UCONN - Math 3410 - Fall 2017 - HW6 Solutions to graded problems

1. [Problem 1] For the following differential equation $4 x y^{\prime \prime}+2 y^{\prime}+y=0$.

- Find and classify all points as ordinary, regular singular, or irregular singular points.
- For each of the regular point(s), find the corresponding indicial equation and find roots r_{1} and r_{2} of the indicial equation (Yes, there are two roots and the difference is not integer).
- Find the corresponding recurrence relations for each of the roots r_{1}, r_{2}.
- Find the corresponding power series solutions y_{1} and y_{2}.

Solution: Rewrite the differential equation as

$$
y^{\prime \prime}+\frac{2}{4 x} y^{\prime}+\frac{1}{4 x} y=0 .
$$

Then $p(x)=2 / 4 x$ and $q(x)=1 / 4 x$ both have singularities at $x=0$. Therefore, all points except $x=0$ is ordinary points. For $x=0$ we need to check the following limits;

$$
\lim _{x \rightarrow 0} x p(x)=\lim _{x \rightarrow 0} \frac{2 x}{4 x}=1 / 2 \quad \text { and } \quad \lim _{x \rightarrow 0} x^{2} q(x)=\lim _{x \rightarrow 0} x^{2} \frac{1}{4 x}=0 .
$$

Since both limits exist and are finite, therefore $x=0$ is regular singular points.

Since $x=0$ is the only regular singular point, we find the corresponding indicial equation. Let

$$
y(x)=x^{r} \sum_{n=0}^{\infty} a_{n} x^{n}=\sum_{n=0}^{\infty} a_{n} x^{n+r}
$$

be a solution for some r and a_{n}. Find y^{\prime} and $y^{\prime \prime}$ in terms of power series.

$$
y^{\prime}=\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \quad \text { and } \quad y^{\prime \prime}=\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2} .
$$

Plug in to the differential equation to get

$$
4 x \sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}+2 \sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}+\sum_{n=0}^{\infty} a_{n} x^{n+r}=0 .
$$

That is,

$$
\sum_{n=0}^{\infty} 4(n+r)(n+r-1) a_{n} x^{n+r-1}+\sum_{n=0}^{\infty} 2(n+r) a_{n} x^{n+r-1}+\sum_{n=0}^{\infty} a_{n} x^{n+r}=0
$$

In order to write the sums under one sum, we need to change the power of x in the last summation from $n+r$ to $n+r-1$. Therefore,

$$
\sum_{n=0}^{\infty} 4(n+r)(n+r-1) a_{n} x^{n+r-1}+\sum_{n=0}^{\infty} 2(n+r) a_{n} x^{n+r-1}+\sum_{n=1}^{\infty} a_{n-1} x^{n+r-1}=0
$$

Now if we split $n=0$ terms in the first two sums and leave the rest under summation we get

$$
4 r(r-1) a_{0} x^{r-1}+\sum_{n=1}^{\infty} 4(n+r)(n+r-1) a_{n} x^{n+r-1}+2 r a_{0} x^{r-1}+\sum_{n=1}^{\infty} 2(n+r) a_{n} x^{n+r-1}+\sum_{n=1}^{\infty} a_{n-1} x^{n+r-1}=0 .
$$

Now we have (combining x^{r-1} and remaining terms under big sum)

$$
(4 r(r-1)+2 r) a_{0} x^{r-1}+\sum_{n=1}^{\infty}\left[4(n+r)(n+r-1) a_{n}+2(n+r) a_{n}+a_{n-1}\right] x^{n+r-1}=0
$$

Since this is true every x, we get

$$
\begin{equation*}
(4 r(r-1)+2 r) a_{0}=0 \quad \text { and } \quad 4(n+r)(n+r-1) a_{n}+2(n+r) a_{n}+a_{n-1}=0 \quad \text { for every } \quad n \geq 1 . \tag{1}
\end{equation*}
$$

The first identity gives us (assuming $a_{0} \neq 0$) the indicial equation $4 r(r-1)+2 r=0$. Therefore, the roots are $r_{1}=1 / 2$ and $r_{2}=0$. We have two distinct roots and $r_{1}-r_{2}$ is not integer.

Then the method of Frobenious implies that we have two linearly independent solution y_{1} corresponding to r_{1} and y_{2} corresponding to r_{2}

$$
y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+\frac{1}{2}} \quad \text { and } \quad y_{2}(x)=\sum_{n=0}^{\infty} b_{n} x^{n+0}=\sum_{n=0}^{\infty} b_{n} x^{n} .
$$

Plug $r_{1}=1 / 2$ and solve for a_{n} in (1) to get

$$
a_{n}=\frac{-a_{n-1}}{(2 n+1) 2 n}
$$

which gives

$$
\begin{aligned}
a_{1} & =\frac{-a_{0}}{32}=\frac{-a_{0}}{3!} \\
a_{2} & =\frac{-a_{1}}{54}=\frac{a_{0}}{543!}=\frac{a_{0}}{5!} \\
a_{3} & =\frac{-a_{2}}{76}=\frac{-a_{0}}{765!}=\frac{-a_{0}}{7!} \\
& \ldots \\
a_{n} & =(-1)^{n} \frac{a_{0}}{(2 n+1)!} \quad n=1,2, \ldots,
\end{aligned}
$$

Therefore we get the first solution corresponding to $r_{1}=1 / 2$.

$$
y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+\frac{1}{2}}=a_{0} \sum_{n=0}^{\infty}(-1)^{n} \frac{1}{(2 n+1)!} x^{n+\frac{1}{2}}
$$

To find the solution corresponding to $r_{2}=0$, plug in $r_{2}=0$ in (1) (this time i am writing the recurrence relation in terms of b_{n}) to get

$$
b_{n}=\frac{-b_{n-1}}{2 n(2 n-1)} .
$$

Now (assuming $b_{0}=a_{0} \neq 0$)

$$
\begin{aligned}
b_{1} & =\frac{-b_{0}}{21}=\frac{-a_{0}}{2!} \\
b_{2} & =\frac{-b_{1}}{43}=\frac{b_{0}}{432!}=\frac{a_{0}}{4!} \\
b_{3} & =\frac{-b_{2}}{65}=\frac{-b_{0}}{654!}=\frac{-a_{0}}{6!} \\
& \ldots \\
b_{n} & =(-1)^{n} \frac{b_{0}}{(2 n)!} \quad n=1,2, \ldots,
\end{aligned}
$$

We get the second linearly independent solution corresponding to $r_{2}=0$

$$
y_{2}(x)=\sum_{n=0}^{\infty} b_{n} x^{n}=b_{0} \sum_{n=0}^{\infty}(-1)^{n} \frac{1}{(2 n)!} x^{n} .
$$

2. [Problem 2] For the following differential equation $x y^{\prime \prime}+y^{\prime}-y=0$.

- Find and classify all points as ordinary, regular singular, or irregular singular points.
- For each of the regular point(s), find the corresponding indicial equation and find the double root r_{1} of the indicial equation (Yes there is one double root).
- Find the corresponding recurrence relation for the root r_{1}.
- Find the corresponding power series solution y_{1}.
- Use the method of Frobenious and write down the general form of the second solution y_{2}.
- Find at least first two terms b_{0} and b_{1} of the second solution y_{2}.

Solution: Rewrite the differential equation as

$$
y^{\prime \prime}+\frac{y^{\prime}}{x}-\frac{y}{x}=0
$$

Therefore, $p(x)=1 / x$ and $q(x)=-1 / x$ are both singular at $x=0$. We conclude that all points except $x=0$ is ordinary points. For $x=0$ we need to check the following limits

$$
\lim _{x \rightarrow 0} x p(x)=\lim _{x \rightarrow 0} \frac{x}{x}=1 \quad \text { and } \quad \lim _{x \rightarrow 0} x^{2} q(x)=\lim _{x \rightarrow 0} x^{2} \frac{1}{x}=0 .
$$

Since both limits exist and are finite, therefore $x=0$ is regular singular points.

Since $x=0$ is the only regular singular point, we find the corresponding indicial equation. Let

$$
y(x)=x^{r} \sum_{n=0}^{\infty} a_{n} x^{n}=\sum_{n=0}^{\infty} a_{n} x^{n+r}
$$

be a solution for some r and a_{n}. Find y^{\prime} and $y^{\prime \prime}$ in terms of power series.

$$
y^{\prime}=\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \quad \text { and } \quad y^{\prime \prime}=\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2} .
$$

Plug in to the differential equation to get

$$
x \sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}+\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}-\sum_{n=0}^{\infty} a_{n} x^{n+r}=0 .
$$

After some algebra one gets

$$
\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-1}+\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}-\sum_{n=0}^{\infty} a_{n} x^{n+r}=0 .
$$

In order to write the three summation under one sum we need to change the power of x from $n+r$ to $n+r-1$ so that the powers of x in each summation match (one can change the power of x from $n+r-1$ to $n+r$ in the first two summation, idea is the same). Therefore,

$$
\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-1}+\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}-\sum_{n=1}^{\infty} a_{n-1} x^{n+r-1}=0
$$

We can rewrite the power series as (just split the $n=0$ terms and leave the remaining)

$$
r(r-1) a_{0} x^{r-1}+\sum_{n=1}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-1}+r a_{0} x^{r-1}+\sum_{n=1}^{\infty}(n+r) a_{n} x^{n+r-1}-\sum_{n=1}^{\infty} a_{n-1} x^{n+r-1}=0 .
$$

This gives us

$$
\left(r(r-1) a_{0}+r a_{0}\right) x^{r-1}+\sum_{n=1}^{\infty}\left[(n+r)(n+r-1) a_{n}+(n+r) a_{n}-a_{n-1}\right] x^{n+r-1}=0
$$

Since this is true for every x we get (assuming again $a_{0} \neq 0$)

$$
\begin{equation*}
r(r-1)+r=0 \quad \text { and } \quad(n+r)(n+r-1) a_{n}+(n+r) a_{n}-a_{n-1}=0 \quad \text { for } \quad n \geq 1 \tag{2}
\end{equation*}
$$

Therefore the indicial equation is $r^{2}=0$. Hence we have a double root $r_{1}=0$.

To find the corresponding recurrence relation corresponding to $r_{1}=0$, simply plug in $r=0$ in (2) to get

$$
a_{n}=\frac{a_{n-1}}{n^{2}} \quad \text { for } \quad n \geq 1 .
$$

As we assume that $a_{0} \neq 0$ we get

$$
\begin{aligned}
a_{1} & =a_{0}, \\
a_{2} & =\frac{a_{1}}{2^{2}}=\frac{a_{0}}{2^{2}}=\frac{a_{0}}{(2!)^{2}} \\
a_{3} & =\frac{a_{2}}{3^{2}}=\frac{a_{0}}{3^{2} 2^{2}}=\frac{a_{0}}{(3!)^{2}} \\
& \ldots \\
a_{n} & =\frac{a_{0}}{(n!)^{2}} .
\end{aligned}
$$

Therefore, we obtain the first solution corresponding to $r_{1}=0$

$$
y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+r}=a_{0} \sum_{n=0}^{\infty} \frac{1}{(n!)^{2}} x^{n} .
$$

Since the indicial equation has double root, the method of Frobenious tells us that the second linearly independent solution is of the form

$$
y_{2}(x)=\sum_{n=1}^{\infty} b_{n} x^{n+r}+\log (x) y_{1}(x)=\sum_{n=0}^{\infty} b_{n} x^{n}+\log (x) y_{1}(x)
$$

Without plug in $y_{1}(x)$, we find $y_{2}^{\prime}(x)$ and $y_{2}^{\prime \prime}(x)$. To this end, let us write $Y(x)=\sum_{n=1}^{\infty} b_{n} x^{n}$ and

$$
y_{2}(x)=\sum_{n=1}^{\infty} b_{n} x^{n+r}+\log (x) y_{1}(x)=Y(x)+\log (x) y_{1}(x) .
$$

Now
$y_{2}^{\prime}(x)=Y^{\prime}(x)+\frac{y_{1}(x)}{x}+\log (x) y_{1}^{\prime}(x) \quad$ and $\quad y_{2}^{\prime \prime}(x)=Y^{\prime \prime}(x)+\frac{y_{1}^{\prime}(x)}{x}-\frac{y_{1}(x)}{x^{2}}+\frac{y_{1}^{\prime}(x)}{x}+\log (x) y_{1}^{\prime \prime}(x)$.
Plug in this into the differential equation to get
$x y_{2}^{\prime \prime}+y_{2}^{\prime}-y=x Y^{\prime \prime}+y_{1}^{\prime}-\frac{y_{1}}{x}+y_{1}^{\prime}+x \log (x) y_{1}^{\prime \prime}+Y^{\prime}+\frac{y_{1}}{x}+\log (x) y_{1}^{\prime}-Y-\log (x) y_{1}=0$
Observe that we have the following terms $x \log (x) y_{1}^{\prime \prime}+\log (x) y_{1}^{\prime}-\log (x) y_{1}=\log (x)\left[x y_{1}^{\prime \prime}+\right.$ $\left.y_{1}^{\prime}-y_{1}\right]=0$ as y_{1} is a solution to the above differential equation. Therefore we have

$$
\begin{equation*}
x y_{2}^{\prime \prime}+y_{2}^{\prime}-y_{2}=x Y^{\prime \prime}+y_{1}^{\prime}-\frac{y_{1}}{x}+y_{1}^{\prime}+Y^{\prime}+\frac{y_{1}}{x}-Y=x Y^{\prime \prime}+Y^{\prime}-Y+2 y_{1}^{\prime}=0 \tag{3}
\end{equation*}
$$

Note that $Y(x)=\sum_{n=1}^{\infty} b_{n} x^{n}$, therefore one has

$$
Y^{\prime}(x)=\sum_{n=1}^{\infty} n b_{n} x^{n-1} \quad \text { and } \quad Y^{\prime \prime}(x)=\sum_{n=2}^{\infty} n(n-1) b_{n} x^{n-2}
$$

Plug in these into (3) to get (and move $2 y_{1}^{\prime}$ to right hand side

$$
\begin{aligned}
2 y_{1}^{\prime}=x Y^{\prime \prime}+Y^{\prime}-Y & =\sum_{n=2}^{\infty} n(n-1) b_{n} x^{n-1}+\sum_{n=1}^{\infty} n b_{n} x^{n-1}-\sum_{n=1}^{\infty} b_{n} x^{n} \\
& =\sum_{n=2}^{\infty} n(n-1) b_{n} x^{n-1}+\sum_{n=1}^{\infty} n b_{n} x^{n-1}-\sum_{n=2}^{\infty} b_{n-1} x^{n-1} \\
& =\sum_{n=2}^{\infty}\left[n(n-1) b_{n}+n b_{n}-b_{n-1}\right] x^{n-1}+b_{1} .
\end{aligned}
$$

Note that since $y_{1}(x)=a_{0} \sum_{n=0}^{\infty} \frac{1}{(n!)^{2}} x^{n}=a_{0} x-a_{0} \frac{x^{2}}{4}+\ldots$ we get

$$
-2 y_{1}^{\prime}(x)=-2 a_{0}+a_{0} x+\ldots=\sum_{n=2}^{\infty}\left[n(n-1) b_{n}+n b_{n}-b_{n-1}\right] x^{n-1}+b_{1}
$$

from which we get $b_{1}=-2 a_{0}$. To find b_{2}, we set $n=2$ in the summation to get $\left(4 b_{2}-b_{1}\right) x=$ $a_{0} x$ and therefore $b_{2}=-3 a_{0} / 4$.
3. [Problem 3] For the following differential equation $x y^{\prime \prime}+y=0$.

- Find and classify all points as ordinary, regular singular, or irregular singular points.
- For each of the regular point(s), find the corresponding indicial equation and find the roots r_{1} and r_{2} of the indicial equation (Yes there are two roots with $r_{1}-r_{2}$ is integer).
- Find the corresponding recurrence relation for the root r_{1}.
- Find the corresponding power series solution y_{1}.
- Use the method of Frobenious and write down the general form of the second solution y_{2}.
- Find at least first two terms b_{0} and b_{1} of the second solution y_{2}.

Solution: Rewrite the differential equation as

$$
y^{\prime \prime}+\frac{1}{x} y=0 .
$$

Then $p(x)=0$ and $q(x)=1 / x$ both have singularities at $x=0$. Therefore, all points except $x=0$ is ordinary points. For $x=0$ we need to check the following limits;

$$
\lim _{x \rightarrow 0} x p(x)=\lim _{x \rightarrow 0} x 0=0 \quad \text { and } \quad \lim _{x \rightarrow 0} x^{2} q(x)=\lim _{x \rightarrow 0} x^{2} \frac{1}{x}=0 .
$$

Since both limits exist and are finite, therefore $x=0$ is regular singular points.

Since $x=0$ is the only regular singular point, we find the corresponding indicial equation. Let

$$
y(x)=x^{r} \sum_{n=0}^{\infty} a_{n} x^{n}=\sum_{n=0}^{\infty} a_{n} x^{n+r}
$$

be a solution for some r and a_{n}. Find y^{\prime} and $y^{\prime \prime}$ in terms of power series.

$$
y^{\prime}=\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \quad \text { and } \quad y^{\prime \prime}=\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2} .
$$

Then plug into the differential equation to get

$$
x \sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}+\sum_{n=0}^{\infty} a_{n} x^{n+r}=0 .
$$

Now we have

$$
\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-1}+\sum_{n=0}^{\infty} a_{n} x^{n+r}=0
$$

and changing the power of x in the second summation to get

$$
\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-1}+\sum_{n=1}^{\infty} a_{n-1} x^{n+r-1}=0
$$

and this is equal to

$$
\begin{equation*}
r(r-1) a_{0} x^{r-1}+\sum_{n=1}^{\infty}\left[(n+r)(n+r-1) a_{n}+a_{n-1}\right] x^{n+r-1}=0 \tag{4}
\end{equation*}
$$

From this we get the indicial equation $r(r-1)=0$, which gives us $r_{1}=1$ and $r_{2}=0$ (here it does not matter if you choose $r_{1}=0$ and $r_{2}=1$ and proceed accordingly).

Plug in $r=1$ into the recurrence relation in (4) to get

$$
(n+1)(n+1-1) a_{n}+a_{n-1}=0 \quad \text { and } \quad \text { for } \quad n \geq 1 .
$$

From this we get

$$
a_{n}=\frac{-a_{n-1}}{(n+1) n}
$$

Now

$$
\begin{aligned}
a_{1} & =\frac{-a_{0}}{21} \\
a_{2} & =\frac{-a_{1}}{32}=\frac{a_{0}}{3221}=\frac{a_{0}}{3(2!)^{2}} \\
a_{3} & =\frac{-a_{2}}{43}=\frac{-a_{0}}{4(3!)^{2}} \\
& \ldots \\
a_{n} & =\frac{(-1)^{n} a_{0}}{(n+1)(n!)^{2}} .
\end{aligned}
$$

Since $r_{1}-r_{2}$ is an integer, the method of Frobenious tells us that the first solution corresponding to $r_{1}=1$ (it does not matter if you chose $r_{1}=0$ and proceed) is

$$
y_{1}(x)=x \sum_{n=0}^{\infty} a_{n} x^{n}=a_{0} x \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(n+1)(n!)^{2}} x^{n}=a_{0} x-a_{0} \frac{x^{2}}{2}+a_{0} \frac{x^{3}}{12}+\ldots
$$

The method of Frobenious tells us that the second solution is of the form

$$
y_{2}(x)=x^{0} \sum_{n=0}^{\infty} b_{n} x^{x}+c y_{1}(x) \log (x)
$$

and following as in the second problem one gets $b_{0}=-c a_{0}$ and $2 b_{2}+b_{1}=(3 / 2) a_{0} c$.

