
UCONN - Math 3150 - Fall 2018 - Problem set 1
Question 1 (1.4, Page 5) a. Guess a formula for 1 + 3 + . . . + (2n− 1) by evaluating the sum for

n = 1, 2, 3, 4.

b. Prove your formula using mathematical induction.

Solution:
(a) For n = 1 then the sum is just 1.

For n = 2, then we have 1 + (2.2− 1) = 1 + 3 = 4.
For n = 3, then we have 1 + 3 + 5 = 9.
For n = 4, then we have 1 + 3 + 5 + 7 = 16.

(b) It looks like for n = 1 sum is 1. For n = 2 the sum is 4 and it looks like 22 = 4 and for 3
the sum is 9. Therefore we claim

(Pn) “The sum of 1 + 3 + . . . + (2n− 1) is n2”.

Using mathematical induction we shall prove this.
For n = 1 we have the base step;

(P1) sum of 1 is 1.

It is clearly true. We see that the base step (P1) holds. We now assume that (Pn) holds and we
will show that (Pn+1 holds as well. Consider

1 + 3 + . . . + (2n− 1) + (2(n + 1)− 1 = 1 + 3 + . . . + (2n− 1) + 2n + 1

= n2 + 2n + 1 = (n + 1)2.

This shows us the sum 1 + 3 + . . . + (2n− 1) + (2(n + 1)− 1 is (n + 1)2 which shows (Pn+1) is
true. By mathematical induction we conclude that our statement is correct. Hence

1 + 3 + . . . + (2n− 1) = n2.

Question 2 (1.7, Page 5) Prove 7n − 6n− 1 is divisible by 36 for all positive integers n.

Solution: Now our statement is

(Pn) “7n − 6n− 1 is divisible by 36 for n = 1, 2, . . .”.

We start with checking the base step, i.e., when n = 1. In this case we have 7n− 6n− 1 = 0 and
it is clear that 0 is divisible by 36. Hence the base step P1 is true. We next assume that Pn holds
and want to prove that Pn+1 is also true using Pn. As (Pn+1 is 7(n + 1)2 − 6(n + 1)− 1 and we
consider

7n+1 − 6(n + 1)− 1 = 7n+1 − 6n− 6− 1
= 7(7n − 1)− 6n
= 7(7n−6n− 1− 6n + 42n
= 7(7n − 6n− 1)− 36n.
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Observe that the first part is (7n − 6n − 1) which is the induction hypothesis (i.e., (Pn)) and
we know it is true. Hence it is divisible by 36. The remaining part i.e., −36n is obviously
divisible by 36. Therefore, 7(7n − 6n− 1)− 36n is divisible by 36. By mathematical induction
we conclude that (Pn) is true;

7n − 6n− 1 is divisible by 36 for n = 1, 2, . . ..

Question 3 (1.11, Page 5) For each n ∈ N, let Pn denote the assertion “n2 + 5n + 1 is an even inte-
ger”.

a. Prove Pn+1 is true whenever Pn is true.

b. For which n is Pn actually true? What is the moral of the exercise?

Solution:
(a) If we assume Pn is true and consider Pn+1 we have

(n + 1)2 + 5(n + 1) + 1 = n2 + 2n + 1 + 5n + 5 + 1 = n2 + 5n + 1 + 2n + 6.

We observe from this that the the red part n2 + 5n+ 1 is Pn i.e., induction hypothesis. Therefore
it is even integer. The blue part 2n + 6 = 2(n + 2) also even. Therefore, the whole sum is even.
This shows that Pn+1 is also true.

(b) Pn is NOT true for any integer. In fact one can show that n2 + 5n + 1 is odd integer for
every n. The moral here is that we can not skip checking the base step.

Question 4 (2.3, Page 13) Show
√

2 +
√

2 is not a rational number.

Solution: We consider x =
√

2 +
√

2 or equivalently

x2 = 2 +
√

2 equivalently quad(x2 − 2)2 = 2.

Hence we have
(x−2)2 − 2 = x4 − 4x2 − 4− 2 = x4 − 4x2 − 6.

From Corollary 2.3 we know that rational solutions of x4− 4x2− 6 should divide c0 = 6. Those
numbers are ±1,±2,±3,±6 by the Rational Zeros Theorem.
When x = ±1 we have 1− 4− 6 6= 0.
When x = ±2 we have 16− 16− 6 6= 0.
When x = ±3 we have 81− 36− 6 6= 0.
When x = ±6 we have 64 − 462 − 6 6= 0.

Hence we conclude that x4− 4x2− 6 has no rational solution which in turn gives us
√

2 +
√

2
is not rational.

Question 5 (2.8, Page 13) Find all rational solutions of the equation x8 − 4x5 + 13x3 − 7x + 1.

Solution: From Corollary 2.3 we know that the rational solutions of x8 − 4x5 + 13x3 − 7x + 1
should divide c0 = 1. In this case, if there are rational solutions they have to be ±1. For x = 1
we have 1− 4 + 13− 7 + 1 6= 0. For x = −1 we have 1 + 4− 13 + 7 + 1 = 0. Hence we have
x = −1 is a solution and it is the only rational solution.
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Question 6 (3.6, Page 19) a. Prove |a + b + c| ≤ |a|+ |b|+ |c| for all a, b, c.

b. Use induction to prove |a1 + a2 + . . . + an| ≤ |a1|+ |a2|+ . . . + |an|.

Solution: (a) We can use the triangle inequality as follows twice

|a + b + c| = |(a + b) + c| ≤ |a + b|+ |c| ≤ |a|+ |b|+ |c|.

This finishes the proof.
(b) We first step our inductions step. If Pn denote the assertion “|a1 + a2 + . . . + an| ≤

|a1| + |a2| + . . . + |an| we then first show this is true for P1 and assuming Pn is true then we
show Pn+1 is also true.

P1 is clearly true as |a1| = |a1|. Assume that Pn is true and consider Pn+1

|a1 + a2 + . . . + an + an+1 = |(a1 + a2 + . . . + an) + an+1|
≤ |(a1 + a2 + . . . + an)|+ |an+1|
≤ |a1|+ |a2|+ . . . + |an|+ |an+1

where we have used triangle inequality in the second line and the induction hypothesis that Pn
is true. This finishes the proof.

Question 7 (3.7, Page 7) 1. Show |b| < a if and only if −a < b < a.

2. Show |a− b| < c if and only if b− c < a < b + c.

3. Show |a− b| ≤ c if and only if b− c ≤ a ≤ b + c.

Solution: (a) Here there are two statements we need to prove. If |b| < a then −a < b < a and
we also need to show −a < b < a then |b| < a. We first assume |b| < a. Since |b| < a then
we also have −a < −|b| and since −|b| ≤ 0 ≤ |b| we have −a < −|b| ≤ |b| < a. Finally b is
either |b| or −|b| we conclude that −a < b < a. This finishes the first proof. We now return the
second proof. Assume −a < b < a. Then if we multiply this by −1 we get −a < −b < a and
since |b| is either −b or b we conclude that −a < |b| < a.

(b) We use part (a) (replace b by a− b we get |a− b| < c if and only if −c < a− b < c. Then
adding b to this inequality we get b− c < a− b + b = a < b + c.

(c) We can reprove parts (a) with < replaced by≤. We next reprove part (b) with < replaced
by ≤ which is (c). This finishes the proof of c.

Question 8 (4.14, Page 26) Let A and B be nonempty bounded subset of R.

a. Prove sup(A + B) = sup(A) + sup(B).

b. Prove inf(A + B) = inf(A) + inf(B).

Solution: (a) Let M = sup A and N = sup B. Let ε > 0 be given. Since M− ε/2 < M =
sup A we can a ∈ A such that M − ε/2 < a. Similarly, N − ε/2 < N = sup B we can b ∈ B
such that N − ε/2 < b. Now combining these two we get

M− ε/2 + N − ε/2 < a + b.
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Note that a ∈ A and b ∈ B then by definition a + b ∈ A + B. Therefore, we have

M + N − ε < a + b.

From this we observe that M + N − ε < a + b ≤ sup(A + B). Since this is true for every ε > 0
we see that M + N ≤ sup(A + B).

We proved inequality and we now prove the converse inequality. Let c be an element in
A + B. Then there is a ∈ A and b ∈ B by definition. We also have a ≤ M = sup A and
b ≤ N = sup B. Combining these two we get a + b ≤ M + N (therefore, M + N is an upper
bound for A + B) and since sup(A + B) is the least upper bound we see that sup(A + B) ≤
M + N. This finishes the converse inequality. Combining these two we have sup(A + B) =
sup(A) + sup(B).

(b) One can similarly prove this.
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