UCONN - Math 3410 - Fall 2017 - Supplementary problems for Exam 1

Question 1 Sketch the gradient field for the following DEs, sketch at least three solution curves, and sketch the solution passing through $(1,0)$.

1. $y^{\prime}=x$.
2. $y^{\prime}=x^{2}$.
3. $y^{\prime}=x+y$.
4. $y^{\prime}=2$.
5. $y^{\prime}=e^{x}$.

Answer:

Question 2 Show that $y=e^{4 x}$ is a solution to the $D E$

$$
y^{\prime}-4 y=0 .
$$

Question 3 Show that $y=c_{1} e^{2 x} \cos (x)+c_{2} e^{2 x} \sin (x)$ is a 2-parameter family of solutions to the $D E$

$$
y^{\prime \prime}-4 y^{\prime}+5 y=0
$$

Thanks for Michael for the correction that there is $\cos (x)$ there now.
Question 4 Find the order of the DEs and write if they are linear or nonlinear equations.

1. $y^{(7)}+25 y^{(16)}+y^{\prime \prime}+y=0$.
2. $y^{\prime \prime \prime}+2 y^{\prime}\left(y^{\prime \prime}\right)^{2}+y^{\prime}=0$.
3. $y^{\prime \prime}-y^{\prime}=0$.

Question 5 Show that $\frac{y^{3}}{3}-\frac{x^{2}}{2}+5 x=0$ is an implicit solution to the $D E$

$$
y^{2} y^{\prime}=(x-5) .
$$

Question 6 Show that $x^{2} y^{2}+x=1$ is an implicit solution to the $D E$

$$
2 x^{2} y y^{\prime}+2 x y^{2}+1=0 .
$$

Question 7 Without solving the DE

$$
\left(x^{2}-9\right) y^{\prime}+2 y=\ln |20-4 x|,
$$

determine the interval of validity of the solution.
Also fin the largest interval for which the initial value $y(0)=0$ has a unique solution.
Question 8 Solve the following DEs

1. $y^{\prime}=x y e^{x}$.
2. $y^{\prime}=e^{x+y}$.
3. $2 x+2 y y^{\prime}=0$.
4. $y^{\prime}+2 x(y+1)=0$ with $y(0)=2$.

Question 9 Check if the DE is exact

$$
\left(x^{2}-y\right) d y+\left(2 x^{3}+2 x y\right) d x=0 .
$$

Then solve the $D E$.
Question 10 Check if the DE is exact

$$
(2 x-1)(y-1) d x+(x+2)(x-3) d y=0 .
$$

Then solve the $D E$.
Question 11 Check if the DE is exact

$$
\left(3 x^{2} y^{2}-4 x y\right) y^{\prime}=2 y^{2}-2 x y^{3} .
$$

Then solve the $D E$.
Question 12 Solve the following Bernoulli's equation

$$
x y^{\prime}+y+x^{2} y^{2} e^{x}=0 .
$$

Answer: $y=\frac{1}{x\left(c_{1}+e^{x}\right)}$.

Question 13 Solve the following Bernoulli's equation

$$
x y y^{\prime}=y^{2}-x^{2} .
$$

Answer: $y^{2}=-2 x^{2} \ln x+c_{1} x^{2}$.
Question 14 Solve the following Bernoulli's equation

$$
y^{\prime}+\frac{4}{x} y=x^{3} y^{2} \quad \text { with } \quad y(2)=-1, x>0 .
$$

Answer: $y=\frac{16}{x^{4}(16 \ln 2-16 \ln x-1)}$.
Question 15 Solve the following Bernoulli's equation

$$
6 y^{\prime}-2 y=x y^{4} \quad \text { with } \quad y(0)=-2 .
$$

Answer: $y=\frac{2 e^{\frac{x}{3}}\left(-4\left(x e^{x}-e^{x}\right)-5\right)^{\frac{2}{3}}}{-4 x e^{x}+4 e^{x}-5}$.
Question 16 Solve the following Ricatti's equation

$$
y^{\prime}=y^{2}+2 x y+\left(x^{2}-1\right) \quad \text { with given particular solution } \quad y_{1}(x)=-x .
$$

Answer: $y=-x+\frac{1}{c_{1}-x}$.
Question 17 For the following autonomous differential equation

$$
y^{\prime}=(y+2)^{2}(1-y)^{2}
$$

(a) Find and classify all of its equilibrium solutions.
(b) If $y(-2)=1$ then what is $\lim _{x \rightarrow \infty} y(t)$? and what is $\lim _{x \rightarrow-\infty} y(t)$?
(c) If $y(1)=0$ then what is $\lim _{x \rightarrow \infty} y(t)$? and what is $\lim _{x \rightarrow-\infty} y(t)$?
(d) If $y(3410)=\alpha$ and $\lim _{x \rightarrow \infty} y(t)=1$, find all possible values of α.

Question 18 For the following autonomous differential equation

$$
y^{\prime}=-y^{2}(y-2)^{3}(y+2)
$$

(a) Find and classify all of its equilibrium solutions.
(b) If $y(-2)=1$ then what is $\lim _{x \rightarrow \infty} y(t)$? and what is $\lim _{x \rightarrow-\infty} y(t)$?
(c) If $y(1)=0$ then what is $\lim _{x \rightarrow \infty} y(t)$? and what is $\lim _{x \rightarrow-\infty} y(t)$?
(d) If $y(3410)=\alpha$ and $\lim _{x \rightarrow \infty} y(t)=2$, find all possible values of α.

Question 19 Suppose that $y_{1}(x)$ and $y_{2}(x)$ are two linearly independent solutions to the following DE

$$
x^{2} y^{\prime \prime}+2 x^{3} y^{\prime}-\sin x y=0 .
$$

Using Abel's theorem, find the Wronskian of y_{1} and $y_{2}, W\left(y_{1}, y_{2}\right)$.

Question 20 Find the orthogonal trajectories of the family of straight lines through $(1,0)$.
Question 21 Find the orthogonal trajectories of the family of parabolas $y=a x^{2}$.
Question 22 Find the orthogonal trajectories of the family of ellipsoid $2 x^{2}+y^{2}=r^{2}$.
Question 23 Find the Laplace transform of the following functions

1. $f(x)=e^{-x}\left(x^{2}+5 x-5\right)$.
2. $f(x)= \begin{cases}2 x & 0 \leq x<1 \\ 1 & 1<x<\infty\end{cases}$

Question 24 Suppose that $\mathcal{L}\{f(x)\}=\frac{s^{2}}{s^{2}+1}$ for some function $f(x)$ with given that $f(0)=$ $-1, f^{\prime}(0)=2$, and $f^{\prime \prime}(0)=1$.

1. Find $\mathcal{L}\{x f(x)\}$.
2. Find $\mathcal{L}\left\{x^{2} f(x)\right\}$.
3. Find $\mathcal{L}\left\{e^{-2 x} f(x)\right\}$.
4. Find $\mathcal{L}\left\{x^{2} e^{-2 x} f(x)\right\}$.
5. Find $\mathcal{L}\left\{f^{\prime}(x)\right\}$.
6. Find $\mathcal{L}\left\{f^{\prime \prime}(x)\right\}$.
7. Find $\mathcal{L}\left\{x f^{\prime \prime}(x)\right\}$.

Question 25 Find the inverse Laplace transform of the following functions

1. $F(s)=\frac{3}{s^{2}}$.
2. $F(s)=\frac{s+1}{s(s+2)}$.
3. $F(s)=\frac{s^{2}+1}{s^{2}(s+2)}$.

Question 26 It can be shown that for a constant $a \neq 0$

$$
\mathcal{L}\{\cos a x\}=\frac{s}{s^{2}+a^{2}} \quad s>0
$$

and

$$
\mathcal{L}\{\sin a x\}=\frac{a}{s^{2}+a^{2}} \quad s>0 .
$$

Using this answer the following questions.

1. Find $\mathcal{L}\{x \sin a x\}$ and $\mathcal{L}\left\{e^{-3 x} \sin a x\right\}$.
2. Find $\mathcal{L}^{-1}\left\{\frac{2}{s^{2}+9}\right\}$ and $\mathcal{L}^{-1}\left\{\frac{1}{s^{3}}+\frac{2}{s^{2}+4}\right\}$.

Question 27 Use the Laplace transform to solve the following initial value problem

$$
y^{\prime \prime}-2 y^{\prime}+2 y=e^{-x} \quad \text { with } y(0)=0 \text { and } y^{\prime}(0)=1 .
$$

Question 28 Use the Laplace transform to solve the following initial value problem

$$
y^{\prime \prime}+y=\cos 2 x \quad \text { with } y(0)=2 \text { and } y^{\prime}(0)=1 .
$$

