the general solutions

$$y(\mathcal{K}) = c_1 e^{c_1 \mathcal{K}} + c_2 e^{i \mathcal{K}} \longrightarrow Rember this from lost year!$$

 $Excepte: consider the DE
 $y' = 5y' + by = 0$ mitre insteal
what happens as $x \to \infty = x \to -\infty$ y(o)=
Solution: snee eloneetenistic
equations is $r^2 - 5r + b = 0$
 $regretter is r^2 - 5r + b = 0$
 $regretter is r^2 - 5r + b = 0$$

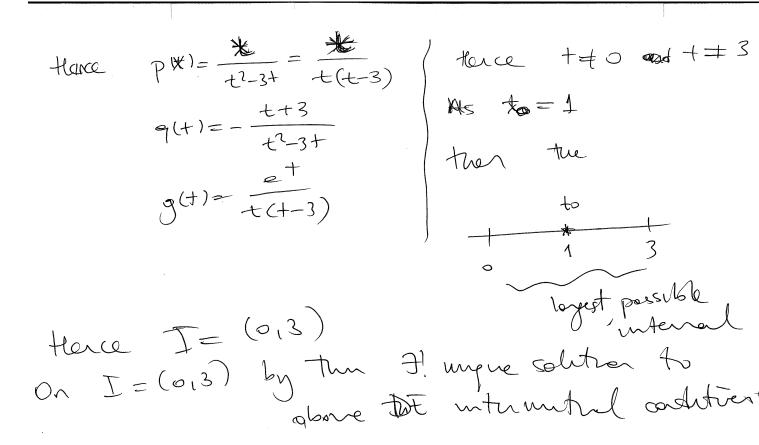
Hence
$$r_1=2$$
 & $r_2=3$
Hundre $y(3k) = c_1e^{2k} + c_2e^{3k}$ is the general solut
 $y(a) = c_1 + c_2 = -1$
 $y'(a) = 2c_1 + 3c_2 = 1$
 r_1, r_2
 $r_2 = 3$
 $y'(a) = 2c_1 + 3c_2 = 1$
 r_2, r_2
 $r_3 = -4e^{2k} + 3e^{3k}$.
Hence particle solution is $y(3k) = -4e^{2k} + 3e^{3k}$.
Hence $e^{2k} & e^{3k} \rightarrow \infty$ one gets $(e^{3k} \text{ domiroles } e^{2k})$
Size $e^{2k} & e^{3k} \rightarrow \infty$ one gets $(e^{3k} \text{ domiroles } e^{2k})$
 $y(k) = -\infty$
 $y(k) = -\infty$

.

(2

Solutions of Linear Homogeneous Epictions
The Wronskipn
Thm: [Existence & Unipreness Thin]
Consider the following DE:

$$y''_{+} p(x) y' + q(x) y' = g(x)$$
 with
 $y''_{+} p(x) y' + q(x) y' = g(x)$ with
 $y''_{+} p(x) y' + q(x) y' = g(x)$ and bounded
If $p(x)$, $q(x)$ are cartimes and bounded
an an interval. I cartains to. then then is
an an interval. I cartains to. then then is
exoretly one solution $y(x)$ to twill equation
 $y(x) = 2$ $y'(x) = 1$
Find the layert interval includy free 1 is which
solution is valid.
Solution's perifective DE
 $y''_{+} = \frac{t}{y'} - \frac{(t+s)}{(t^{2}-2t)} = \frac{e^{t}}{f^{2}-st}$



the Whensteiler: Over two Rectars sy fig the Woorskies is defined as $W(f_{ig})(x) = f_g' - gf'$ $= \det \begin{bmatrix} f & g \\ f' & g' \end{bmatrix}$

Good properties of W! *) if W(fg)=> then fond gove liver dependent 2) otherise theyare licenty independent. *(*4)

Example! Without solving the DE

$$x^2y'' = x(x+2)y' + (x+2)y = 0$$

find the Whenshiven W(y, yz).
Solution We first need to more unifer the DE
by dividing x
 $y'' = \left(\frac{x(x+2)}{x^2}\right)y + \left(\frac{x+2}{x^2}\right)y = 0$
Hence $p(x) = -\frac{x+2}{x}$. which is defined
there $p(x) = -\frac{x+2}{x}$. which is defined
there $x = 1$ and $x = 1$
 $W(y, y_2) = C = -\frac{y(x)dx}{x} - \frac{y(x)dx}{x} - \frac{y(x)dx}{x}$
 $W(y, y_2) = C = -\frac{y(x)dx}{x} - \frac{y(x)dx}{x} - \frac{y(x)dx}{x}$
 $= C e^{-\frac{y(x)}{x}} + \frac{2ln(x)}{x} - \frac{y(x)dx}{x} - \frac{y(x)dx}{x}$
Notice that the Wrenshim is defined on
 $e^{there} (-\infty, 0) = (0, \infty)$. This tells is the there
the solutions y_1 and y_2 (now do not ulot they over defined on either $(-\infty, 0) = (0, \infty)$).

Excepte! Consider the following DE $x^2y''-x(x+2)y'+(x+2)y=0$ (to x) It's given there $y_1(x)=x$ is a solution. Find the gene neal solution. Solution: suppose yz is the second solution and once we Rud it y(x)=qyn(x)+qyz(x) ml be tue general solution. From Abel's theorem, we know that The vilnershier of y1 and y2 are $W(y_1, y_2) = e$ where $P(x) = \frac{-x(x+x)}{x^2}$ = ce^x. x² (from the = promis exercise), promis exercise), on the other herd, by definitive, of Whenshi $VX(y_1, y_2) = y_1 y_2' - y_1'y_2$ $= xy_{2}' - y_{2} = ce^{x} \cdot x^{2}$ Now if we wente the DE ne get $y_2' - \frac{1}{x}y_2 = ce^{x} \cdot x$

This can be bantter as $(y_2.lmx) = ce^{X}.x$ Integrate both sides to get y2(x).lnx=cSex.x dx $= ce^{X} \times - ce^{X} + c_{2}$ Hence $y(x) = c_1 x + \varepsilon (e^x x - e^x) + c_2$. Therefore eventhough we may not be able to solve the DE we can use the blooshie to find the second solution. Higher Order Meer Eprotions the general form of a linear equation of order a with y(x) inknown is $y^{(n)} + p_{n-1}(x)y^{(n-1)} + \cdots + p_1(x)y' + p_0(x)y = g(t).$ Here we find a general solution which will contain n-parameters. And we need a constitue to E. J. the portrular solution. (R

Existence & Unipness: If all the coefficient Pn-1(x)... po(x), g(x) ere all continers ond bounded on on merval I then there exists a migne solution to thi DE. If pn-1(x1, --- po(x) are constant and g(x)=0 then we get a tomogeneous DE mon constant coefficients. In this case, one can Rud the consequent derocteristic aquation to find the general solutions. Example: y'' - by'' + 11y' - by = 0The chooctedatic equation is $(r^{3}-br^{2}+1|r-b)=0$ The roots are $r_1=1$, $r_2=2$ $r_3=3$ Herce the general solution is $y(x) = c_1 e^{x} + c_2 e^{2x} + c_3 e^{3x}$.

haplace Traform

Guer a fricture f(x), x>0, we will use L Z fexis to denote its haplance transform. defined as p $F(s) = \chi \{f(x)\} = \int_{0}^{\infty} e^{ix} f(x) dx$ = lin jestfex)dx

Example: let fox)=1 for x>0. Then $F(s) = d_{\varepsilon} \{f(x)\} = \lim_{t \to \infty} f(x) = \int_{t \to \infty} f(x) dx$ $=\lim_{t\to\infty}-\frac{1}{5}\left[e^{st}-1\right]$ $= \int_{S} s > 0.$

Exapple: let fcx1 = x for n≥1 integer. Find the Loplace thereform of P. Solution: Fish of Spexis = lin 5 ex dx $= \lim_{t \to \infty} \int_{0}^{t} e^{-sx} x^{n} dx$ $= \lim_{t \to \infty} \left[\frac{x^{n} e^{-st}}{-s} \right]_{-s} - \int_{-s}^{n \times n - 1} \frac{e^{-st}}{-s} dx$ $= 0 + \frac{n}{5} \int_{-\infty}^{\infty} e^{-5x} x^{n-1} dx = \frac{n}{5} \left\{ x^{n-1} \right\}$ Hence vie get a recursive forming $f\{x^n\} = \frac{1}{s} f\{x^{n-1}\}$ $= \frac{n(n-1)}{c} \mathcal{J}\left\{x^{n-2}\right\}.$ $= \frac{n}{5} \frac{(n-1)}{5} \dots \frac{2}{5} \frac{1}{5} \frac{1}$ $= \frac{n!}{c^n} \cdot \frac{1}{s} = \frac{n!}{c^{n+1}} \cdot \frac{1}{s}$

We can also find haplace transform
of piece vaise frictions.
Example: Find the haplace transform
of

$$f(x) = \begin{cases} 1 & exc_2 \\ x-2 & 2 \le t \end{cases}$$

then $\begin{cases} 2f(x) \\ x = 2 \end{cases} = F(s)$
 $= \lim_{x \to \infty} \int_{z}^{z} e^{-sx} f(x) dx$
 $t = \int_{z}^{\infty} e^{-sx} f(x) dx$
 $= \int_{z}^{\infty} e^{-sx} f(x) dx + \int_{z}^{\infty} e^{-sx} f(x) dx$

A

Naw

$$F(s) = -\frac{1}{s} e^{-sx} \Big|_{0}^{2} + (x-2) \frac{e^{-sx}}{-s} \Big|_{0}^{2} - \frac{s}{2} \frac{e^{-sx}}{2} dx$$

$$= -\frac{1}{s} (e^{-2s} - 1) + \frac{1}{s^{2}} e^{-2s}.$$

Properties of Laplace Thortom: 1) Linearity: $L & c_1 f(x) + c_2 g(x) \\ = q = L + c_2 +$

4) Hypher order donntes:

$$\mathcal{L}_{r}^{(n)} = s^{n} \mathcal{L}_{r}^{r} f(x) - s^{n-1} f(0) - s^{n-2} f(0)$$

$$\mathcal{L}_{r}^{r} f(x) = s^{n} \mathcal{L}_{r}^{r} f(x) - s^{n-1} f(0) - s^{n-2} f(0)$$

$$\dots s f^{(n-2)} - f^{(n-1)} (0).$$

5) $\mathcal{L}\left\{-xf(x)\right\} = F'(s)$ une $\mathcal{L}\left\{f(x)\right\} = F(s)$. 6) $L \left\{ e^{a \times} f(x) \right\} = F(s-\alpha)$ where $f_{f(x)} = F(s)$ (1)-(b) ne exercise! Exaple: f = 2To fud this we fuet Rud $\mathcal{X}_{\mathcal{Y}} = \frac{n!}{n!}$ Then using property (6) neget $\mathcal{L} \mathcal{L} e^{\alpha \times} \times \gamma^{2} = \frac{\gamma^{1}}{(s-\alpha)^{n+1}}$ Example! Find $L \left\{ e^{2\pi} (x^3 + 5x - 2) \right\}$ First find & 3x3+5x-2} $=\frac{3!}{\zeta 4}+\frac{5}{52}-\frac{2}{\zeta}$ 614

then use the property (6) to get $\{\{e^{2x}(x^3+5x-2)\}\$ (a=2) $= \frac{5!}{(s-2)^4} + \frac{5}{(s-2)^2} - \frac{2}{s-2}$ Exapple: Show that haplace thatten of Cosat is <u>s</u>, and smat is $\frac{\alpha}{s^2+\alpha^2}$ s>0. Prest: Dender that Eiler's Pendase eiat eiat = Osat + i sinat where i i the output subtrat i=v=1 Then & { = 1 } cosont + i sin out } = I gcosat >+ i L S Binout (We know that $\mathcal{L} \{ e^{i\alpha t}, 1 \} = \frac{1}{s-i\alpha}$ = $\frac{(s+i\alpha)}{(s+i\alpha)} = \frac{s+i\alpha}{s^2+\alpha^2} = \frac{s}{s^2+\alpha^2} + i\frac{\omega}{s^2+\alpha^2}$

Solutions of Dritical Volue Problems Exemple: Using haplace tharform And the portraler solution intra gues intral value; 2* $y''-y'-2y=e^{2*}$, y(0)=0, y'(0)=1. Loplace transfor solution: Apply the both sides; $k_{y}^{u} = y_{y}^{u} - y_{y}^{u} - 2y_{y}^{u} = f_{y}^{2*} f_{z}^{2*} f_{z}^{2} f_{z}^{2}$ $= \int \{y''\} - \int \{y'\} - 2 \int \{y\} = \frac{1}{s-2}.$ $s^{2} L_{y} = \frac{1}{s^{2}} \sum_{y = -sy_{0}} \sum_$ Haranstype $s^{2} \pm 3y_{5} - 1 - s \pm 3y_{5} - 2 \pm 5y_{5} = \frac{1}{5-2}$

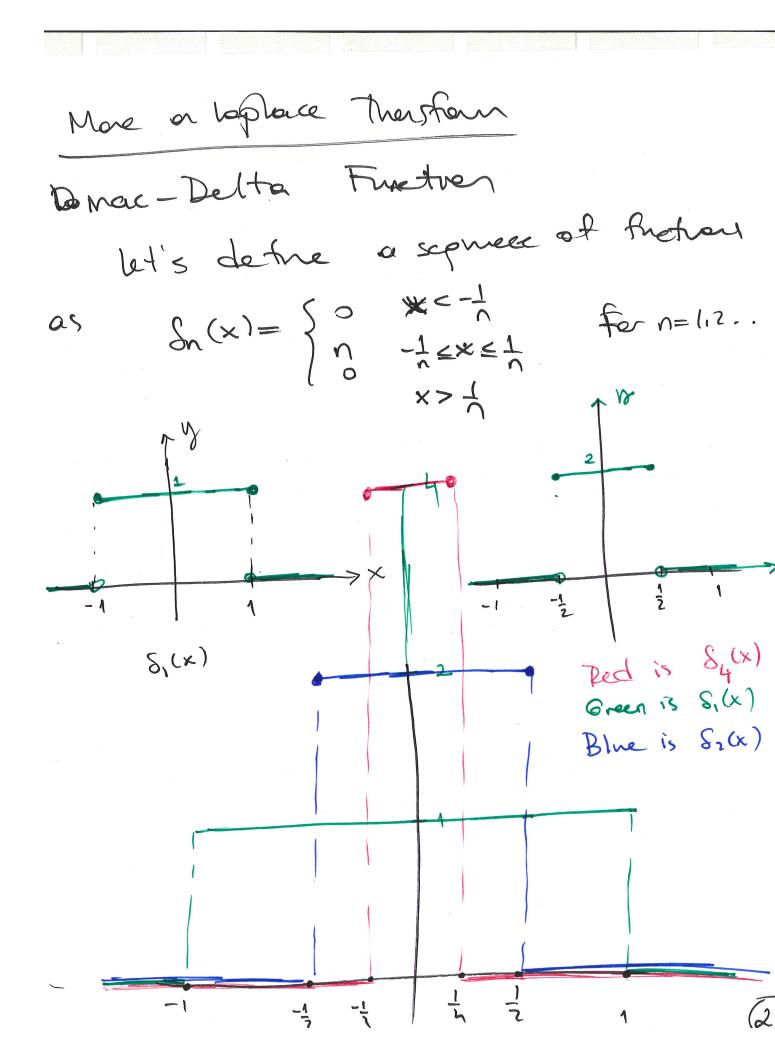
Solve for
$$d_{y}y' + d_{y}get$$

 $J_{y}y' = \frac{s-1}{(s-2)(s^{2}s-2)}$
and use particuly freether to get
 $J_{y}' = \frac{s-1}{(s-2)^{2}(s+1)} = \frac{A}{s+1} + \frac{B}{s-2} + \frac{c}{(s-2)^{2}}$
Find A i B, c $A = -\frac{2}{3}$, $B = \frac{2}{3}$, $c = \frac{1}{3}$
Hence $J_{y}(x)' = \frac{-\frac{2}{3}}{s+1} + \frac{2}{s-2} + \frac{1}{(s-2)^{2}}$
Men opphy invesc implace therefore
 $J_{y}'(x)' = J_{y}'(x)'$
 $= J_{y}^{-1} \{ -\frac{-2}{s+1} + \frac{2}{s-2} + \frac{1}{(s-2)^{2}} \}$
 $= -\frac{2}{3} = -\frac{2}{s+1} + \frac{2}{3} = \frac{2x}{s+1} + \frac{3}{3} = \frac{1}{(s-2)^{2}} \}$

Solve the Instral velre pretter Exerple: using leplace thereform. $y'' + 3y' + 2y = 6e^{t}$ y(0)=2 y'(0) = -1. Solution. Take the Leplace transferr of both sides $f_{y'+3y'+2y} = f_{6e}^{+}$ bising meanty and other presenties ne get J {y"}+3J{y'}+2J[{y}]=6Jset s² J } y(x1) - sy(0) - y'(0) + 3 s J } y(x1) - y(0) $+2 L \{y\} = 6.1 = 5-1$ Solve for Light to get $\int \{y(x)\} = \frac{2s - 4}{s^2 + 3s + 2} + \frac{6}{s - 1}$

ſſ

Now opphy the mess theyfour but that do some onegenet, $2 \{y(x)\} = \frac{8}{s+2} - \frac{6}{s+1} + \frac{6}{s-1}$ $y(x) = f' \left\{ \frac{\delta}{5+2} - \frac{\delta}{5+1} + \frac{\delta}{5-1} \right\}$ $= 8 J^{-1} \{ \frac{1}{542} \} - 6 J^{-1} \{ \frac{1}{541} \} + 6 J^{-1} \{ \frac{1}{541} \}$ $= 8 e^{-2x} - 6 e^{-x} + 6 e^{x}$ is the solution. Exercises: Solve the fallong DE isy helplace 1) $y'' - 2y' + 2y = e^{x}$ y(ol = 0 y'(ol = 1)Answer: $\frac{1}{5}e^{-\frac$ 2) y'' + y = 6s2t, y(0) = 2y'(0) = 1Answer: $y(x) = \frac{7}{3}\cos x + \sin x - \frac{1}{3}\cos 2x$.



Sn converges to a friether coelled Dirac-Delta distribution $S(x) = \begin{cases} 0, & \neq 0 \\ 0, & \neq 0 \end{cases}$ Some interesting properties 1) $\int g(x) dx = 1 - 3$ Area helow S. for any cont. 2) $\int f(x) \delta(x) dx = f(0)$ f. 3) $\delta_{\mathbf{x}_{0}}(\mathbf{x}) = g(\mathbf{x} - \mathbf{x}_{0}) = \begin{cases} 0 & \mathbf{x} \neq \mathbf{x}_{0} \\ \infty & \mathbf{x} = \mathbf{x}_{0} \end{cases}$ S fex) S (x) dx = f(x0). $\int \{S_{x_0}(x)\} = \int e^{-Sx} S_{x_0}(x) dx = e^{-Sx_0}.$

(22

Exerple: Schethe felling PE $y'' + 4y = \delta_{\pi}(x) - \delta_{2\pi}(x)$ y(0) = y'(0) = 0 $f_{3}y'' + hy = f_{3}v(x) - S_{2\pi}(x)$ s² I zy(x) z - sy(0) - y'(0) + AR zy(x) z $= \mathcal{L} \left\{ S_{\overline{N}}(x) \right\} - \mathcal{L} \left\{ S_{\overline{Z}\overline{N}}(x) \right\}$ $= e^{-STT} - 2TS$ $s^2 f_{3y}(x) + 4 f_{3y}(x) = e^{-st} - e^{-2\pi s}$ $\text{tlence } \mathcal{G}\left\{y(x)\right\} = \frac{e^{-STT}}{s^2 + 2^2} - \frac{e^{-2TTS}}{s^2 + 2^2}$ At true peut we ar not really fund $y(x) = \int_{-1}^{-1} \begin{cases} e^{-ST} - \frac{e^{-2TS}}{S^{2}t^{2}} \\ s^{2}t^{2} & s^{2}t^{2} \end{cases}$ as we here product of two frether depundences.

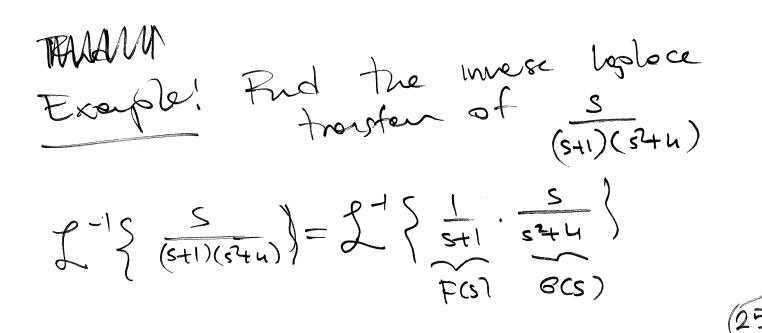
(23)

To some this we need to fud f' = f(s) = G(s). Suppose ISfex) = F(s) $f_{g(x)} = G(s).$ Definition [Convolution] let fix) and g(x) Le tro frictions. Then (f * g)(x)is called x f convention S and is $(f * g)(x) = \int f(x-t) g(t) dt$ Properties of Computer openter *. f*g=9*f * Commutativity ! $f_{*}(g_{1}+g_{2})=f_{*}g_{1}+f_{*}$ * Distributivity -f * (g * h) = (f * g) * h. * Associetuty

Now

(24

 $\mathcal{L}\left\{ f(x) \right\} = F(s)$ Theorem: let f(g(x)) = G(g(x)) $T' \{ F(s) G(s) \} = (f*g)(x).$ then Proof! Integrate by parts! Example! $f(\mathbf{x}) = 3x$, $g(\mathbf{x}) = sin Sx$ $(f*g)(x) = \int f(x-t)g(t)dt$ $= \int_{atc.}^{x} 3(x.-t) \operatorname{Sm5tedt}$ $= \int_{atc.}^{y} 3(x.-t) \operatorname{Sm5tedt}$ = 3 + -3 + -3 + -25 + .



her we need to find $\int \left\{ f(s) \right\} = \left$ $f' \{ 60 \} = f' \{ \frac{5}{544} \} = cos 2x = g^{4x}$ Hence $\int \int \{F(s), G(s)\} = \int f(x-t)g(t)d$ $= \int e^{(x-t)} \cos 2t = dt.$ lif we go beek our DE to Find ne norted $\int -\frac{1}{3} \int \frac{1}{3} y(x) \left[\frac{1}{3} = \frac{1}{3} - \frac{1}{3} + \frac{1}{3} - \frac{1}{3} + \frac{1}{$ $= \int_{1}^{1} \left\{ \frac{e^{-s\pi}}{2} + \frac{1}{s^{2}+2^{2}} \right\}_{1}^{2} - \int_{1}^{1} \left\{ \frac{e^{-2\pi s}}{2} \cdot \frac{2}{s^{2}+2^{2}} \right\}_{F_{2}(s)}^{2} + \frac{1}{s^{2}+2^{2}} \left\{ \frac{e^{-2\pi s}}{2} \cdot \frac{2}{s^{2}+2^{2}} \right\}_{F_{2}(s)}^{2} = \frac{1}{s^{2}+2^{2}} \left\{ \frac{e^{-2\pi s}}{2} \cdot \frac{2}{s^{2}+2^{2}} \right\}_{F_{2$ 26

Scanned by CamScanner

 $f(x) = \frac{1}{2} \frac{f(x)}{x} \sin \frac{2x}{2} - \frac{f_2(x)}{2} \sin \frac{2x}{2}$ is the desued

Exercise: some tre follong DE ut $(x) y'' + y = S_{2T} (x) G_{2T} , y(0) = 0$ y(0)=)

2) y''-y = 2sint y(0) = 2,y'(0) = 1.

3)

