UCONN - Math 3410 - Fall 2017 - Problem Set 7 Solutions to graded problems

Problem 2: Let $f(x)$ be given as

$$
f(x)= \begin{cases}x & 0 \leq x \leq \pi / 2 \\ \pi-x & \pi / 2 \leq x \leq \pi\end{cases}
$$

a. (4pt) Extend $f(x)$ into an odd periodic function with period of 2π and find its Fourier series $F(x)$.
b. (4pt) Extend $f(x)$ into an even periodic function with period of 2π and find its Fourier series $F(x)$.
c. (2pt) Use either part (a) or part (b) to verify that

$$
\frac{\pi^{2}}{8}=\sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{2}}
$$

Solution:

- Odd extension of $f(x)$

Odd extension $F_{\text {odd }}(x)$ of f is, $F_{\text {odd }}(x+2 \pi)=F_{\text {odd }}(x)$ and

$$
F_{\text {odd }}(x)=\left\{\begin{array}{cr}
f(x) & 0 \leq x \leq \pi, \\
-f(-x) & -\pi \leq x \leq 0
\end{array}=\left\{\begin{array}{lr}
x & 0 \leq x \leq \pi / 2 \\
\pi-x & \pi / 2 \leq x \leq \pi \\
-(-x) & -\pi / 2 \leq x \leq 0 \\
-(\pi-(-x)) & -\pi \leq x \leq \pi / 2
\end{array}\right.\right.
$$

As we have the extension $F_{\text {odd }}$, which is periodic with period of $2 L=2 \pi$, we will find its Fourier series.

Since this is an odd extension, cosine terms will be zero; $a_{n}=0$ and $a_{0}=0$. Hence it will be a
sine series; we only need to find b_{n}.

$$
\begin{aligned}
b_{n} & =\frac{1}{\pi} \int_{-\pi}^{\pi} F_{\text {odd }} \sin (n x) d x=\frac{2}{\pi} \int_{0}^{\pi} F_{\text {odd }} \sin (n x) d x \\
& =\frac{2}{\pi} \int_{0}^{\pi / 2} x \sin (n x) d x+\frac{2}{\pi} \int_{\pi / 2}^{\pi}(\pi-x) \sin (n x) d x \\
& =\frac{2}{\pi}\left[-\left.\frac{x \cos (n x)}{n}\right|_{0} ^{\pi / 2}+\frac{1}{n} \int_{0}^{\pi / 2} \cos (n x) d x\right]+\frac{2}{\pi}\left[-\left.\frac{(\pi-x) \cos (n x)}{n}\right|_{\pi / 2} ^{\pi}-\frac{1}{n} \int_{\pi / 2}^{\pi} \cos (n x) d x\right] \\
& =\frac{2}{\pi}\left[0+\left.\frac{1}{n^{2}} \sin (n x)\right|_{0} ^{\pi / 2}+0-\left.\frac{1}{n^{2}} \sin (n x)\right|_{\pi / 2} ^{\pi}\right] \\
& =\frac{4}{\pi n^{2}} \sin (n \pi / 2) .
\end{aligned}
$$

Hence $b_{n}=0$ when n is even and therefore we only have odd terms; (set $n=2 k-1$)

$$
b_{2 k-1}=\frac{4}{\pi n^{2}} \sin ((2 k-1) \pi / 2)=\frac{4}{\pi} \frac{(-1)^{k+1}}{(2 k-1)^{2}} \text { for } k=1,2, \ldots
$$

Hence, the Fourier series of $F_{\text {odd }}(x)$ (notice that the odd terms in b_{k} is zero, we only have the odd terms) is

$$
0+0+\sum_{k=1}^{\infty} b_{k} \sin (k x)=\sum_{k=1}^{\infty} \frac{4}{\pi} \frac{(-1)^{k+1}}{(2 k-1)^{2}} \sin ((2 k-1) x)
$$

Note that $F_{\text {odd }}(x)$ is continuous everywhere. Hence by the Fourier series convergence theorem we know that $F_{\text {odd }}(x)$ and its Fourier series agree for every x;

$$
F_{\text {odd }}(x)=\sum_{k=1}^{\infty} \frac{4}{\pi} \frac{(-1)^{k+1}}{(2 k-1)^{2}} \sin ((2 k-1) x)
$$

- Even extension of $f(x)$

Odd extension $F_{\text {even }}(x)$ of f is, $F_{\text {even }}(x+2 \pi)=F_{\text {even }}(x)$ and

$$
F_{\text {even }}(x)=\left\{\begin{array}{cr}
f(x) & 0 \leq x \leq \pi \\
f(-x) & -\pi \leq x \leq 0
\end{array}=\left\{\begin{array}{lr}
x & 0 \leq x \leq \pi / 2 \\
\pi-x & \pi / 2 \leq x \leq \pi \\
(-x) & -\pi / 2 \leq x \leq 0 \\
(\pi-(-x)) & -\pi \leq x \leq \pi / 2
\end{array}\right.\right.
$$

As we have the extension $F_{\text {even }}$, which is periodic with period of $2 L=2 \pi$, we will find its Fourier series.

Since this is an even extension, sine terms will be zero; $b_{n}=0$. Hence it will be a cosine series; we only need to find a_{n} and a_{0}. Let us find a_{0} first;

$$
\begin{aligned}
a_{0} & =\frac{1}{\pi} \int_{-\pi}^{\pi} F_{\text {even }}(x) d x=\frac{2}{\pi} \int_{0}^{\pi} F_{\text {even }}(x) d x=\frac{2}{\pi} \int_{0}^{\pi / 2} x d x+\frac{2}{\pi} \int_{\pi / 2}^{\pi}(\pi-x) d x=\frac{2}{\pi}\left[\frac{\pi^{2}}{8}+\frac{\pi^{2}}{8}\right]=\frac{\pi}{2} \\
a_{n} & =\frac{1}{\pi} \int_{-\pi}^{\pi} F_{\text {even }}(x) \cos (n x) d x=\frac{2}{\pi} \int_{0}^{\pi} F_{\text {even }}(x) \cos (n x) d x \\
& =\frac{2}{\pi} \int_{0}^{\pi / 2} x \cos (n x) d x+\frac{2}{\pi} \int_{\pi / 2}^{\pi}(\pi-x) \cos (n x) d x \\
& =\frac{2}{\pi}\left[\left.\frac{x \sin (n x)}{n}\right|_{0} ^{\pi / 2}-\frac{1}{n} \int_{0}^{\pi / 2} \sin (n x) d x\right]+\frac{2}{\pi}\left[\left.\frac{(\pi-x) \sin (n x)}{n}\right|_{\pi / 2} ^{\pi}+\frac{1}{n} \int_{\pi / 2}^{\pi} \sin (n x) d x\right] \\
& =\frac{2}{\pi}\left[\frac{\pi}{2 n} \sin (n \pi / 2)+\frac{1}{n^{2}} \cos (n \pi / 2)-\frac{1}{n^{2}}\right]+\frac{2}{\pi}\left[\frac{-\pi}{2 n} \sin (n \pi / 2)-\frac{1}{n^{2}} \cos (n \pi)+\frac{1}{n^{2}} \cos (n \pi / 2)\right] \\
& =\frac{4}{\pi n^{2}} \cos (n \pi / 2)-\frac{2}{\pi n^{2}}-\frac{2}{\pi n^{2}} \cos (n \pi)=\frac{4}{\pi n^{2}} \cos (n \pi / 2)-\frac{2}{\pi n^{2}}-\frac{2}{\pi n^{2}}(-1)^{n}
\end{aligned}
$$

Hence $a_{n} \neq 0$ only when $n=2 k+4$ for $k=0,1, \ldots$. From this observation one gets Fourier series of F as

$$
\frac{\pi}{4}-\frac{2}{\pi} \sum_{k=0}^{\infty} \frac{1}{(2 k+1)^{2}} \cos ((4 k+2) x)
$$

With the same reasoning as above, F is continuous everywhere, hence the Fourier series of $F_{\text {even }}(x)$ and the function $F_{\text {even }}(x)$ agree for every x;

$$
F_{\text {even }}(x)=\frac{\pi}{4}-\frac{2}{\pi} \sum_{k=0}^{\infty} \frac{1}{(2 k+1)^{2}} \cos ((4 k+2) x)
$$

- Now we use either of the Fourier series we found to see that, for example use the first one and evaluate at $x=\pi / 2$ to get

$$
\frac{\pi}{2}=F_{\text {odd }}(\pi / 2)=\sum_{k=1}^{\infty} \frac{4}{\pi} \frac{(-1)^{k+1}}{(2 k-1)^{2}} \sin ((2 k-1) \pi / 2)
$$

A little algebra gives

$$
\frac{\pi^{2}}{8}=\sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{2}}
$$

