
UCONN - Math 3410 - Fall 2017 - HW6
Solutions to graded problems

1. [Problem 1] For the following differential equation 4xy′′ + 2y′ + y = 0.

• Find and classify all points as ordinary, regular singular, or irregular singular points.

• For each of the regular point(s), find the corresponding indicial equation and find roots
r1 and r2 of the indicial equation (Yes, there are two roots and the difference is not
integer).

• Find the corresponding recurrence relations for each of the roots r1, r2.

• Find the corresponding power series solutions y1 and y2.

Solution: Rewrite the differential equation as

y′′ +
2

4x
y′ +

1

4x
y = 0.

Then p(x) = 2/4x and q(x) = 1/4x both have singularities at x = 0. Therefore, all points
except x = 0 is ordinary points. For x = 0 we need to check the following limits;

lim
x→0

xp(x) = lim
x→0

2x

4x
= 1/2 and lim

x→0
x2q(x) = lim

x→0
x2 1

4x
= 0.

Since both limits exist and are finite, therefore x = 0 is regular singular points.

Since x = 0 is the only regular singular point, we find the corresponding indicial equation.
Let

y(x) = xr

∞∑
n=0

anx
n =

∞∑
n=0

anx
n+r

be a solution for some r and an. Find y′ and y′′ in terms of power series.

y′ =
∞∑
n=0

(n+ r)anx
n+r−1 and y′′ =

∞∑
n=0

(n+ r)(n+ r − 1)anx
n+r−2.

Plug in to the differential equation to get

4x
∞∑
n=0

(n+ r)(n+ r − 1)anx
n+r−2 + 2

∞∑
n=0

(n+ r)anx
n+r−1 +

∞∑
n=0

anx
n+r = 0.

That is,

∞∑
n=0

4(n+ r)(n+ r − 1)anx
n+r−1 +

∞∑
n=0

2(n+ r)anx
n+r−1 +

∞∑
n=0

anx
n+r = 0.

In order to write the sums under one sum, we need to change the power of x in the last
summation from n+ r to n+ r − 1. Therefore,

∞∑
n=0

4(n+ r)(n+ r − 1)anx
n+r−1 +

∞∑
n=0

2(n+ r)anx
n+r−1 +

∞∑
n=1

an−1x
n+r−1 = 0.
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Now if we split n = 0 terms in the first two sums and leave the rest under summation we get

4r(r−1)a0xr−1+
∞∑
n=1

4(n+r)(n+r−1)anxn+r−1+2ra0x
r−1+

∞∑
n=1

2(n+r)anx
n+r−1+

∞∑
n=1

an−1x
n+r−1 = 0.

Now we have (combining xr−1 and remaining terms under big sum)

(4r(r − 1) + 2r)a0x
r−1 +

∞∑
n=1

[4(n+ r)(n+ r − 1)an + 2(n+ r)an + an−1]x
n+r−1 = 0

Since this is true every x, we get

(4r(r − 1) + 2r)a0 = 0 and 4(n+ r)(n+ r − 1)an + 2(n+ r)an + an−1 = 0 for every n ≥ 1.
(1)

The first identity gives us (assuming a0 6= 0) the indicial equation 4r(r− 1)+2r = 0. There-
fore, the roots are r1 = 1/2 and r2 = 0. We have two distinct roots and r1 − r2 is not integer.

Then the method of Frobenious implies that we have two linearly independent solution y1
corresponding to r1 and y2 corresponding to r2

y1(x) =
∞∑
n=0

anx
n+ 1

2 and y2(x) =
∞∑
n=0

bnx
n+0 =

∞∑
n=0

bnx
n.

Plug r1 = 1/2 and solve for an in (1) to get

an =
−an−1

(2n+ 1)2n

which gives

a1 =
−a0
3 2

=
−a0
3!

a2 =
−a1
5 4

=
a0

5 4 3!
=

a0
5!

a3 =
−a2
7 6

=
−a0
7 6 5!

=
−a0
7!

. . .

an = (−1)n a0
(2n+ 1)!

n = 1, 2, . . . ,

Therefore we get the first solution corresponding to r1 = 1/2.

y1(x) =
∞∑
n=0

anx
n+ 1

2 = a0

∞∑
n=0

(−1)n 1

(2n+ 1)!
xn+ 1

2

To find the solution corresponding to r2 = 0, plug in r2 = 0 in (1) (this time i am writing the
recurrence relation in terms of bn) to get

bn =
−bn−1

2n(2n− 1)
.
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Now (assuming b0 = a0 6= 0)

b1 =
−b0
2 1

=
−a0
2!

b2 =
−b1
4 3

=
b0

4 3 2!
=

a0
4!

b3 =
−b2
6 5

=
−b0
6 5 4!

=
−a0
6!

. . .

bn = (−1)n b0
(2n)!

n = 1, 2, . . . ,

We get the second linearly independent solution corresponding to r2 = 0

y2(x) =
∞∑
n=0

bnx
n = b0

∞∑
n=0

(−1)n 1

(2n)!
xn.

2. [Problem 2] For the following differential equation xy′′ + y′ − y = 0.

• Find and classify all points as ordinary, regular singular, or irregular singular points.

• For each of the regular point(s), find the corresponding indicial equation and find the
double root r1 of the indicial equation (Yes there is one double root).

• Find the corresponding recurrence relation for the root r1.

• Find the corresponding power series solution y1.

• Use the method of Frobenious and write down the general form of the second solution
y2.

• Find at least first two terms b0 and b1 of the second solution y2.

Solution: Rewrite the differential equation as

y′′ +
y′

x
− y

x
= 0

Therefore, p(x) = 1/x and q(x) = −1/x are both singular at x = 0. We conclude that all
points except x = 0 is ordinary points. For x = 0 we need to check the following limits

lim
x→0

xp(x) = lim
x→0

x

x
= 1 and lim

x→0
x2q(x) = lim

x→0
x2 1

x
= 0.

Since both limits exist and are finite, therefore x = 0 is regular singular points.

Since x = 0 is the only regular singular point, we find the corresponding indicial equation.
Let

y(x) = xr

∞∑
n=0

anx
n =

∞∑
n=0

anx
n+r

be a solution for some r and an. Find y′ and y′′ in terms of power series.

y′ =
∞∑
n=0

(n+ r)anx
n+r−1 and y′′ =

∞∑
n=0

(n+ r)(n+ r − 1)anx
n+r−2.
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Plug in to the differential equation to get

x
∞∑
n=0

(n+ r)(n+ r − 1)anx
n+r−2 +

∞∑
n=0

(n+ r)anx
n+r−1 −

∞∑
n=0

anx
n+r = 0.

After some algebra one gets

∞∑
n=0

(n+ r)(n+ r − 1)anx
n+r−1 +

∞∑
n=0

(n+ r)anx
n+r−1 −

∞∑
n=0

anx
n+r = 0.

In order to write the three summation under one sum we need to change the power of x from
n + r to n + r − 1 so that the powers of x in each summation match (one can change the
power of x from n+ r − 1 to n+ r in the first two summation, idea is the same). Therefore,

∞∑
n=0

(n+ r)(n+ r − 1)anx
n+r−1 +

∞∑
n=0

(n+ r)anx
n+r−1 −

∞∑
n=1

an−1x
n+r−1 = 0.

We can rewrite the power series as (just split the n = 0 terms and leave the remaining)

r(r−1)a0xr−1+
∞∑
n=1

(n+r)(n+r−1)anxn+r−1+ra0x
r−1+

∞∑
n=1

(n+r)anx
n+r−1−

∞∑
n=1

an−1x
n+r−1 = 0.

This gives us

(r(r − 1)a0 + ra0)x
r−1 +

∞∑
n=1

[(n+ r)(n+ r − 1)an + (n+ r)an − an−1]x
n+r−1 = 0

Since this is true for every x we get (assuming again a0 6= 0)

r(r − 1) + r = 0 and (n+ r)(n+ r − 1)an + (n+ r)an − an−1 = 0 for n ≥ 1.
(2)

Therefore the indicial equation is r2 = 0. Hence we have a double root r1 = 0.

To find the corresponding recurrence relation corresponding to r1 = 0, simply plug in r = 0
in (2) to get

an =
an−1
n2

for n ≥ 1.

As we assume that a0 6= 0 we get

a1 = a0,

a2 =
a1
22

=
a0
22

=
a0

(2!)2

a3 =
a2
32

=
a0
3222

=
a0

(3!)2

. . .

an =
a0

(n!)2
.
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Therefore, we obtain the first solution corresponding to r1 = 0

y1(x) =
∞∑
n=0

anx
n+r = a0

∞∑
n=0

1

(n!)2
xn.

Since the indicial equation has double root, the method of Frobenious tells us that the second
linearly independent solution is of the form

y2(x) =
∞∑
n=1

bnx
n+r + log(x)y1(x) =

∞∑
n=0

bnx
n + log(x)y1(x)

Without plug in y1(x), we find y′2(x) and y′′2(x). To this end, let us write Y (x) =
∞∑
n=1

bnx
n

and

y2(x) =
∞∑
n=1

bnx
n+r + log(x)y1(x) = Y (x) + log(x)y1(x).

Now

y′2(x) = Y ′(x)+
y1(x)

x
+log(x)y′1(x) and y′′2(x) = Y ′′(x)+

y′1(x)

x
−y1(x)

x2
+
y′1(x)

x
+log(x)y′′1(x).

Plug in this into the differential equation to get

xy′′2 + y′2− y = xY ′′+ y′1−
y1
x
+ y′1 + x log(x)y′′1 + Y ′+

y1
x
+ log(x)y′1− Y − log(x)y1 = 0

Observe that we have the following terms x log(x)y′′1 + log(x)y′1 − log(x)y1 = log(x)[xy′′1 +
y′1 − y1] = 0 as y1 is a solution to the above differential equation. Therefore we have

xy′′2 + y′2 − y2 = xY ′′ + y′1 −
y1
x

+ y′1 + Y ′ +
y1
x
− Y = xY ′′ + Y ′ − Y + 2y′1 = 0 (3)

Note that Y (x) =
∞∑
n=1

bnx
n, therefore one has

Y ′(x) =
∞∑
n=1

nbnx
n−1 and Y ′′(x) =

∞∑
n=2

n(n− 1)bnx
n−2

Plug in these into (3) to get (and move 2y′1 to right hand side

2y′1 = xY ′′ + Y ′ − Y =
∞∑
n=2

n(n− 1)bnx
n−1 +

∞∑
n=1

nbnx
n−1 −

∞∑
n=1

bnx
n

=
∞∑
n=2

n(n− 1)bnx
n−1 +

∞∑
n=1

nbnx
n−1 −

∞∑
n=2

bn−1x
n−1

=
∞∑
n=2

[n(n− 1)bn + nbn − bn−1]x
n−1 + b1.

Note that since y1(x) = a0
∞∑
n=0

1
(n!)2

xn = a0x− a0
x2

4
+ . . . we get

−2y′1(x) = −2a0 + a0x+ . . . =
∞∑
n=2

[n(n− 1)bn + nbn − bn−1]x
n−1 + b1

from which we get b1 = −2a0. To find b2, we set n = 2 in the summation to get (4b2−b1)x =
a0x and therefore b2 = −3a0/4.
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3. [Problem 3] For the following differential equation xy′′ + y = 0.

• Find and classify all points as ordinary, regular singular, or irregular singular points.

• For each of the regular point(s), find the corresponding indicial equation and find the
roots r1 and r2 of the indicial equation (Yes there are two roots with r1 − r2 is integer).

• Find the corresponding recurrence relation for the root r1.

• Find the corresponding power series solution y1.

• Use the method of Frobenious and write down the general form of the second solution
y2.

• Find at least first two terms b0 and b1 of the second solution y2.

Solution: Rewrite the differential equation as

y′′ +
1

x
y = 0.

Then p(x) = 0 and q(x) = 1/x both have singularities at x = 0. Therefore, all points except
x = 0 is ordinary points. For x = 0 we need to check the following limits;

lim
x→0

xp(x) = lim
x→0

x0 = 0 and lim
x→0

x2q(x) = lim
x→0

x2 1

x
= 0.

Since both limits exist and are finite, therefore x = 0 is regular singular points.

Since x = 0 is the only regular singular point, we find the corresponding indicial equation.
Let

y(x) = xr

∞∑
n=0

anx
n =

∞∑
n=0

anx
n+r

be a solution for some r and an. Find y′ and y′′ in terms of power series.

y′ =
∞∑
n=0

(n+ r)anx
n+r−1 and y′′ =

∞∑
n=0

(n+ r)(n+ r − 1)anx
n+r−2.

Then plug into the differential equation to get

x
∞∑
n=0

(n+ r)(n+ r − 1)anx
n+r−2 +

∞∑
n=0

anx
n+r = 0.

Now we have
∞∑
n=0

(n+ r)(n+ r − 1)anx
n+r−1 +

∞∑
n=0

anx
n+r = 0

and changing the power of x in the second summation to get
∞∑
n=0

(n+ r)(n+ r − 1)anx
n+r−1 +

∞∑
n=1

an−1x
n+r−1 = 0

and this is equal to

r(r − 1)a0x
r−1 +

∞∑
n=1

[(n+ r)(n+ r − 1)an + an−1]x
n+r−1 = 0 (4)
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From this we get the indicial equation r(r − 1) = 0, which gives us r1 = 1 and r2 = 0 (here
it does not matter if you choose r1 = 0 and r2 = 1 and proceed accordingly).

Plug in r = 1 into the recurrence relation in (4) to get

(n+ 1)(n+ 1− 1)an + an−1 = 0 and for n ≥ 1.

From this we get

an =
−an−1
(n+ 1)n

Now

a1 =
−a0
2 1

a2 =
−a1
3 2

=
a0

3 2 2 1
=

a0
3 (2!)2

a3 =
−a2
4 3

=
−a0
4 (3!)2

. . .

an =
(−1)na0

(n+ 1)(n!)2
.

Since r1−r2 is an integer, the method of Frobenious tells us that the first solution correspond-
ing to r1 = 1 (it does not matter if you chose r1 = 0 and proceed) is

y1(x) = x
∞∑
n=0

anx
n = a0x

∞∑
n=0

(−1)n

(n+ 1)(n!)2
xn = a0x− a0

x2

2
+ a0

x3

12
+ . . .

The method of Frobenious tells us that the second solution is of the form

y2(x) = x0

∞∑
n=0

bnx
x + cy1(x) log(x)

and following as in the second problem one gets b0 = −ca0 and 2b2 + b1 = (3/2)a0c.
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