UCONN - Math 3410 - Fall 2017 - Quiz 3
Name: Solution KEY
Question: Consider the differential equation (k is some constant)
y' + Ky =0, y0)=1, y'(0)=2.

(a) You are going to find a power series solution to above differential equation around
o = 0. As a first step, using power series method, find the recurrence relation. By
checking some of the terms, try to find a pattern.

Let y(z) = > ana”. Then
n=0

Y (z) = Z na,z" ' and ¢y’(z) = Z n(n — Da,z" 2.
n=1

n=2

Plug into the differential equation, one gets

y' + Ky = Z n(n —1)a,a" 2 + Z kK a,z" = 0.
n=2 n=0

If we change index n in the second summation we get
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Since this is true for every =z, coefficients of "= should be zero for every n > 2.

Therefore,
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Now at this point, check the even terms first (using y(0) = ag = 1)
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Similarly, odd terms are (using y'(0) = a; = 2)
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(b) Using part (a) find the power series solution to the above differential equation. (Hint:
combine even and odd terms).

Since

y(x) = Z a,x" = even terms + odd terms
n=0
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Now using part (b) we can write
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which is the power series solution we are looking for.
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(c) Find the function representations of the power series you found in (b).

From part (c) we have

o n k’l‘ 2n 2 > l{}l’)szrl
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2
= cos(kx) + % sin(kzx).



