UCONN - Math 3410 - Fall 2017 - Solution to Graded Problems of HW3

Question 1 (Problem 1, 5 Points) Find the orthogonal trajectories of the family of circles centered on x-axis and passing through the origin.

Solution: This family of curves has equation

$$
(x-k)^{2}+y^{2}=k^{2} .
$$

Now we need to find a 1-parameter family of curves orthogonal to above family of curves. To find this find the slope y^{\prime} of above curves at arbitrary points (x, y);

$$
2(x-k)+2 y y^{\prime}=0 .
$$

Now we need to get rid of k by solving above and once you solve for k you get

$$
k=\frac{x^{2}+y^{2}}{2 x}
$$

Substitute this into the DE to get

$$
2\left(x-\frac{x^{2}+y^{2}}{2 x}\right)+2 y y^{\prime}=0
$$

Now solve for y^{\prime};

$$
y^{\prime}=-\frac{x^{2}-y^{2}}{2 x y}
$$

As we are looking for 1-parameter family of curves which is orthogonal to above family, the slope of the curves at arbitrary points we are looking for should"-reciprocal of y^{\prime} "

$$
y^{\prime}=\frac{2 x y}{x^{2}-y^{2}} \quad \text { or } \quad\left(x^{2}-y^{2}\right) d y-2 x y d x=0
$$

As in our notations; $M d x+N d y=0$ where $M=-2 x y$ and $N=x^{2}-y^{2}$. One needs to solve this DE . This is not a exact differential equation as $M_{y}=-2 x$ and $N_{x}=2 x$ are not equal to each other. Now From the theorem we covered in class; as $p(y)=\left(N_{x}-M_{y}\right) / M=$ $4 x /(-2 x y)=-2 / y$ is independent of x we get $e^{\int p(y) d y}$ is an integrating factor, i.e, y^{-2} is an integrating factor with $y \neq 0$. Now multiply above DE to get an exact DE;

$$
y^{-2}\left(x^{2}-y^{2}\right) d y-2 \frac{x}{y} d x=0
$$

Now this is an exact DE then, following the steps, integrate $-2 x / y$ with respect to x to find the solution

$$
f(x, y)=-\frac{x^{2}}{y}+g(y)=0
$$

is a solution to the DE. Using $f_{y}=\frac{x^{2}}{y^{2}}-1=\frac{x^{2}}{y^{2}}+g^{\prime}(y)$ we get $g(y)=-y+c$ and thereupon

$$
-\frac{x^{2}}{y}-y+c=0 \quad \text { or by multiplying everything with }-y
$$

one gets

$$
x^{2}+y^{2}=c y
$$

which is the 1-parameter family of curves orthogonal to $(x-k)^{2}+y^{2}=k^{2}$.

Question 2 (Problem 5, 5 points) Find the general solution of the Ricatti equation

$$
y^{\prime}=1+\frac{y}{x}-\frac{y^{2}}{x^{2}}
$$

with given particular solution $y_{1}(x)=x$.
Solution: We know that the change of variable is $y=y_{1}(x)+\frac{1}{u}=x+\frac{1}{u}$ will convert the equation into a nice one. Hence,

$$
y^{\prime}=1-\frac{1}{u^{2}} u^{\prime} .
$$

Substitute this into the DE to get

$$
\begin{aligned}
1-\frac{1}{u^{2}} u^{\prime} & =1+\frac{x+\frac{1}{u}}{x}-\frac{\left(x+\frac{1}{u}\right)^{2}}{x^{2}} \\
& =1+1+\frac{1}{u x}-\frac{x^{2}+\frac{2 x}{u}+\frac{1}{u^{2}}}{x^{2}} \\
& =1+1+\frac{1}{u x}-1-\frac{2}{u x}-\frac{1}{u^{2} x^{2}} .
\end{aligned}
$$

Hence if we do some algebra we first get

$$
-\frac{1}{u^{2}} u^{\prime}=-\frac{1}{u x}-\frac{1}{u^{2} x^{2}}
$$

and multiplying everything by $-u^{2}$ to get

$$
u^{\prime}-\frac{u}{x}=\frac{1}{x^{2}} .
$$

This can be written as

$$
\left(\frac{u}{x}\right)^{\prime}=\frac{1}{x^{3}} .
$$

Integrating this one gets

$$
\frac{u}{x}=\frac{-1}{2 x^{2}}+c \quad \text { equivalently } \quad u=\frac{-1}{2 x}+c x .
$$

Hence the solution we are looking for is

$$
y(x)=x+\frac{1}{u}=x+\frac{1}{\frac{-1}{2 x}+c x} .
$$

* Thanks for Junhao for the correction.

