different equation. New differertarte tue obi

$$
y^{\prime}=-c \sin x+1
$$

Now we need to get wd of c.
Solve for c in the solitiven
as $y=c \cos x+x$ then
$\frac{y-x}{\cos x}=c$ use this in y^{\prime}

$$
\begin{aligned}
y^{\prime}=-\frac{(y-x)}{\cos x} \cdot \sin x+1 & =-(y-x) \tan x+1 \\
& =(x-y) \tan x+1
\end{aligned}
$$

Therfore the $D \bar{E}$, we are leading for is

$$
y^{\prime}=(x-y) \tan x+1
$$

here we tor is undetred user

$$
x=\mp \frac{\pi}{2}, \frac{3 \pi}{2}, \cdots
$$

the tore $y^{\prime}=(x-y) \tan x+1 \quad: x \neq \frac{\pi}{4} \frac{\pi}{2}=\frac{3 \pi}{2}, \cdots$

Exaple: Fund a differentinal epvatuen whose 1-parometer fanily of soletrens represerts a fomily of curcles with outers at the angun.
Soln: The formily of curcales certered at zes con be mittes as

$$
x^{2}+y^{2}=r^{2}, \quad r>0
$$

To fund the $D E$ we get rod of's

$$
\begin{aligned}
& 2 x+2 y \cdot y^{\prime}=0 \\
& y^{\prime}-y^{\prime}=-x
\end{aligned}
$$

Lessor 4 c. Qerenal Solution. Porticater Soln.

A solution if's an n-pononetor fanily Q\& a DE of an $n^{\text {th }}$ order $D E$.
of solutions (1) $y=C e^{x}$ is a gerenal solutuan Examples: (1) $y=C E \quad y^{\prime}-y=0$
of the $D E \quad y-y=c_{1} e^{-2 x}+c_{2} e^{-x}+2 e^{x}$ is a gereral solutra to the $D E y^{\prime \prime}+3 y^{\prime}+2 y-12 e^{x}=0$

Defintires: The n corditiens uluch enable us to determine the valucs of the orbitneng constants $c_{1} \ldots c_{n}$ in on m-perancter of foumly EASoluthon if piren in tems of ane value of the independeit verable are called mitial conditions.
Exemple: Fud a 1-panameter tomly of salutuers of the $D E \quad d y=y d x$ and tire porticular solution for ulueh $y(3)=1$

Solni: Snce

$$
\begin{aligned}
& y^{\prime}=y \quad \text { or } \quad \frac{y^{\prime}}{y}=1 \\
& \log y=x+c \\
& \text { or } y=e^{x+c}=e^{x} \cdot \frac{e^{c}}{c}
\end{aligned}
$$

So 1 -perancter faruly of solu is $\quad y=c e^{x}$ inorder to fud the pontrular salution uluh satstes $y(3)=1$
substutite $x=3, \quad y(3)=c e^{3}=1$ then solve for $c=e^{-3}$. Hence $y(x)=e^{-3} \cdot e^{x}$ $=e^{x-3}$. is the portrular sah.

Exaple: Slecteh the drection held for the DE. sketch the integral cumes for the tir $D E$

$$
y^{\prime}=y-x
$$

Solution: To skether twe dereection Reald forturis knd of $D E$ ve thet idertity places uhre the diritue unll be oorstort. To do thris wie ssat the derratie in the DE equal to a constert, suy c.
thrs gires us a teriily of epuations called isoclines.

we get
If you dnew

Spedal Types of Rrstode EDE.
Lessar 6ci Differectial equations untu seperable vaviolsles:

Dts which corbore in the fallomg fern

$$
Q(x-y) \frac{d y}{d x} \neq P(x y)=0
$$

OR eqviralerthy we sar unte

$$
Q(x n y) d y+P(x y) d x=0
$$

is called differentral oprethen

$$
\begin{aligned}
& \text { Led drferentrat } \\
& P(x \cdot y)=A(x) \cdot B(y) \\
& P(x \cdot y)=C(x) \cdot D(y)
\end{aligned}
$$

Exayple: Ral a L paramefer famly of solutions of the $D E$

$$
\begin{aligned}
& \text { solutions of the } D t \\
& x \sqrt{1-y} d x-\sqrt{1-x^{2}} d y=0 \text {. } \\
& \text { that con } n
\end{aligned}
$$

alse a partuelor solstwan that conneat be obtaixaidsle fram the foury
Solotinen: The dorem of the $D \bar{D}$ is when $y \geqslant 1$ \& $1-x^{2} \geqslant 0$ s.e.

$$
\begin{equation*}
-1 \leq x \leq 1 \tag{16}
\end{equation*}
$$

ReDE con be remitter as when $x+1, y \neq 1$

$$
\begin{aligned}
& \frac{x}{\sqrt{1-x^{2}}} d x-\frac{d y}{\sqrt{1-y}}=0 \\
& -\sqrt{1-x^{2}}+\sqrt{1-y}=c \quad-1<x<1, y>1 \\
& \text { monster fen ky of solus at }
\end{aligned}
$$

is the 1 -parameter fairly of solis at the DE. Moreover $y=1$ is a particular solution

See http://www.math.uconn.edu/~akman/math3410f17/index.html For your first assignment.

