UCONN - Math 3410 - Fall 2017 - Problem Set 9
 Solutions to graded problems

Question 2: Consider the following wave equation which describes the displacement $u(x, t)$ of a piece of flexible string with the initial boundary value problem

$$
\left\{\begin{array}{l}
25 u_{x x}=u_{t t}, \quad 0<x<5, \quad t>0 \\
u(0, t)=0 \quad \text { and } \quad u(5, t)=0 \\
u(x, 0)=0 \quad \text { and } \quad u_{t}(x, 0)=3 \sin \left(\frac{3 \pi x}{5}\right)-10 \sin \left(\frac{4 \pi x}{5}\right) .
\end{array}\right.
$$

1. By considering separation of variables $u(x, t)=X(x) T(t)$, rewrite the partial differential equation in terms of two ordinary differential equations in X and T (take arbitrary constant as $-\lambda$).
2. Rewrite the boundary values in terms of X and T.
3. Now choose the boundary values which will not give a non-trivial solution and write the ordinary differential equation corresponding to X.
4. Solve the two-point boundary value problem corresponding to X. Find all eigenvalues λ_{n} and eigenfunctions X_{n}.
5. For each eigenvalue λ_{n} you found in (d), rewrite and solve the ordinary differential equation corresponding to T_{n}.
6. Now write general solution for each $n, u_{n}(x, t)=X_{n}(x) T_{n}(t)$ and find the general solution $u(x, t)=\sum u_{n}(x, t)$.
7. Using the given initial value and the general solution you found in (f), find the particular solution.

Solution

- By considering separation of variables $u(x, t)=X(x) T(t)$, rewrite the partial differential equation in terms of two ordinary differential equations in X and T (take arbitrary constant as $-\lambda$).

Solution: Rewrite the differential equation as $25 u_{x x}-u_{t t}=0$. Let $u(x, t)=X(x) T(t)$. Then we get

$$
u_{x x}=X^{\prime \prime} T \quad \text { and } \quad u_{t t}=X T^{\prime \prime}
$$

Substitute this into the partial differential equation $25 u_{x x}-u_{t t}=0$ to get

$$
25 u_{x x}-u_{t t}=25 X^{\prime \prime} T-X T^{\prime \prime}=0
$$

Dividing by $25 X T$ we get

$$
\frac{X^{\prime \prime}}{X}=\frac{T^{\prime \prime}}{25 T} .
$$

Notice that the left-hand side is a function of x only and the right-hand side is function of t only and as they are same, this is possible only if they are the same constant;

$$
\frac{X^{\prime \prime}}{X}=\frac{T^{\prime \prime}}{25 T}=-\lambda .
$$

From this we get

$$
\begin{aligned}
& \frac{X^{\prime \prime}}{X}=-\lambda \quad \rightarrow \quad X^{\prime \prime}+\lambda X=0 \\
& \frac{T^{\prime \prime}}{4 T}=-\lambda \quad \rightarrow \quad T^{\prime \prime}+25 \lambda T=0
\end{aligned}
$$

- Rewrite the boundary values in terms of X and T.

Since $u(x, t)=X(x) T(t)$ we have when $x=0$

$$
u(0, t)=X(0) T(t)=0 \quad \text { we should have either } \quad X(0)=0 \quad \text { or } \quad T(t)=0 .
$$

At $x=5$, we have

$$
u(5, t)=X(5) T(t)=0 \quad \text { we should have either } \quad X(5)=0 \quad \text { or } \quad T(t)=0 .
$$

- Now choose the boundary values which will not give a non-trivial solution and write the ordinary differential equation corresponding to X.

We know that $T(t)=0$ will give only the trivial solution. Therefore, we should choose

$$
X(0)=0 \quad \text { and } \quad X(5)=0 .
$$

Then X satisfies the following two-point boundary condition

$$
X^{\prime \prime}+\lambda X=0, \quad X(0)=0 \quad \text { and } \quad X(5)=0 .
$$

- Solve the two-point boundary value problem corresponding to X. Find all eigenvalues λ_{n} and eigenfunctions X_{n}.

Now we know that only non-trivial solution comes from when $\lambda=k^{2}$ for some $k>0$ (again when $\lambda=0$ and $\lambda<0$ will give only the trivial solution, $X(x)=0$). In this case the solution is

$$
X(x)=A \cos (k x)+B \sin (k x)
$$

We now find A and B using the boundary values we have in (c), at $x=0$

$$
X(0)=A \cos (0)+B \sin (0)=0 \quad \text { implies } \quad A=0 .
$$

At $x=5$, (now $A=0$, we only have $X(x)=B \sin (k x)$)

$$
X(0)=B \sin (5 k)=0 .
$$

This holds if $\sin (5 k)=0$ which gives $5 k=\pi n$. Hence $k=\pi n / 5$.

$$
k=\frac{\pi n}{5} \quad \text { hence } \quad \lambda=k^{2}=\frac{\pi^{2} n^{2}}{5^{2}} .
$$

Therefore, the eigenvalues are

$$
\lambda_{n}=\frac{\pi^{2} n^{2}}{5^{2}}
$$

The corresponding eigenfunctions are

$$
X_{n}(x)=\sin (k x)=\sin \left(\frac{\pi n x}{5}\right)
$$

- For each eigenvalue λ_{n} you found in (d), rewrite and solve the ordinary differential equation corresponding to T_{n}.

Since $\lambda_{n}=\frac{\pi^{2} n^{2}}{5^{2}}$ and the ordinary differential equation corresponding to T is

$$
T^{\prime \prime}+25 \lambda T=0
$$

Substitute $\lambda=$ we get (we have a different solution for each n);

$$
T_{n}^{\prime \prime}+25 \lambda T_{n}=T_{n}^{\prime \prime}+25 \frac{\pi^{2} n^{2}}{5^{2}} T_{n}=T_{n}^{\prime \prime}+\pi^{2} n^{2} T_{n}=0
$$

This is a second order linear differential equation and which has characteristic equation

$$
r^{2}+\pi^{2} n^{2}=0 .
$$

From this we get that the characteristic equation has a imaginary complex conjugate roots

$$
r= \pm \pi n \mathbf{i} .
$$

Thus the solutions are

$$
T_{n}(t)=A_{n} \cos (\pi n t)+B_{n} \sin (\pi n t) \quad n=1,2, \ldots, .
$$

- Now write general solution for each $n, u_{n}(x, t)=X_{n}(x) T_{n}(t)$ and find the general solution $u(x, t)=\sum u_{n}(x, t)$.

Combining (c) and (e) we have

$$
u_{n}(x, t)=X(x) T(t)=\sin \left(\frac{\pi n x}{5}\right)\left[A_{n} \cos (\pi n t)+B_{n} \sin (\pi n t)\right] .
$$

The general solution is

$$
u(x, t)=\sum_{n=1}^{\infty} u_{n}(x, t)=\sum_{n=1}^{\infty} \sin \left(\frac{\pi n x}{5}\right)\left[A_{n} \cos (\pi n t)+B_{n} \sin (\pi n t)\right] .
$$

- Using the given initial value and the general solution you found in (f), find the particular solution.

Now we have two initial values $u(x, 0)=0$ and $u_{t}(x, 0)=3 \sin \left(\frac{3 \pi x}{5}\right)-10 \sin \left(\frac{4 \pi x}{5}\right)$
At $t=0$, i.e, $u(x, 0)=0$

$$
u(x, 0)=\sum_{n=1}^{\infty} \sin \left(\frac{\pi n x}{5}\right)\left[A_{n} \cos (0)+B_{n} \sin (0)\right]=0
$$

gives us $A_{n}=0$ for every $n=1,2, \ldots$. Hence we have

$$
u(x, t)=\sum_{n=1}^{\infty} \sin \left(\frac{\pi n x}{5}\right) B_{n} \sin (\pi n t)
$$

we now need to find $u_{t}(x, t)$;

$$
u_{t}(x, t)=\sum_{n=1}^{\infty} \sin \left(\frac{\pi n x}{5}\right) B_{n} \pi n \cos (\pi n t) .
$$

Then given initial value $u_{t}(x, 0)=3 \sin \left(\frac{3 \pi x}{5}\right)-10 \sin \left(\frac{4 \pi x}{5}\right)$ gives us

$$
u_{t}(x, 0)=\sum_{n=1}^{\infty} \sin \left(\frac{\pi n x}{5}\right) B_{n} \pi n \cos (0)=3 \sin \left(\frac{3 \pi x}{5}\right)-10 \sin \left(\frac{4 \pi x}{5}\right) .
$$

Therefore, let $b_{n}=B_{n} \pi n$ then above identity becomes

$$
\sum_{n=1}^{\infty} b_{n} \sin \left(\frac{\pi n x}{5}\right)=3 \sin \left(\frac{3 \pi x}{5}\right)-10 \sin \left(\frac{4 \pi x}{5}\right)
$$

This tells us all $b_{n}=0$ except $b_{3}=3$ and $b_{4}=-10$ as

$$
\sum_{n=1}^{\infty} b_{n} \sin \left(\frac{\pi n x}{5}\right)=b_{1} \sin \left(\frac{\pi x}{5}\right)+b_{2} \sin \left(\frac{\pi 2 x}{5}\right)+b_{3} \sin \left(\frac{\pi 3 x}{5}\right)+b_{4} \sin \left(\frac{\pi 4 x}{5}\right)+\ldots
$$

and we know that this summation is $3 \sin \left(\frac{3 \pi x}{5}\right)-10 \sin \left(\frac{4 \pi x}{5}\right)$. Hence all b_{n} should be zero except b_{3} which will be 3 and b_{n} which will be -10 . As $b_{n}=B_{n} \pi n$, then we get $b_{3}=B_{3} \pi 3=3$, which gives us $B_{3}=\frac{1}{\pi}$. Similarly, $b_{4}=B_{4} \pi 4=-10$, which gives us $B_{4}=\frac{-10}{4 \pi}$. Hence
$u(x, t)=B_{3} \sin \left(\frac{\pi 3 x}{5}\right) \sin (3 \pi t)+B_{4} \sin \left(\frac{\pi 4 x}{5}\right) \sin (4 \pi t)=\frac{1}{\pi} \sin \left(\frac{\pi 3 x}{5}\right) \sin (3 \pi t)+\frac{-10}{4 \pi} \sin \left(\frac{\pi 4 x}{5}\right) \sin (4 \pi t)$.

