UCONN - Math 3410 - Fall 2017 - Solution to Graded Problems of HW4

Question 1 (Question 25-3, 5 Points) Find the inverse Laplace transform of $F(s)=$ $\frac{s^{2}+1}{s^{2}(s+2)}$.

Solution: Since

$$
\frac{s^{2}+1}{s^{2}(s+2)}=\frac{A}{s}+\frac{B}{s^{2}}+\frac{C}{s+2} .
$$

After some algebra one can find $A=-1 / 4, B=1 / 2$, and $C=5 / 4$. Hence

$$
\mathcal{L}^{-1}\left(\frac{s^{2}+1}{s^{2}(s+2)}\right)=\mathcal{L}^{-1}\left(\frac{-1 / 4}{s}+\frac{1 / 2}{s^{2}}+\frac{5 / 4}{s+2}\right) .
$$

Since Laplace transform is linear we also have

$$
\mathcal{L}^{-1}\left(\frac{s^{2}+1}{s^{2}(s+2)}\right)=-1 / 4 \mathcal{L}^{-1}\left(\frac{1}{s}\right)+1 / 2 \mathcal{L}^{-1}\left(\frac{1}{s^{2}}\right)+(5 / 4) \mathcal{L}^{-1}\left(\frac{1}{s+2}\right) .
$$

Therefore,

$$
\mathcal{L}^{-1}\left(\frac{s^{2}+1}{s^{2}(s+2)}\right)=-1 / 4+(1 / 2) x+(5 / 4) e^{-2 x}
$$

Question 2 (Question 28, 5 Points) Use the Laplace transform to solve the following initial value problem

$$
y^{\prime \prime}+y=\cos (2 x) \quad \text { with } y(0)=2, y^{\prime}(0)=1 \text {. }
$$

Solution: Using Laplace transform we get

$$
\mathcal{L}\left\{y^{\prime \prime}+y\right\}=\mathcal{L}\{\cos (2 x)\} .
$$

Using the properties we have

$$
s^{2} \mathcal{L}\{y(x)\}-s y(0)-y^{\prime}(0)+\mathcal{L}\{y(x)\}=\frac{s}{s^{2}+4}
$$

Now combine $\mathcal{L}\{y(x)\}$ in one side and move everything to the other side to get

$$
\left(s^{2}+1\right) \mathcal{L}\{y(x)\}=\frac{s}{s^{2}+4}+2 s+1
$$

Then

$$
\mathcal{L}\{y(x)\}=\frac{1}{s^{2}+1} \frac{s}{s^{2}+4}+\frac{2 s+1}{s^{2}+1} .
$$

Equivalently,

$$
\mathcal{L}\{y(x)\}=\frac{1}{s^{2}+1} \frac{s}{s^{2}+4}+2 \frac{s}{s^{2}+1}+\frac{1}{s^{2}+1} .
$$

Now we have to write

$$
\frac{1}{s^{2}+1} \frac{s}{s^{2}+4}=\frac{A s+B}{s^{2}+1}+\frac{C s+D}{s^{2}+4}
$$

After some algebra one gets $A=1 / 3, C=-1 / 3, B=D=0$. Hence

$$
\mathcal{L}\{y(x)\}=(1 / 3) \frac{s}{s^{2}+1}+(-1 / 3) \frac{s}{s^{2}+4}+2 \frac{s}{s^{2}+1}+\frac{1}{s^{2}+1} .
$$

Now we can find inverse Laplace transform of both sides to get

$$
\begin{aligned}
y(x) & =\mathcal{L}^{-1}\left\{(1 / 3) \frac{s}{s^{2}+1}+(-1 / 3) \frac{s}{s^{2}+4}+2 \frac{s}{s^{2}+1}+\frac{1}{s^{2}+1}\right\} \\
& =(1 / 3) \mathcal{L}^{-1}\left\{\frac{s}{s^{2}+1}\right\}+(-1 / 3) \mathcal{L}^{-1}\left\{\frac{s}{s^{2}+4}\right\}+2 \mathcal{L}^{-1}\left\{\frac{s}{s^{2}+1}\right\}+\mathcal{L}^{-1}\left\{\frac{1}{s^{2}+1}\right\} \\
& =\frac{7}{3} \cos (x)+\sin (x)-\frac{1}{3} \cos (2 x)
\end{aligned}
$$

