UCONN - Math 3435 - Spring 2018 - Problem set 1

Question 1 (Exercise 1.2, 1b) Show that u satisfies the given PDE

$$
u(x, y)=f(x)+g(y) ; \quad u_{x y}=0 \text { where the functions } f \text { and } g \text { are assumed to be } C^{2} .
$$

Solution: Since $f, g \in C^{2}$ we can take first x derivative and then y derivative of u

$$
u_{x}=f^{\prime}(x) \text { then } u_{x y}=0
$$

Hence u satisfies the given PDE.
Question 2 (Exercise 1.2, 1d) Show that u satisfies the given PDE

$$
u(x, t)=x^{2}+2 t \quad \text { and } \quad u_{x x}=u_{t} .
$$

Solution: Since

$$
u_{x}=2 x u_{x x}=2 \quad \text { and } \quad u_{t}=2
$$

we get $u_{x x}=u_{t}$. Hence u satisfies the given PDE.
Question 3 (Exercise 1.2, 1f) Show that u satisfies the given PDE

$$
u(x, t)=\sin (x-c t) \quad u_{t t}-c^{2} u_{x x}=0 \quad \text { where } c \text { is real constant. }
$$

Solution: Since

$$
u_{x}=\cos (x-c t) \quad \text { and } \quad u_{x x}=-\sin (x-c t)
$$

and

$$
u_{t}=-c \cos (x-c t) \quad \text { and } \quad u_{t t}=-c^{2} \sin (x-c t) .
$$

Combining these two we get

$$
-c^{2} \sin (x-c t)-\left(-c^{2} \sin (x-c t)\right)=0
$$

Hence u satisfies the given PDE.
Question 4 (Exercise 1.2, 2c) Show that $\log \left(x^{2}+y^{2}\right), x^{2}+y^{2} \neq 0$ is a solution of Laplace's equation $u_{x x}+$ $u_{y y}=0$.

Solution: Since

$$
u_{x}=\frac{2 x}{x^{2}+y^{2}} \quad \text { and } \quad u_{x x}=\frac{2}{x^{2}+y^{2}}-\frac{4 x^{2}}{\left(x^{2}+y^{2}\right)^{2}}
$$

Similarly,

$$
u_{y}=\frac{2 y}{x^{2}+y^{2}} \quad \text { and } \quad u_{y y}=\frac{2}{x^{2}+y^{2}}-\frac{4 y^{2}}{\left(x^{2}+y^{2}\right)^{2}}
$$

Combining these two we get

$$
\begin{aligned}
u_{x x}+u_{y y} & =\frac{2}{x^{2}+y^{2}}-\frac{4 x^{2}}{\left(x^{2}+y^{2}\right)^{2}}+\frac{2}{x^{2}+y^{2}}-\frac{4 y^{2}}{\left(x^{2}+y^{2}\right)^{2}} \\
& =\frac{4}{x^{2}+y^{2}}-\frac{4 x^{2}+4 y^{2}}{\left(x^{2}+y^{2}\right)^{2}} \\
& =\frac{4}{x^{2}+y^{2}}-\frac{4}{x^{2}+y^{2}}=0
\end{aligned}
$$

Hence u satisfies Laplace's equation.

Question 5 (Exercise 1.2,3d) Show that the given function u solves the heat equation $u_{t}-k u_{x x}=0$ where

$$
u(x, t)=\frac{1}{\sqrt{k t}} \exp \left(\frac{-x^{2}}{4 k t}\right) .
$$

Solution: Since

$$
u_{t}=-\frac{1}{2} \frac{1}{\sqrt{k}} \frac{1}{t^{3 / 2}} \exp \left(\frac{-x^{2}}{4 k t}\right)+\frac{1}{\sqrt{k t}} \exp \left(\frac{-x^{2}}{4 k t}\right) \frac{x^{2}}{4 k t^{2}}
$$

and
$u_{x}=\frac{1}{\sqrt{k t}} \exp \left(\frac{-x^{2}}{4 k t}\right)\left(\frac{-2 x}{4 k t}\right) \quad$ and $\quad u_{x x}=\frac{1}{\sqrt{k t}} \exp \left(\frac{-x^{2}}{4 k t}\right)\left(\frac{-2}{4 k t}\right)+\frac{1}{\sqrt{k t}} \exp \left(\frac{-x^{2}}{4 k t}\right)\left(\frac{-2 x}{4 k t}\right)\left(\frac{-2 x}{4 k t}\right)$.
Combining these all together we see that (after some algebra)

$$
\begin{aligned}
u_{t}-k u_{x x} & =-\frac{1}{2} \frac{1}{\sqrt{k}} \frac{1}{t^{3 / 2}} \exp \left(\frac{-x^{2}}{4 k t}\right)+\frac{1}{\sqrt{k t}} \exp \left(\frac{-x^{2}}{4 k t}\right) \frac{x^{2}}{4 k t^{2}} \\
& -k\left(-\frac{1}{2} \frac{1}{\sqrt{k}} \frac{1}{t^{3 / 2}} \exp \left(\frac{-x^{2}}{4 k t}\right)+\frac{1}{\sqrt{k t}} \exp \left(\frac{-x^{2}}{4 k t}\right) \frac{x^{2}}{4 k t^{2}}\right) \\
& =0
\end{aligned}
$$

Question 6 (Exercise 1.2, 4d) Show that the given function u satisfies the wave equation $u_{t t}-c^{2} u_{x x}=0$ for some c where

$$
u(x, t)=f(x+2 t)+g(x-2 t) \quad \text { for } f, g \in C^{2}
$$

Solution: Notice that f, g are function of single variable and twice differentiable and therefore

$$
u_{x}=f^{\prime}(x+2 t)+g^{\prime}(x-2 t) \quad \text { and } \quad u_{x x}=f^{\prime \prime}(x+2 t)+g^{\prime \prime}(x-2 t) .
$$

Similarly,

$$
u_{t}=2 f^{\prime}(x+2 t)-2 g^{\prime}(x-2 t) \quad \text { and } \quad u_{t t}=4 f^{\prime \prime}(x+2 t)+4 g^{\prime \prime}(x-2 t)
$$

Hence

$$
\begin{aligned}
u_{t t}-c^{2} u_{x x} & =4 f^{\prime \prime}(x+2 t)+4 g^{\prime \prime}(x-2 t)-c^{2}\left(f^{\prime \prime}(x+2 t)+g^{\prime \prime}(x-2 t)\right) \\
& =\left(4-c^{2}\right)\left(f^{\prime \prime}(x+2 t)+g^{\prime \prime}(x-2 t)\right)
\end{aligned}
$$

Hence u satisfies the wave equation $u_{t t}-c^{2} u_{x x}=0$ iff $c= \pm 2$.
Question 7 (Exercise 1.2, 5c and 5d) Write the order of the given PDE and classify them as linear or nonlinear. If the PDE is linear, specify if it is homogeneous or non-homogeneous.

$$
\text { 5c) } u_{x x y y}+e^{x} u_{x}=y \text { and 5d) } u u_{x x}+u_{y y}-u=0 \text {. }
$$

Solution: $u_{x x y y}+e^{x} u_{x}=y$ is a fourth order linear PDE and it is non-homogeneous as the right-handside contains a nonzero function y which does not contain derivative of u. On the other hand, $u u_{x x}+$ $u_{y y}-u=0$ is a second order nonlinear PDE due the term $u u_{x x}$.

Question 8 (Exercise 1.2,12) For what values of the positive constants m and n the PDE

$$
u_{x x}+u_{y y}+m u_{x y}+u_{x}+n u_{y}=0
$$

be (a) hyperbolic, (b) elliptic, (c) parabolic.

Solution: By the Classification theorem at page 31, we have to look for the sign of $b^{2}-4 a c$ where in this problem $b=m, a=1$ and $c=1, d=1, e=n, k=0$. Hence we get

$$
b^{2}-4 a c=m^{2}-4
$$

The PDE is hyperbolic if $b^{2}-4 a c=m^{2}-4>0$. Therefore, when $m>2$ or $m<-2$ the PDE is hyperbolic.

The PDE is elliptic if $b^{2}-4 a c=m^{2}-4<0$. Therefore, when $-2<m<2$ the PDE is elliptic.
The PDE is parabolic if $b^{2}-4 a c=m^{2}-4=0$ and $2 c d \neq d e$ or $2 a e \neq b d$. Now if $m= \pm 2$ and since $2 c d=2$, $b e=m n$ hence we should $2 \neq m n$ or since $2 a e=2 n$ and $b d=m$ hence we should have $2 n \neq m$. Hence if $m= \pm 2$ and either $n \neq 2 / m= \pm 1$ or $n \neq m / 2= \pm 1$ then the PDE is parabolic.

Question 9 (Exercise 1.2, 13) It is given that $u_{1}(x, y)=x^{2}$ solves $u_{x x}+u_{y y}=2$ and $u_{2}(x, y)=c x^{3}+d y^{3}$ solves $u_{x x}+u_{y y}=6 c x+6 d y$ for some real constants c and d.
(a) Find a solution of $u_{x x}+u_{y y}=A x+B y+C$ for given A, B, C.
(b) How can many more solutions of the problem (c) be produced?

Solution: (a) Notice that $u_{x x}+u_{y y}=0$ is a linear PDE. Therefore, any linear combinations of solutions will also be solutions. Consider $u(x, y)=m u_{1}(x, y)+n u_{2}(x, y)$ where m, n are constants to be chosen so that u satisfies $u_{x x}+u_{y y}=A x+B y+C$. Since $m u_{1}(x, y)$ solves $u_{x x}+u_{y y}=2 m$ and $n u_{2}(x, y)$ solves $u_{x x}+u_{y y}=6 c x+6 d y$. Then $u(x, y)=m u_{1}(x, y)+n u_{2}(x, y)$ solves $u_{x x}+u_{y y}=2 m+n(6 c x+6 d y)$ and we want the right-hand side to be $A x+B y+C$. Therefore, $2 m=C, 6 c x n=A x$, and $6 d y n=B y$. If we choose $m=C / 2, c n=A / 6$ and $d n=B / 6$ then

$$
u(x, y)=m u_{1}(x, y)+n u_{2}(x, y)=C / 2 x^{2}+A / 6 x^{3}+B / 6 y^{3}
$$

solves $u_{x x}+u_{y y}=A x+B y+C$.
(b) We want to generate more solutions by using the linearity of the above PDE. If we can find any solution to homogeneous equation $u_{x x}+u_{y y}=0$, for example $u_{3}(x, y)=x^{2}-y^{2}$. Then the solution to non-homogeneous part $u(x, y)=C / 2 x^{2}+A / 6 x^{3}+B / 6 y^{3}$ plus any constant multiple of solution to homogeneous part will give us a new solution to $u_{x x}+u_{y y}=A x+B y+C$. Hence

$$
u(x, y)+D u_{3}(x, y)=\frac{C}{2} x^{2}+\frac{A}{6} x^{3}+\frac{B}{6} y^{3}+D\left(x^{2}-y^{2}\right)
$$

solves $u_{x x}+u_{y y}=A x+B y+C$ for given A, B, C for arbitrary constant D so that we can generate infinitely many solutions.

Question 10 (Exercise 1.3, 1b) Find the general solution to $u_{x y}=x^{2} y$ where $u=u(x, y)$.
Solution: Since $u_{x y}=x^{2} y$ we can integrate first with respect to x and then y;

$$
u_{x}=\int u_{x y} d y=\int x^{2} y d y=x^{2} \frac{y^{2}}{2}+f(x)
$$

where $f(x)$ is some C^{1} function. If we integrate now with respect to x we get

$$
u(x, y)=\int u_{x} d x=\int\left(x^{2} \frac{y^{2}}{2}+f(x)\right) d x=\frac{x^{3}}{3} \frac{y^{2}}{2}+\int f(x) d x+g(y)
$$

where $g(y)$ is a C^{2} function.
Question 11 (Exercise 1.3,1c) Find the general solution to $u_{x y z}=0$ where $u=u(x, y, z)$.

Solution: First integration with respect to z gives

$$
u_{x y}=\int u_{x y z} d z=f(x, y)
$$

where $f(x, y)$ is a C^{1} function. Then if we integrate with respect to y we get

$$
u_{x}=\int u_{x y} d y=\int f(x, y) d y+g(x, z)
$$

where $g(x, z)$ is a C^{2} function. Finally, if we integrate with respect to x we get

$$
u(x, y, z)=\int u_{x} d x=\iint f(x, y) d y d x+\int g(x, z) d x+h(y, z)
$$

where $h(y, z)$ is a C^{3} function. Or we can write these integrals as some functions as

$$
F(x, y)=\iint f(x, y) d y d x \quad \text { and } \quad G(x, z)=\int g(x, z)
$$

Then $u(x, y, z)=F(x, y)+G(x, y)+h(y, z)$ where F, G, h are C^{3} functions.

