UCONN - Math 3410 - Fall 2017 - Solution to Graded Problems of HW5

Question 1 (Question 1, 5 Points) Find a power series solution $y(x)$ around the point $x_{0}=0$ to the differential equation $y^{\prime \prime}+y=0$. Verify that the power series solution you found has the form $y(x)=a_{0} \cos (x)+a_{1} \sin (x)$.

Solution: Let $y(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$. Since $p(x)=1=q(x)$ are both analytic at $x_{0}=0$ then the solution will be analytic at $x_{0}=0$ with radius of convergence ∞. Find $y^{\prime \prime}$ to get

$$
\begin{aligned}
0 & =y^{\prime \prime}+y=\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}+\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =\sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n}+\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =\sum_{n=0}^{\infty}\left[(n+2)(n+1) a_{n+2}+a_{n}\right] x^{n} .
\end{aligned}
$$

Therefore, the corresponding recurrence relation is $(n+2)(n+1) a_{n+2}+a_{n}=0$ for every $n \geq 0$. Now, consider the even terms first;

$$
\begin{aligned}
a_{2} & =\frac{-a_{0}}{21} \\
a_{4} & =\frac{-a_{2}}{43}=\frac{a_{0}}{432} \\
a_{6} & =\frac{-a_{4}}{65}=\frac{-a_{0}}{65432} \\
& \ldots \\
a_{2 n} & =(-1)^{n} \frac{a_{0}}{(2 n)!} \text { for } n=1,2, \ldots
\end{aligned}
$$

Similarly, odd terms are

$$
\begin{aligned}
a_{3} & =\frac{-a_{1}}{32}, \\
a_{5} & =\frac{-a_{1}}{54}=\frac{a_{1}}{5432} \\
a_{7} & =\frac{-a_{5}}{76}=\frac{-a_{1}}{765432} \\
& \ldots \\
a_{2 n+1} & =(-1)^{n} \frac{a_{1}}{(2 n+1)!} \text { for } n=1,2, \ldots
\end{aligned}
$$

Now the solution $y(x)$ can be written as even terms plus the odd terms

$$
y(x)=\sum_{n=0}^{\infty} a_{n} x^{n}=\sum_{k=0}^{\infty} a_{2 k} x^{2 k}+\sum_{k=0}^{\infty} a_{2 k+1} x^{2 k+1}
$$

Hence

$$
\begin{aligned}
y(x) & =\sum_{k=0}^{\infty} a_{2 k} x^{2 k}+\sum_{k=0}^{\infty} a_{2 k+1} x^{2 k+1} \\
& =\sum_{k=0}^{\infty}(-1)^{k} \frac{a_{0}}{(2 k)!} x^{2 k}+\sum_{k=0}^{\infty}(-1)^{k} \frac{a_{1}}{(2 k+1)!} x^{2 k+1} .
\end{aligned}
$$

One can check that these power series have radius of convergence infinity, (i.e., converges for every x). Remember that $\sin (x)$ and $\cos (x)$ have power series representation

$$
\sin (x)=\sum_{k=0}^{\infty}(-1)^{k} \frac{1}{(2 k+1)!} x^{2 k+1} \quad \text { and } \quad \cos (x)=\sum_{k=0}^{\infty}(-1)^{k} \frac{1}{(2 k)!} x^{2 k} .
$$

Now using these we get

$$
y(x)=a_{0} \sum_{k=0}^{\infty}(-1)^{k} \frac{1}{(2 k)!} x^{2 k}+a_{1} \sum_{k=0}^{\infty}(-1)^{k} \frac{1}{(2 k+1)!} x^{2 k+1}=a_{0} \cos (x)+a_{1} \sin (x) .
$$

Question 2 (Question 3, 5 Points) Consider the Rayleigh's equation

$$
m y^{\prime \prime}+k y=a y^{\prime}-b\left(y^{\prime}\right)^{3}
$$

which models the oscillation of a clarinet reed. Using the second method find the first four terms of the power series solution $y(x)$ around $x_{0}=0$ with $m=k=a=1$ and $b=1 / 3$ with the initial conditions $y(0)=0$ and $y^{\prime}(0)=1$. Write the solution $y(x)$.

Solution: It is given that $m=k=a=1$ and $b=1 / 3$, plugin these numbers into the differential equation to get

$$
y^{\prime \prime}+y=y^{\prime}-\frac{1}{3}\left(y^{\prime}\right)^{3} \quad \text { with } \quad y(0)=0 \quad \text { and } \quad y^{\prime}(0)=1 .
$$

Since $x_{0}=0$ is ordinary point, $y(x)$ has Taylor series expansion around $x_{0}=0$;

$$
y(x)=\sum_{n=0}^{\infty} a_{n} x^{n}=\sum_{n=0}^{\infty} \frac{y^{(n)}(0)}{n!} x^{n}, \quad \text { i.e., } \quad a_{n}=\frac{y^{(n)}(0)}{n!} .
$$

Therefore, using the second method, we find $y(0), y^{\prime}(0), y^{\prime \prime}(0), y^{\prime \prime \prime}(0)$. Luckily, $y(0)=0$ and $y^{\prime}(0)=1$ are given. So we need to find $y^{\prime \prime}(0)$. Use the differential equation, plugin $x=0$ to get

$$
y^{\prime \prime}(0)+y(0)=y^{\prime}(0)-\frac{1}{3}\left(y^{\prime}(0)\right)^{3} \quad \text { equivalently } \quad y^{\prime \prime}(0)=1-\frac{1}{3}=\frac{2}{3} .
$$

Now we need to find $y^{\prime \prime \prime}(0)$. To do this end, differentiate the differential equation with respect to x and evaluate at $x=0$ to get

$$
y^{\prime \prime \prime}(0)+y^{\prime}(0)=y^{\prime \prime}(0)-\left(y^{\prime}(0)\right)^{2} y^{\prime \prime}(0) \quad \text { equaivalently } \quad y^{\prime \prime \prime}(0)=-1 .
$$

Hence

$$
\begin{array}{lll}
a_{0}=0 & a_{1}=1 & a_{2}=\frac{2}{3} \frac{1}{2!} \\
y(x)=0+x-\frac{1}{3} x^{2}+\frac{1}{6} x^{3}+\ldots
\end{array}
$$

