
Fall 2016 - Math 3410 Name (Print): Solution KEY
Exam 2 - November 4
Time Limit: 50 Minutes

This exam contains 9 pages (including this cover page) and 5 problems. Check to see if any pages
are missing. Enter all requested information on the top of this page, and put your initials on the
top of every page, in case the pages become separated.

You may not use your books or notes on this exam.

You are required to show your work on each problem on this exam. The following rules apply:

• If you use a “fundamental theorem” you
must indicate this and explain why the theorem
may be applied.

• Organize your work, in a reasonably neat and
coherent way, in the space provided. Work scat-
tered all over the page without a clear ordering
will receive very little credit.

• Mysterious or unsupported answers will not
receive full credit. A correct answer, unsup-
ported by calculations, explanation, or algebraic
work will receive no credit; an incorrect answer
supported by substantially correct calculations and
explanations might still receive partial credit.

• If you need more space, use the back of the pages;
clearly indicate when you have done this.

Do not write in the table to the right.

Problem Points Score

1 20

2 12

3 12

4 12

5 24

Total: 80

1

1Exam template credit: http://www-math.mit.edu/~psh
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1. Consider the following differential equation

y′′ + k2y = 0 where k is a constant.

(a) (3 points) Classify all points as ordinary, regular singular, or irregular singular.
Since p(x) = 0 and q(x) = k2 and both functions are analytic for all points, therefore all
points are ordinary points.

(b) (4 points) You are going to find a power series solution to above differential equation
around x0 = 0. As a first step, using power series method, find the recurrence relation.
By checking some of the terms, try to find a pattern.

Let y(x) =
∞∑
n=0

anx
n. Then

y′(x) =

∞∑
n=1

nanx
n−1 and y′′(x) =

∞∑
n=2

n(n− 1)anx
n−2.

Plug into the differential equation, one gets

y′′ + k2y =
∞∑
n=2

n(n− 1)anx
n−2 +

∞∑
n=0

k2anx
n = 0.

If we change index n in the second summation we get

0 =

∞∑
n=2

n(n− 1)anx
n−2 +

∞∑
n=2

k2an−2x
n−2

=
∞∑
n=2

[n(n− 1)an + k2an−2]x
n−2.

Since this is true for every x, coefficients of xn−2 should be zero for every n ≥ 2. Therefore,

n(n− 1)an + k2an−2 = 0 equivalently an =
−k2an−2
n(n− 1)

for n ≥ 2.

Now at this point, check the even terms first

a2 =
−k2a0

2

a4 =
−k2a2

4 3
=
k4a0
4 3 2

=
k4a0

4!

a6 =
−k2a4

6 5
=
−k6a0
6 5 4!

=
−k6a0

6!
...

a2n =
(−1)nk2na0

2n!
for n ≥ 1.
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Similarly, odd terms are

a3 =
−k2a1

3 2

a5 =
−k2a3

5 4
=
k4a1
5 4 3!

=
k4a1

5!

a7 =
−k2a5

7 6
=
−k6a1
7 6 5!

=
−k6a1

7!
...

a2n+1 =
(−1)nk2na1

(2n+ 1)!
=

(−1)nk2n+1a1
(2n+ 1)! k

for n ≥ 1.

(c) (5 points) Using part (b) find the power series solution to the above differential equation.
(Hint: combine even and odd terms).
Since

y(x) =
∞∑
n=0

anx
n = even terms + odd terms

=

∞∑
n=0

a2nx
2n +

∞∑
n=0

a2n+1x
2n+1.

Now using part (b) we can write

y(x) =
∞∑
n=0

a2nx
2n +

∞∑
n=0

a2n+1x
2n+1

=

∞∑
n=0

(−1)nk2na0
2n!

x2n +
∞∑
n=0

(−1)nk2n+1a1
(2n+ 1)! k

x2n+1

= a0

∞∑
n=0

(−1)n(kx)2n

2n!
+
a1
k

∞∑
n=0

(−1)n(kx)2n+1

(2n+ 1)!

which is the power series solution we are looking for.

(d) (4 points) Find the interval of convergence of the power series.
Since all points are ordinary points then there is no singularity and interval of convergence
is (−∞,∞).

(e) (4 points) Find the function representations of the power series you found in (c).
From part (c) we have

y(x) = a0

∞∑
n=0

(−1)n(kx)2n

2n!
+
a1
k

∞∑
n=0

(−1)n(kx)2n+1

(2n+ 1)!

= a0 cos(kx) +
a1
k

sin(kx).
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2. (12 points) Consider the Van der Pols equation

y′′ + µ(y2 − 1)y′ + y = 0

arose as an idealized description of a spontaneously oscillating circuit. Use the second method

to find first four terms of the power series solution y(x) =
∞∑
n=0

anx
n around x0 = 0 with µ = 1

with the initial conditions y(0) = 0 and y′(0) = 1.
y(x) can also be written as its Taylor series expansion (one can it exists around x0);

y(x) =
∞∑
n=0

anx
n =

∞∑
n=0

y(n)(0)

n!
xn.

Therefore, we need to find y(0), y′(0), y′′(0), y′′′(0). y(0) = 0 and y′(0) = 1 are given. To find
y′′(0), we use the differential equation, evaluate at x = 0 in the differential equation and use
µ = 1 to get

y′′(0) + (y2(1)− 1)y′(1) + y(1) = 0

If you solve for y′′(0) one gets y′′(0) = 1. In order to find y′′′(0) we differentiate the differential
equation with respect to x to get

y′′′ + (y2 − 1)y′′ + 2yy′y′ + y′ = 0

Now evaluate x = 0 to get

y′′′(0) + (y2(0)− 1)y′′(0) + 2y(0)y′(0)y′(0) + y′(0) = 0.

Solve for y′′′(0) to get y′′′(0) = 0.

Now one needs to be careful while writing an’s. Since an = y(n)(0)/n!. Therefore,

a0 = y(0) = 0 a1 = y′(0) = 1 a2 = y′′(0)/2 = 1/2, y′′′(0) = 0.

a0 = 0 a1 = 1 a2 = 1/2 a3 = 0.

Using your previous work, write the first four terms of y(x) = 0 + x + x2

2 + 0 +.
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3. (12 points) Classify the point x0 = 1 as ordinary point, regular singular point, or irregular
singular point for the following differential equation

(x− 1)3y′′ − (x− 1)y′ + 4(x− 1)y = 0.

If we rewrite the differential equation as

y′′ − (x− 1)

(x− 1)3
y′ + 4

(x− 1)

(x− 1)3
y = 0.

Hence

p(x) = − (x− 1)

(x− 1)3
and q(x) = 4

(x− 1)

(x− 1)3
.

p(x) and q(x) are analytic at every point except the singularity point x = 1. Hence all points
are ordinary except x = 1.

Now we check the singular point x = 1. For this we need to check if both limits

lim
x→1

(x− 1)p(x) and lim
x→1

(x− 1)2q(x)

exist and are finite. Since

lim
x→1

(x− 1)p(x) = lim
x→1

(x− 1)(− (x− 1)

(x− 1)3
) = lim

x→1

1

(x− 1)
= does not exist.

Therefore, x = 1 is irregular singular point.
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4. Consider the following differential equation

2xy′′ + y′ + xy = 0.

(a) (6 points) Find the indicial equation
As we only need to find the indicial equation it is enough to plug in only the lowest term
xr (the n = 0 term) into the differential equation and then keep only the lowest power of
x that remains

2xr(r − 1)xr−2 + rxr−1 + xxr = 2r(r − 1)xr−1 + rxr−1 + xr+1 = 0

Hence the lowest power of x is r− 1 and the coefficient is 2r(r− 1) + r = 0 is the indicial
equation. That is,

r(2(r − 1) + 1) = r(2r − 1) = 0.

(b) (6 points) Write the general form of the solution(s).
Since 0 = r(2r − 1), the roots of the indicial equation are r1 = 0 and r2 = 1/2. Since
r1 − r2 = −1/2 is not integer then the method of Frobenious tells us that there are two
linearly independent solutions

y1(x) =
∞∑
n=0

anx
n+r1 =

∞∑
n=0

anx
n

is the first linearly independent solution and the second solution is

y2(x) =
∞∑
n=0

bnx
n+r2 = x

1
2

∞∑
n=0

bnx
n
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5. Consider the function f(x) = |x| on [−π, π] and f(x+ 2π) = f(x).

(a) (2 points) What is the period 2L of f(x)?
Solution: Since f(x + 2π) = f(x) is given then f(x) has period 2π = 2L, i.e., 2L = 2π.
Hence L = π for later use.

(b) (2 points) Is f(x) an odd or even function? Show your work.
Solution: Since f(x) = f(−x), f is an even function.

(c) (5 points) Find the sine terms of the Fourier series of f(x).
Solution: Since f(x) is an even function then all sine terms are zero;

bn = 0 for all n = 1, . . . , .

(d) (5 points) Find the cosine terms of the Fourier series of f(x).
Solution: The cosine terms are

a0 =
2

π

π∫
0

xdx =
π

2
.

Now

an =
2

π

π∫
0

x cos(
nπx

L
)dx =

2

π

π∫
0

x cos(
nπx

π
)dx =

2

π

π∫
0

x cos(nx)dx

=
2

πn
(x sin(nx))|π0 −

2

πn

π∫
0

sin(nx)dx

= 0 +
2

πn2
(cos(πn)− 1)

=
2

πn2
((−1)n − 1).

Note that an = 0 when n is even and an = −4/πn2 when n is odd. Hence a2k−1 =
−4/π(2k − 1)2 for k = 1, . . . ,.
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(e) (4 points) Write the Fourier series of the function f(x).
Solution: From parts (c) and (d) we have

f(x) =
a0
2

+
∞∑
n=1

an cos(nπx/π) +
∞∑
n=1

bn sin(nπx/π)

=
π

2
− 4

π

∞∑
k=1

1

(2k − 1)2
cos((2k − 1)x).

(f) (3 points) Using Fourier series convergence theorem, check the points where F (x) and
f(x) agree and do not agree.
Solution: Since f(x) = |x| is continuous on (−π, π) then by Fourier series convergence
theorem f(x) = F (x). Moreover, one can also check F (x) = f(x) when x = π,−π. Hence
F (x) = f(x) = |x|. They agree everywhere.

(g) (3 points) Use part (e) and verify that

∞∑
n=0

1

(2n+ 1)2
=
π2

8
.

Solution: Note that when x = 0, the function f and f ′ are both continuous therefore, the
Fourier series converges to f(0) at x = 0. Since f(0) = 0 using this and evaluating x = 0
in the Fourier series of f one gets

0 = f(0) =
π

2
− 4

π

∞∑
k=1

1

(2k − 1)2
cos(0).

This implies
∞∑
n=0

1

(2n+ 1)2
=
π2

8
.
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