UCONN - Math 3150 - Fall 2018 - Problem set 1

Question 1 (1.4, Page 5)  a. Guess a formula for 1+ 3+ ...+ (2n — 1) by evaluating the sum for
n=12734

b. Prove your formula using mathematical induction.

Solution:
(a) For n = 1 then the sum is just 1.
Forn =2, thenwehavel+ (22—-1)=1+3 =4.
Forn = 3, thenwe havel +3 +5 =09.
Forn =4,thenwehavel +3+5+7 = 16.
(b) It looks like for n = 1 sum is 1. For n = 2 the sum is 4 and it looks like 22 = 4 and for 3
the sum is 9. Therefore we claim

(Py) “Thesumof1+3+...+ (2n—1)is n?”.

Using mathematical induction we shall prove this.
For n = 1 we have the base step;

(P;) sumof1isl.

It is clearly true. We see that the base step (P;) holds. We now assume that (P,) holds and we
will show that (P, 1 holds as well. Consider

143+...+2n—-1)+2n+1)—1=143+...+(2n—1)+2n+1
—n?+2n+1=(n+1)>~

This shows us the sum 1 +3 +... + (2n — 1) + (2(n + 1) — 1is (n + 1) which shows (P,1) is
true. By mathematical induction we conclude that our statement is correct. Hence

14+34+...+2n—1) =n?

Question 2 (1.7, Page 5) Prove 7" — 6n — 1 is divisible by 36 for all positive integers n.
Solution: Now our statement is
(P,) “7" —6n —1isdivisible by 36 forn =1,2,...”.

We start with checking the base step, i.e., when n = 1. In this case we have 7" — 61 — 1 = 0 and
it is clear that 0 is divisible by 36. Hence the base step P; is true. We next assume that P, holds
and want to prove that P, is also true using P,. As (P,,1is 7(n+1)?> —6(n+1) — 1 and we
consider

7" —6(n+1)—1=7"""—6n—-6-1
=7(7"—1) —6n
=7(7"—6n—1—6n+42n
=7(7"—6n—1) —36n.



Observe that the first part is (7" — 6n — 1) which is the induction hypothesis (i.e., (P,)) and
we know it is true. Hence it is divisible by 36. The remaining part i.e., —36n is obviously
divisible by 36. Therefore, 7(7" — 6n — 1) — 36n is divisible by 36. By mathematical induction
we conclude that (P,) is true;

7" —6n — 1is divisible by 36 forn = 1,2, .. ..

Question 3 (1.11, Page 5) For each n € N, let P, denote the assertion “n“ + 5n + 1 is an even inte-

4

ger”.

a. Prove P, is true whenever P, is true.

b. For which n is Py, actually true? What is the moral of the exercise?

Solution:
(a) If we assume P, is true and consider P, ;1 we have

(n+1)?+5m+1)+1=n*+2n+1+5n+5+1=n”>+5n+1+2n+6.

We observe from this that the the red part n% + 51 + 1 is P, i.e., induction hypothesis. Therefore
it is even integer. The blue part 2n 4+ 6 = 2(n + 2) also even. Therefore, the whole sum is even.
This shows that P, is also true.

(b) P, is NOT true for any integer. In fact one can show that n? 4 5n + 1 is odd integer for
every n. The moral here is that we can not skip checking the base step.

Question 4 (2.3, Page 13) Show /2 + /2 is not a rational number.

Solution: We consider x = 1/2 + v/2 or equivalently
x? =242 equivalently quad(x* —2)* = 2.

Hence we have
(x 22 —2=ax—4x? —4-2=1x*—4x*—6.

From Corollary 2.3 we know that rational solutions of x* — 4x?> — 6 should divide ¢y = 6. Those
numbers are £1, £2, +3, +6 by the Rational Zeros Theorem.

When x = +1wehavel —4 — 6 # 0.

When x = +2 we have 16 — 16 — 6 # 0.

When x = +3 we have 81 — 36 — 6 # 0.

When x = 46 we have 6* — 462 — 6 # 0.

Hence we conclude that x* — 4x% — 6 has no rational solution which in turn givesus v 2 + V2
is not rational.

Question 5 (2.8, Page 13) Find all rational solutions of the equation x8 — 4x> +13x> — 7x + 1.

Solution: From Corollary 2.3 we know that the rational solutions of x® — 4x° + 13x> — 7x + 1
should divide cp = 1. In this case, if there are rational solutions they have to be +1. For x =1
wehavel —4+4+13—-741# 0. Forx = —1wehavel +4 —13+7+1 = 0. Hence we have
x = —1is a solution and it is the only rational solution.
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Question 6 (3.6, Page 19)  a. Prove |[a+b+c| < |a| + |b| + |c| forall a, b, c.

b. Use induction to prove |ay + ap + ... + ay| < |ay| + |az| + ... + |an|.
Solution: (a) We can use the triangle inequality as follows twice
[a+btcl=[(a+b)+c| <latb[+|c| < |a] +[b] +c|.

This finishes the proof.

(b) We first step our inductions step. If P, denote the assertion “|a; +ap + ... + a,| <
la1| + |az| + ... + |an| we then first show this is true for P; and assuming P, is true then we
show P, 11 is also true.

Py is clearly true as |aj| = |a1|. Assume that P, is true and consider P,

a1+ a2+ ... an +ap = (a1 + a2+ ..+ an) + 3y
(a1 + a2+ ...+ an)| + |ap41]
|

<
< |ar| 4 faa| 4 lan] 4 [an

where we have used triangle inequality in the second line and the induction hypothesis that P,
is true. This finishes the proof.

Question 7 3.7, Page 7) 1. Show |b| < aifand only if —a < b < a.
2. Show |a—b| < cifandonly ifb—c <a < b+c.
3. Show |a —b| < cifandonlyif b —c <a <b+vc.

Solution: (a) Here there are two statements we need to prove. If |b| < a then —a < b < a and
we also need to show —a < b < a then |b| < a. We first assume |b| < a. Since |b| < a then
we also have —a < —|b| and since —|b| < 0 < |b| we have —a < —|b| < |b| < a. Finally b is
either |b| or —|b| we conclude that —a < b < a. This finishes the first proof. We now return the
second proof. Assume —a < b < a. Then if we multiply this by —1 we get —a < —b < a and
since |b| is either —b or b we conclude that —a < |b| < a.

(b) We use part (a) (replace b by a — b we get |a — b| < cif and only if —c < a — b < c. Then
adding b to this inequality wegetb —c <a—-b+b=a <b-+c.

(c) We can reprove parts (a) with < replaced by <. We next reprove part (b) with < replaced
by < which is (c). This finishes the proof of c.

Question 8 (4.14, Page 26) Let A and B be nonempty bounded subset of R.
a. Prove sup(A + B) = sup(A) + sup(B).
b. Prove inf(A + B) = inf(A) + inf(B).

Solution: (a) Let M = sup A and N = sup B. Let € > 0 be given. Since M —€/2 < M =
sup A we can a € A such that M —€/2 < a. Similarly, N —€/2 < N =supBwecanb € B
such that N — €/2 < b. Now combining these two we get

M—€/2+N—€/2<a-+b.



Note that 2 € A and b € B then by definition a + b € A + B. Therefore, we have
M+ N —e<a+b.

From this we observe that M+ N —e < a+ b < sup(A + B). Since this is true for every € > 0
we see that M + N < sup(A + B).

We proved inequality and we now prove the converse inequality. Let c be an element in
A+ B. Then thereisa € A and b € B by definition. We also havea < M = sup A and
b < N = sup B. Combining these two we get a +b < M + N (therefore, M + N is an upper
bound for A + B) and since sup(A + B) is the least upper bound we see that sup(A + B) <
M + N. This finishes the converse inequality. Combining these two we have sup(A + B) =
sup(A) + sup(B).

(b) One can similarly prove this.



