UCONN - Math 3410 - Fall 2016 - Quiz 1

Name: Solution Key

1. [5 points] Find all value(s) of α and β for which the following differential equation becomes exact.

$$
4 x^{3}-\alpha x^{2} y+y^{3}-2 \beta+\left(\beta x^{3}+3 x y^{2}\right) y^{\prime}=0
$$

Solution: If we rewrite the DE , then we get

$$
\left(4 x^{3}-\alpha x^{2} y+y^{3}-2 \beta\right) d x+\left(\beta x^{3}+3 x y^{2}\right) d y=0
$$

In our notation $M=4 x^{3}-\alpha x^{2} y+y^{3}-2 \beta$ and $N=\beta x^{3}+3 x y^{2}$. Since above DE is exact then we have $M_{y}=N_{x}$;

$$
M_{y}=-\alpha x^{2}+3 y^{2}=N_{x}=3 \beta x^{2}+3 y^{2} .
$$

By solving this identity one gets $-\alpha=3 \beta$. Therefore, for any values of α, β with $-\alpha=3 \beta$ the above DE becomes exact. Equivalently, $\alpha=3 t$ and $\beta=-t$ for every t.
2. [5 points] Solve the following differential equation with the give initial value. Solution.

$$
y^{\prime}=\frac{x e^{2 x}}{y}, \quad y(0)=\frac{1}{2} .
$$

One should realize that this DE is separable;

$$
y d y=x e^{2 x} d x
$$

by integrating both sides one gets;

$$
\int y d y=\int x e^{2 x} d x \quad \text { equaivalently } \quad \frac{y^{2}}{2}=\frac{x e^{2 x}}{2}-\frac{e^{2 x}}{4}+c
$$

Use the initial value to find c;

$$
\frac{1}{8}=0-\frac{1}{4}+c \quad \text { so } \quad c=\frac{3}{8} .
$$

Hence the solution is

$$
\frac{y^{2}}{2}=\frac{x e^{2 x}}{2}-\frac{e^{2 x}}{4}+\frac{3}{8}
$$

