UCONN - Math 3410 - Fall 2017 - Quiz 3

Name: Solution KEY
Question: Consider the differential equation (k is some constant)

$$
y^{\prime \prime}+k^{2} y=0, \quad y(0)=1, \quad y^{\prime}(0)=2 .
$$

(a) You are going to find a power series solution to above differential equation around $x_{0}=0$. As a first step, using power series method, find the recurrence relation. By checking some of the terms, try to find a pattern.
Let $y(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$. Then

$$
y^{\prime}(x)=\sum_{n=1}^{\infty} n a_{n} x^{n-1} \quad \text { and } \quad y^{\prime \prime}(x)=\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2} .
$$

Plug into the differential equation, one gets

$$
y^{\prime \prime}+k^{2} y=\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}+\sum_{n=0}^{\infty} k^{2} a_{n} x^{n}=0 .
$$

If we change index n in the second summation we get

$$
\begin{aligned}
0 & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}+\sum_{n=2}^{\infty} k^{2} a_{n-2} x^{n-2} \\
& =\sum_{n=2}^{\infty}\left[n(n-1) a_{n}+k^{2} a_{n-2}\right] x^{n-2} .
\end{aligned}
$$

Since this is true for every x, coefficients of x^{n-2} should be zero for every $n \geq 2$. Therefore,

$$
n(n-1) a_{n}+k^{2} a_{n-2}=0 \quad \text { equivalently } \quad a_{n}=\frac{-k^{2} a_{n-2}}{n(n-1)} \text { for } n \geq 2
$$

Now at this point, check the even terms first (using $y(0)=a_{0}=1$)

$$
\begin{aligned}
a_{2} & =\frac{-k^{2} a_{0}}{2}=\frac{-k^{2}}{2} \\
a_{4} & =\frac{-k^{2} a_{2}}{43}=\frac{k^{4}}{432}=\frac{k^{4}}{4!} \\
a_{6} & =\frac{-k^{2} a_{4}}{65}=\frac{-k^{6} a_{0}}{654!}=\frac{-k^{6}}{6!} \\
& \vdots \\
a_{2 n} & =\frac{(-1)^{n} k^{2 n}}{2 n!} \text { for } n \geq 1
\end{aligned}
$$

Similarly, odd terms are (using $\left.y^{\prime}(0)=a_{1}=2\right)$

$$
\begin{aligned}
a_{3} & =\frac{-k^{2} a_{1}}{32}=\frac{-2 k^{2}}{32} \\
a_{5} & =\frac{-k^{2} a_{3}}{54}=\frac{k^{4} a_{1}}{543!}=\frac{2 k^{4}}{5!} \\
a_{7} & =\frac{-k^{2} a_{5}}{76}=\frac{-k^{6} a_{1}}{765!}=\frac{-2 k^{6}}{7!} \\
& \vdots \\
a_{2 n+1} & =\frac{(-1)^{n} k^{2 n} a_{1}}{(2 n+1)!}=\frac{(-1)^{n} 2 k^{2 n+1}}{(2 n+1)!k} \quad \text { for } \quad n \geq 1
\end{aligned}
$$

(b) Using part (a) find the power series solution to the above differential equation. (Hint: combine even and odd terms).
Since

$$
\begin{aligned}
y(x) & =\sum_{n=0}^{\infty} a_{n} x^{n}=\text { even terms }+ \text { odd terms } \\
& =\sum_{n=0}^{\infty} a_{2 n} x^{2 n}+\sum_{n=0}^{\infty} a_{2 n+1} x^{2 n+1} .
\end{aligned}
$$

Now using part (b) we can write

$$
\begin{aligned}
y(x) & =\sum_{n=0}^{\infty} a_{2 n} x^{2 n}+\sum_{n=0}^{\infty} a_{2 n+1} x^{2 n+1} \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n} k^{2 n}}{2 n!} x^{2 n}+\sum_{n=0}^{\infty} \frac{(-1)^{n} 2 k^{2 n+1}}{(2 n+1)!k} x^{2 n+1} \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n}(k x)^{2 n}}{2 n!}+\frac{2}{k} \sum_{n=0}^{\infty} \frac{(-1)^{n}(k x)^{2 n+1}}{(2 n+1)!}
\end{aligned}
$$

which is the power series solution we are looking for.
(c) Find the function representations of the power series you found in (b).

From part (c) we have

$$
\begin{aligned}
y(x) & =\sum_{n=0}^{\infty} \frac{(-1)^{n}(k x)^{2 n}}{2 n!}+\frac{2}{k} \sum_{n=0}^{\infty} \frac{(-1)^{n}(k x)^{2 n+1}}{(2 n+1)!} \\
& =\cos (k x)+\frac{2}{k} \sin (k x)
\end{aligned}
$$

