quad \text { equivalently } q u a d\left(x^{2}-2\right)^{2}=2
$$

Hence we have

$$
\left(x^{-} 2\right)^{2}-2=x^{4}-4 x^{2}-4-2=x^{4}-4 x^{2}-6
$$

From Corollary 2.3 we know that rational solutions of $x^{4}-4 x^{2}-6$ should divide $c_{0}=6$. Those numbers are $\pm 1, \pm 2, \pm 3, \pm 6$ by the Rational Zeros Theorem.
When $x= \pm 1$ we have $1-4-6 \neq 0$.
When $x= \pm 2$ we have $16-16-6 \neq 0$.
When $x= \pm 3$ we have $81-36-6 \neq 0$.
When $x= \pm 6$ we have $6^{4}-46^{2}-6 \neq 0$.
Hence we conclude that $x^{4}-4 x^{2}-6$ has no rational solution which in turn gives us $\sqrt{2+\sqrt{2}}$ is not rational.

Question 5 (2.8, Page 13) Find all rational solutions of the equation $x^{8}-4 x^{5}+13 x^{3}-7 x+1$.
Solution: From Corollary 2.3 we know that the rational solutions of $x^{8}-4 x^{5}+13 x^{3}-7 x+1$ should divide $c_{0}=1$. In this case, if there are rational solutions they have to be ± 1. For $x=1$ we have $1-4+13-7+1 \neq 0$. For $x=-1$ we have $1+4-13+7+1=0$. Hence we have $x=-1$ is a solution and it is the only rational solution.

Question 6 (3.6, Page 19) a. Prove $|a+b+c| \leq|a|+|b|+|c|$ for all a, b, c.
b. Use induction to prove $\left|a_{1}+a_{2}+\ldots+a_{n}\right| \leq\left|a_{1}\right|+\left|a_{2}\right|+\ldots+\left|a_{n}\right|$.

Solution: (a) We can use the triangle inequality as follows twice

$$
|a+b+c|=|(a+b)+c| \leq|a+b|+|c| \leq|a|+|b|+|c| .
$$

This finishes the proof.
(b) We first step our inductions step. If P_{n} denote the assertion " $\left|a_{1}+a_{2}+\ldots+a_{n}\right| \leq$ $\left|a_{1}\right|+\left|a_{2}\right|+\ldots+\left|a_{n}\right|$ we then first show this is true for P_{1} and assuming P_{n} is true then we show P_{n+1} is also true.
P_{1} is clearly true as $\left|a_{1}\right|=\left|a_{1}\right|$. Assume that P_{n} is true and consider P_{n+1}

$$
\begin{aligned}
\mid a_{1}+a_{2}+\ldots+a_{n}+a_{n+1} & =\left|\left(a_{1}+a_{2}+\ldots+a_{n}\right)+a_{n+1}\right| \\
& \leq\left|\left(a_{1}+a_{2}+\ldots+a_{n}\right)\right|+\left|a_{n+1}\right| \\
& \leq\left|a_{1}\right|+\left|a_{2}\right|+\ldots+\left|a_{n}\right|+\mid a_{n+1}
\end{aligned}
$$

where we have used triangle inequality in the second line and the induction hypothesis that P_{n} is true. This finishes the proof.

Question 7 (3.7, Page 7) 1. Show $|b|<a$ if and only if $-a<b<a$.
2. Show $|a-b|<c$ if and only if $b-c<a<b+c$.
3. Show $|a-b| \leq c$ if and only if $b-c \leq a \leq b+c$.

Solution: (a) Here there are two statements we need to prove. If $|b|<a$ then $-a<b<a$ and we also need to show $-a<b<a$ then $|b|<a$. We first assume $|b|<a$. Since $|b|<a$ then we also have $-a<-|b|$ and since $-|b| \leq 0 \leq|b|$ we have $-a<-|b| \leq|b|<a$. Finally b is either $|b|$ or $-|b|$ we conclude that $-a<b<a$. This finishes the first proof. We now return the second proof. Assume $-a<b<a$. Then if we multiply this by -1 we get $-a<-b<a$ and since $|b|$ is either $-b$ or b we conclude that $-a<|b|<a$.
(b) We use part (a) (replace b by $a-b$ we get $|a-b|<c$ if and only if $-c<a-b<c$. Then adding b to this inequality we get $b-c<a-b+b=a<b+c$.
(c) We can reprove parts (a) with $<$ replaced by \leq. We next reprove part (b) with $<$ replaced by \leq which is (c). This finishes the proof of c.

Question 8 (4.14, Page 26) Let A and B be nonempty bounded subset of R.
a. Prove $\sup (A+B)=\sup (A)+\sup (B)$.
b. Prove $\inf (A+B)=\inf (A)+\inf (B)$.

Solution: (a) Let $M=\sup A$ and $N=\sup B$. Let $\epsilon>0$ be given. Since $M-\epsilon / 2<M=$ $\sup A$ we can $a \in A$ such that $M-\epsilon / 2<a$. Similarly, $N-\epsilon / 2<N=\sup B$ we can $b \in B$ such that $N-\epsilon / 2<b$. Now combining these two we get

$$
M-\epsilon / 2+N-\epsilon / 2<a+b
$$

Note that $a \in A$ and $b \in B$ then by definition $a+b \in A+B$. Therefore, we have

$$
M+N-\epsilon<a+b
$$

From this we observe that $M+N-\epsilon<a+b \leq \sup (A+B)$. Since this is true for every $\epsilon>0$ we see that $M+N \leq \sup (A+B)$.

We proved inequality and we now prove the converse inequality. Let c be an element in $A+B$. Then there is $a \in A$ and $b \in B$ by definition. We also have $a \leq M=\sup A$ and $b \leq N=\sup B$. Combining these two we get $a+b \leq M+N$ (therefore, $M+N$ is an upper bound for $A+B$) and since $\sup (A+B)$ is the least upper bound we see that $\sup (A+B) \leq$ $M+N$. This finishes the converse inequality. Combining these two we have $\sup (A+B)=$ $\sup (A)+\sup (B)$.
(b) One can similarly prove this.

