UCONN - Math 3435 - Spring 2018 - Problem set 10

Question 1 Consider the following Dirichlet problem

$$
\left\{\begin{array}{l}
U_{r r}+\frac{1}{r} U_{r}+\frac{1}{r^{2}} U_{\theta \theta}=0 \quad \text { in } B(0,2) \\
U(2, \theta)=1+3 \sin (2)
\end{array}\right.
$$

1. Using the Poisson's integral formula write down solution to the above Dirichlet problem.
2. Find the maximum value of $U(r, \theta)$ on disk with radius 2 .
3. Using the Poisson integral formula you found in the first part, find the value of U at the origin.

Solution: 1. We know that the solution to Dirichlet problem in a ball of radius a centered at origin with boundary value $f(\theta)$ is

$$
U(r, \theta)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{a^{2}-r^{2}}{a^{2}+2 a r \cos (\theta-s)+r^{2}} f(s) d s
$$

Hence as $a=2$ and $f(\theta)=1+3 \sin (2)$ we have

$$
U(r, \theta)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{2^{2}-r^{2}}{2^{2}+4 r \cos (\theta-s)+r^{2}}[1+3 \sin (2 s)] d s
$$

2. We next find the maximum of U. Since $U(r, \theta)$ is harmonic in $B(0,2)$ then it attains it maximum value on the boundary of $B(0,2)$. That is

$$
\max _{\bar{B}(0,2)} U(R, \theta)=\max _{\partial B(0,2)} U(r, \theta)=\max U(2, \theta)=\max [1+3 \sin (2 \theta)]=4
$$

3. Using part 1. we want to find the value of U at the origin. Now in the Cartesian coordinate system origin $=(0,0)=(x, y)$. We know that $r^{2}=x^{2}+y^{2}=0$. Hence we evaluate the Poisson integral formula at $r=0$,

$$
\begin{aligned}
U(0, \theta) & =\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{2^{2}-0^{2}}{2^{2}+4 \times 0 \times \cos (\theta-s)+0^{2}}[1+3 \sin (2 s)] d s \\
& =\frac{1}{2 \pi} \int_{0}^{\infty}[1+3 \sin (2 s)] d s \\
& =\frac{1}{2 \pi}\left[s-\frac{3}{2} \cos (2 s)\right]=1
\end{aligned}
$$

Hence $U(0, \theta)=1$.

