UCONN - Math 3410 - Fall 2017 - Problem Set 8 Solutions to graded problems

Problem 2: Consider the following Heat conduction problem

$$
\left\{\begin{array}{l}
9 u_{x x}=u_{t}, \quad 0<x<3, \quad t>0 \\
u_{x}(0, t)=0 \quad \text { and } \quad u_{x}(3, t)=0 \\
u(x, 0)=2 \cos \left(\frac{\pi x}{3}\right)-4 \cos \left(\frac{5 \pi x}{3}\right) .
\end{array}\right.
$$

1. By considering separation of variables $u(x, t)=X(x) T(t)$, rewrite the partial differential equation in terms of two ordinary differential equations in X and T (take arbitrary constant as $-\lambda$).
2. Rewrite the boundary values in terms of X and T. Be careful on the boundary conditions for u_{x}.
3. Now choose the boundary values which will not give a non-trivial solution and write the ordinary differential equation corresponding to X.
4. Solve the two-point boundary value problem corresponding to X. Find all eigenvalues λ_{n} and eigenfunctions X_{n}.
5. For each eigenvalue λ_{n} you found in (d), rewrite and solve the ordinary differential equation corresponding to T_{n}.
6. Now write general solution for each $n, u_{n}(x, t)=X_{n}(x) T_{n}(t)$ and find the general solution $u(x, t)=\sum u_{n}(x, t)$.
7. Using the given initial value and the general solution you found in (f), find the particular solution.

Solution

- By considering separation of variables $u(x, t)=X(x) T(t)$, rewrite the partial differential equation in terms of two ordinary differential equations in X and T (take arbitrary constant as $-\lambda$).

Solution: Rewrite the PDE as $9 u_{x x}-u_{t}=0$. Let $u(x, t)=X(x) T(t)$. Then

$$
u_{x x}=X^{\prime \prime} T \quad \text { and } \quad u_{t}=X T^{\prime} .
$$

Substitute this in to the differential equation to get

$$
9 u_{x x}-u_{t}=9 X^{\prime \prime} T-X T^{\prime}=0 \quad \text { equivalently } \quad \frac{X^{\prime \prime}}{X}=\frac{T^{\prime}}{9 T}=-\lambda .
$$

Hence

$$
\begin{aligned}
& \frac{X^{\prime \prime}}{X}=-\lambda \quad \rightarrow \quad X^{\prime \prime}+\lambda X=0, \\
& \frac{T^{\prime}}{9 T}=-\lambda \quad \rightarrow \quad T^{\prime}+9 \lambda T=0 .
\end{aligned}
$$

- Rewrite the boundary values in terms of X and T. Be careful on the boundary conditions for u_{x}.

Solution: We have at $x=0$ as $u_{x}(x, t)=X^{\prime}(x) T(t)$ then

$$
u_{x}(0, t)=X^{\prime}(0) T(t)=0 ; \quad \text { one has either } \quad X^{\prime}(0)=0 \quad \text { or } \quad T(t)=0 .
$$

At $x=\pi$

$$
u_{x}(3, t)=X^{\prime}(\pi) T(t)=0 ; \quad \text { one has either } \quad X^{\prime}(3)=0 \quad \text { or } \quad T(t)=0 .
$$

- Now choose the boundary values which will not give a non-trivial solution and write the ordinary differential equation corresponding to X.

Solution: We know that the choice of $T(t)=0$ gives only the trivial solution as $u(x, t)=$ $X(x) T(t)=0$.

Therefore, we choose our boundary conditions as $X^{\prime}(0)=0$ and $X^{\prime}(3)=0$ in order to obtain the non-trivial solution. Now if we rewrite the ordinary differential equation corresponding to X we get

$$
X^{\prime \prime}+\lambda X=0, \quad X^{\prime}(0)=0 \quad \text { and } \quad X^{\prime}(3)=0 .
$$

- Solve the two-point boundary value problem corresponding to X. Find all eigenvalues λ_{n} and eigenfunctions X_{n}.

For $\lambda=0$, the ordinary differential equation $X^{\prime \prime}+\lambda X=0$ becomes $X^{\prime \prime}=0$. Then the solution is

$$
X(x)=a x+b \quad \text { for some constants } \quad a, b .
$$

Using the boundary conditions $X^{\prime}(0)=0 \quad$ and $\quad X^{\prime}(3)=0$ we get $X^{\prime}(x)=a$ and then $X^{\prime}(0)=$ $a=0$. Hence we have $a=0$. The second boundary conditions is also verified as $X^{\prime}(3)=a=0$. Hence $X(x)=b$ is solution corresponding to the eigenvalue $\lambda=0$.

For $\lambda<0$. Say $\lambda=-n^{2}$ for some constant $n>0$. Then

$$
X^{\prime \prime}+\lambda X=X^{\prime \prime}-n^{2} X=0 .
$$

This differential equation has characteristic equations $r^{2}-n^{2}=0$, hence roots are $r= \pm n$. This gives the solution

$$
X(x)=A e^{n x}+B e^{-n x}
$$

Take derivative to get

$$
X^{\prime}(x)=A n e^{n x}-B n e^{-n x}
$$

Using boundary conditions we get

$$
X^{\prime}(0)=A n e^{0}-B n e^{0}=0 \quad \text { and } \quad X^{\prime}(3)=A n e^{3 n}-B n e^{3 n}=0
$$

which leads us to $X(x)=0$. Hence we get the trivial solution.
For $\lambda>0$. Let $\lambda=k^{2}$ for some constant $k>0$, we get

$$
X^{\prime \prime}+\lambda X=X^{\prime \prime}+k^{2} X=0
$$

We know that the solution is

$$
X(x)=A \cos (k x)+B \sin (k x)
$$

Using this general solution and the first boundary condition and $X^{\prime}(x)=-A k \sin (k x)+B k \cos (k x)$ that

$$
X^{\prime}(0)=-A k \sin (0)+B k \cos (0)=B k=0 \quad \text { therefore we have } \quad B=0 .
$$

Using the second boundary condition, we get (as $B=0, X^{\prime}(x)=-A k \sin (k x)$)

$$
X^{\prime}(\pi)=-A k \sin (3 k)=0 .
$$

This holds when $3 k=n \pi$ for $n=1,2, \ldots$. Hence we get $k=n \pi / 3$, or equivalently, we get the eigenvalues

$$
\lambda_{n}=k^{2}=\frac{n^{2} \pi^{2}}{3^{2}}, \quad n=1,2, \ldots
$$

The corresponding eigenfunction (corresponding to λ_{n}) is

$$
X_{n}(x)=\cos \left(\frac{n \pi x}{3}\right) .
$$

- For each eigenvalue λ_{n} you found in (d), rewrite and solve the ordinary differential equation corresponding to T_{n}.

Solution: We have for $\lambda=0, X_{0}(x)=b$ as a nontrivial solution. Hence we need to find corresponding solution T_{0} for $\lambda=0$. When $\lambda=0$, the corresponding differential equation is

$$
T^{\prime}+9 \lambda T=T^{\prime}=0 .
$$

$T^{\prime}=0$ has solution $T(t)=b$ for some constant b. Hence for $\lambda=0$ we have corresponding solution $T_{0}(t)=b$.

For $\lambda=\frac{n^{2} \pi^{2}}{3^{2}}>0$ the ordinary differential equation corresponding to T is now

$$
T^{\prime}+9 \lambda T=0 .
$$

Plug in $\lambda=\frac{n^{2} \pi^{2}}{3^{2}}$ we get (for each n we have a different solution T_{n})

$$
T_{n}^{\prime}+9 \frac{n^{2} \pi^{2}}{3^{2}} T_{n}=T_{n}^{\prime}+n^{2} \pi^{2} T_{n}=0
$$

We know that this is a first order linear ordinary differential equation and its solution is

$$
T_{n}(t)=C_{n} e^{-n^{2} \pi^{2} t}
$$

for some C_{n}.

- Now write general solution for each $n, u_{n}(x, t)=X_{n}(x) T_{n}(t)$ and find the general solution $u(x, t)=\sum u_{n}(x, t)$.

Solution: We know that the solution for each $n>0$ is

$$
u_{n}(x, t)=X_{n}(x) T_{n}(t)=\cos \left(\frac{n \pi x}{3}\right) C_{n} e^{-n^{2} \pi^{2} t}
$$

and when $n=0$ we have $u_{0}(x, t)=a b=C_{0}$ for some constant C_{0}. The general solution is

$$
u(x, t)=C_{0}+\sum_{n=1}^{\infty} u_{n}(x, t)=C_{0}+\sum_{n=1}^{\infty} C_{n} \cos \left(\frac{n \pi x}{3}\right) e^{-n^{2} \pi^{2} t} .
$$

- Using the given initial value and the general solution you found in (f), find the particular solution.

Now the initial value is given as $u(x, 0)=2 \cos \left(\frac{\pi x}{3}\right)-2 \cos \left(\frac{5 \pi x}{3}\right)$. Hence, plug in $t=0$ in the solution we have in (f) gives us

$$
u(x, 0)=C_{0}+\sum_{n=1}^{\infty} C_{n} \cos \left(\frac{n \pi x}{3}\right) e^{0}=C_{0}+\sum_{n=1}^{\infty} C_{n} \cos \left(\frac{n \pi x}{3}\right)=2 \cos \left(\frac{\pi x}{3}\right)-2 \cos \left(\frac{5 \pi x}{3}\right)
$$

From this we get that, $C_{0}=0$, and all $C_{n}=0$ except $C_{1}=2$ and $C_{5}=-2$. Hence in the solution, the only terms we have, for $n=1, n=5$ with $C_{1}=2, C_{5}=-2$;

$$
\begin{aligned}
u(x, t) & =\sum_{n=1}^{\infty} C_{n} \cos \left(\frac{n \pi x}{3}\right) e^{-n^{2} \pi^{2} t} \\
& =2 \cos \left(\frac{\pi x}{3}\right) e^{-1^{2} \pi^{2} t}-2 \cos \left(\frac{5 \pi x}{3}\right) e^{-5^{2} \pi^{2} t} \\
& =2 \cos \left(\frac{\pi x}{3}\right) e^{-\pi^{2} t}-2 \cos \left(\frac{5 \pi x}{3}\right) e^{-25 \pi^{2} t}
\end{aligned}
$$

