
Fall 2018 - Math 3150 Name (Print):
Exam 2 - October 30
Time Limit: 75 Minutes

This exam contains 8 pages (including this cover page) and 7 problems. Check to see if any pages
are missing. Enter all requested information on the top of this page, and put your initials on the
top of every page, in case the pages become separated.

You may not use your books, notes, or any calculator on this exam.

You are required to show your work on each problem on this exam. The following rules apply:

• If you use a “fundamental theorem” you
must indicate this and explain why the theorem
may be applied.

• Organize your work, in a reasonably neat and
coherent way, in the space provided. Work scat-
tered all over the page without a clear ordering
will receive very little credit.

• Mysterious or unsupported answers will not
receive full credit. A correct answer, unsup-
ported by calculations, explanation, or algebraic
work will receive no credit; an incorrect answer
supported by substantially correct calculations and
explanations might still receive partial credit.

• If you need more space, use the back of the pages;
clearly indicate when you have done this.

Do not write in the table to the right.

Problem Points Score

1 12

2 12

3 19

4 10

5 12

6 10

7 0

Total: 75
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1. For each of the following statements, say whether it is true or false. If the statement is false,
give a counterexample.

(a) (4 points) For all sequences of real numbers (sn) we have lim inf sn ≤ lim sup sn.

Solution: This is a true statement.

(b) (4 points) Every monotone sequence of real numbers is convergent.

Solution: False. Consider an = n. This is an increasing sequence but it is not
convergent.

(c) (4 points) Every bounded sequence of real numbers has at least one convergent subse-
quence.

Solution: True. This is a theorem (Bolzano-Weierstrass Theorem).
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2. If possible, give an example of each of the following. Write ”not possible” when appropriate.

(a) (4 points) A sequence (sn) with lim sup sn =∞ and lim inf sn = 0.

Solution: Consider

an =

{
1
n when n is even,

n when n is odd,

Clearly, even terms are converging to 0 = lim inf an and odd terms are converging to
∞ hence lim sup an =∞.

(b) (4 points) A bounded sequence which is not convergent.

Solution: an = (−1)n. This is clearly a bounded sequence which is not convergent.

(c) (4 points) Give an example of a bounded sequence of real numbers with exactly two
subsequential limits.

Solution: an = (−1)n. Even terms are converging to 1 and odd terms are converging
to 0.
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3. Let s1 = 1 and sn+1 = 1
3(sn + 1) for n ≥ 1.

(a) (3 points) Find s2, s3, and s4.

Solution: s2 = 2/3, s3 = 5/9, s4 = 14/27.

(b) (4 points) Use induction to show sn > 1/2 for all n ∈ N.

Solution: The base case, n = 1, we trivially have it. As s1 = 1 > 1/2. Assume that
sn > 1/2 and consider n+ 1;

sn+1 =
1

3
(sn + 1) >

1

3
(
1

2
+ 1) =

1

2
.

Hence sn+1 > 1/2. By mathematical induction we conclude that sn > 1/2 for every
n ∈ N.

(c) (4 points) Show (sn) is a decreasing sequence.

Solution: Since sn > 1/2 then 1 < 2sn for every n ∈ N. Using this we get

sn+1 =
1

3
(sn + 1) ≤ 1

3
(sn + 2sn) =

3sn
3

= sn.

We just proved that sn+1 ≤ sn for every n ∈ N. This finishes the proof.

(d) (4 points) Show lim sn exists and find lim sn.

Solution: Since sn is decreasing sequence from part (c) and bounded from below
by part (b) we conclude by theorem that we proved in class that sn converges. Let
lim sn = s. Then

s = lim sn+1 = lim
1

3
(sn + 1) =

1

3
(lim sn + 1) =

1

3
(s+ 1).

From this we see that 3s = s+ 1 or s = 1/2.

(e) (4 points) Is (sn) a Cauchy sequence?

Solution: Since (sn) is a convergent sequence therefore (sn) is a Cauchy sequence.
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4. (10 points) Let (sn) be any sequence. There exists a monotonic subsequence whose limit is
lim inf sn.

Solution: This is Theorem 11.7.
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5. Let S = {1/n : n ∈ N}.
(a) (4 points) Prove that S is not closed.

Solution: Since (sn) = 1/n is a sequence with sn ∈ S with lim sn = 0. Since 0 /∈ S
we conclude that S is not closed.

(b) (4 points) Prove that S is not open.

Solution: If it was open then for every s ∈ S and there exists ε > 0 such that
(x− ε, x+ ε) ⊂ S. For fix n and ε > 0 the set

(
1

n
− ε, 1

n
+ ε)

contains an irrational element, say a0. Now a0 can not be in S as it does not contain
any irrational elements. Hence S can not be open.

(c) (4 points) Prove that S ∪ {0} is compact.

Solution: We need to show that S ∪ {0} is closed and bounded (using a theorem we
proved in the class). This set is bounded above by 1 and below by 0. Hence it is
bounded. Now we will show that it is a closed set. 0 is the only limit of 1/n and
therefore S∪{0} contains all the limit sets as well. Therefore, it is a closed set. Hence
S ∪ {0} is compact.
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6. Let f be a function on [0, 1] defined by

f(x) =

{
x when x ∈ [0, 1] rational,

0 when x ∈ [0, 1] irrational.

(a) (5 points) Use ε− δ definition to show that f is continuous at x = 0.

Solution: Let ε > 0 be given. We want to find δ (probably in terms of ε) so that
whenever |x− 0| < δ and x ∈ [0, 1] then we necessarily have

|f(x)− f(0)| < ε.

Note that if x ∈ [0, 1] rational then f(x) = x and hence |f(x)− f(0)| = |x− 0| and we
know that |x− 0| < δ. We see that it is enough to choose δ = ε. If x ∈ [0, 1] irrational
then f(x) = 0 and ||f(x)− f(0)| = |0−0| = 0 < δ and therefore it is enough to choose
δ = ε again.

Formal proof: Given ε > 0, choose δ = ε. Then if x ∈ [0, 1], |x − 0| < δ and x is
rational then

|f(x)− f(0)| = |x− 0| < δ = ε.

If x ∈ [0, 1], |x− 0| < δ and x is irrational then

|f(x)− f(0)| = |0− 0| < δ = ε.

Hence f is continuous at x = 0.

(b) (5 points) Use ε− δ definition to show that f is discontinuous at all other rational points
in (0, 1].

Solution: Let x0 be a fixed rational point in (0, 1]. Let ε = x0
2 > 0. Then for every

δ > 0 then the set (x0− δ, x0 + δ) contains an irrational element say xδ (due to density
of irrationals). Then |x0 − xδ| < δ but

|f(xδ)− f(x0)| = |0− x0| >
x0
2

= ε.

Hence f is not continuous at any other rational points in (0, 1].
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7. Let (sn) be a bounded sequnece of real numbers.

(a) (4 points (bonus)) Carefully state the definition of lim sup sn and lim inf sn.

Solution: For each N ∈ N let

uN = inf{sN , sN+1, sN+2, . . . , } and vN = sup{sN , sN+1, sN+2, . . . , }.

Note that (uN ) is an increasing sequence and also it is bounded as (sn) is bounded then
we know that bounded monotone sequences are bounded. Therefore, (uN ) converges
to a number say u which is lim inf sn. On the other hand, (vN ) is a decreasing sequence
and similarly it is also bounded because of the same reason. We conclude that (vN )
also converges to a number say v which is lim sup sn.

(b) (4 points (bonus)) If sn = (−1)n, find lim sup sn and lim inf sn.

Solution: Since the subsequential limit set of (sn) is {−1, 1}. We know that lim sup sn
is the largest subsequential limit of (sn) which is 1 and similarly lim inf sn is the
smallest subsequential limit of (sn) which is −1. Hence

lim inf sn = −1 and lim sup sn = 1.

(c) (4 points (bonus)) If tn = sin(nπ/2) then find all subsequential limits of (tnsn).

Solution: We already know that (sn) has two subsequential limits {−1, 1}, 1 when n
is even and −1 when n is odd. We now focus on tn

tn =


1 whenn = 4k + 1,

0 whenn = 4k + 2,

−1 whenn = 4k + 3,

0 whenn = 4k.

Then if we multiply tn by sn we get

tn · sn =


1 · (−1) whenn = 4k + 1 = odd,

0 · 1 whenn = 4k + 2 = even,

−1 · (−1) whenn = 4k + 3 = odd,

0 · 1 whenn = 4k = even.

Hence we have −1, 0, 1 as subsequential limits. Therefore, the set of subsequential
limist of (tn · sn) is {−1, 0, 1}.


