UCONN - Math 3410 - Fall 2017 - Solution to Graded Problems of HW2

Question 1 (Problem 2, 4 Points) Check that if the differential equation is exact

$$
e^{x}(x+1) d x+\left(y e^{y}-x e^{x}\right) d y=0
$$

and if it is exact then solve the differential equation.
Solution: Since

$$
M=e^{x}(x+1) \quad \text { and } \quad N=y e^{y}-x e^{x}
$$

and

$$
M_{y}=0 \quad \text { whereas } \quad N_{x}=-e^{x}-x e^{x} .
$$

Therefore, the DE is not exact. To find the solution they need to check that

$$
\frac{M_{y}-N_{x}}{N}=\text { independet of } x \quad \text { or } \quad \frac{M_{y}-N_{x}}{M}=\text { independet of } y
$$

The second one holds;

$$
\frac{M_{y}-N_{x}}{M}=\frac{-e^{x}-x e^{x}}{e^{x}(x+1)}=-1
$$

Then

$$
\mu(x)=e^{-\int \frac{M_{y}-N_{x}}{M} d y}=e^{\int d y}=e^{y}
$$

is an integrating factor. Now one needs to multiply the DE with the integrating factor

$$
e^{y} e^{x}(x+1) d x+e^{y}\left(y e^{y}-x e^{x}\right) d y=0
$$

to get an exact DE. Now above DE is exact, then the general solution is

$$
0=f(x, y)=\int e^{y} e^{x}(x+1) d x=e^{y}\left(x e^{x}-e^{x}\right)+g(y)
$$

Use $f_{y}=e^{y}\left(y e^{y}-x e^{x}\right)$ to find g which gives

$$
f(x, y)=2 x e^{x-y}+y^{2}=c
$$

is general solution to the DE.
Question 2 (Problem 3, 4 points) Let $P(x)=\int p(x) d x$. Show that $e^{P(x)}$ is an integrating factor for the $D E$

$$
y^{\prime}+p(x) y=q(x)
$$

Solution: Since the integrating factor is given we can first rewrite the DE as

$$
d y+(p(x) y-q(x)) d x=0
$$

Then multiplying DE with the integrating factor one gets

$$
e^{P(x)} d y+e^{P(x)}(p(x) y-q(x)) d x=0
$$

Now one needs to show that this DE is exact. To do this, using our standard notation, we first write

$$
M(x, y)=e^{P(x)}(p(x) y-q(x)) \quad \text { and } \quad N(x, y)=e^{P(x)}
$$

Then as

$$
M_{y}=e^{P(x)} p(x) \quad \text { and } \quad N_{x}=e^{P(x)} \frac{d P(x)}{d x}=e^{P(x)} p(x)
$$

are equal to each other, one conclude that above DE is exact and $e^{P(x)}$ is an integrating factor.

