
UCONN - Math 3435 - Spring 2018 - Problem set 5
Question 1 (Exercise 3.3, 3) Find all product solutions of the heat equation

ut = kuxx 0 ≤ x ≤ L, t ≥ 0
u(0, t) = 0 ux(L, t) = 0
u(x, 0) = f (x).

Solution: As the question ask, we will find all solutions of the form u(x, t) = X(x)T(t). We have

ut = X(x)T′(t) and Uxx = X′′(x)T(t).

Using this in the Heat equation we get

X(x)T′(t) = kX′′(x)T(t) equivalently
T′(t)
kT(t)

=
X′′(x)
X(x)

which can happen both ratios are constant. Say

T′(t)
kT(t)

=
X′′(x)
X(x)

= c.

Then we obtain
T′(t)− kcT(t) = 0 and X′′(x)− cX(x) = 0.

We will also rewrite the boundary conditions in terms of X, T. Since u(0, t) = X(0)T(t) = 0 we get
X(0) = 0 (otherwise, if we choose T(t) = 0 we get zero solution). Similarly, ux(L, t) = X′(L)T(t) = 0
which gives us X′(L) = 0. Hence we have X(0) = 0 = X′(L).

We focus on X′′(x)− cX(x) = 0 with the boundary conditions X(0) = 0 = X′(L).
When c = 0 we have X′′(x) = 0 which gives us X(x) = ax + b for some constant a, b. Using the

boundary conditions X(0) = 0 = X′(L) we get b = 0 = a. Hence no non-trivial solution is coming
from c = 0.

When λ2 = c > 0, for some λ > 0, we have X(x) = aeλx + be−λx for some constant a, b. Using
X(0) = 0 we get a = −b and using X′(L) = 0 we get

X′(L) = aλeλL + aλe−λL = 0

implies first a = 0 second a = −b = 0. Hence we also have trivial solution in this case.
When −λ2 = c < 0 for some λ > 0 we then have X(x) = a cos(λx) + b sin(λx) for some constant

a, b. Since X(0) = 0 we get a = 0. Similarly, X′(L) = −bλ cos(λL) = 0, this can happen if λL = is
multiple of π/2 = (n + 1/2)π. Hence λL = (n + 1/2)π, hence λ = (n + 1/2)π/L for n = 0, 1, 2, . . .
which is our eigenvalue. Hence

λn =
(n + 1

2)π

L
and correcponding eigenfunction Xn(x) = An sin(

(n + 1
2)πx

L
) n = 0, 1, 2, . . .

for some constant An. For this value of c = −λ2 = −((n + 1/2)π/L)2 we solve 0 = T′(t)− kcT(t) =
T′(t) + k((n + 1/2)π/L)2T(t) which has solution

Tn(t) = Bne−k((n+ 1
2 )π/L)2t n = 0, 1, 2, . . .

for some constant Bn. Hence our solution is

u(x, t) =
∞

∑
n=0

Xn(x)Tn(t) =
∞

∑
n=1

AnBn sin(
(n + 1

2)πx
L

)e−k((n+ 1
2 )π/L)2t
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For simplicity call AnBn = Cn. Now we shall use the initial condition to find Cn.

f (x) = u(x, 0) =
∞

∑
n=0

Cn sin(
(n + 1

2)πx
L

) = C0 sin(
πx
2L

) + C1 sin(
3πx
2L

) + C2 sin(
5πx
2L

) + . . .

where C0, C1, C2, . . . are constant to be found. This will give us the solution.

Question 2 (Exercise 3.3, 4) Find all product solutions of the heat equation
ut = 2uxx 0 ≤ x ≤ 1, t ≥ 0
u(0, t) = −1 ux(1, t) = 1
u(x, 0) = x + sin(3πx

2 )− 1.
(1)

Solution: We first should make the non-homogeneous boundary conditions homogeneous. To this end,
we look for time-independent or steady-state solution up(x, t) to heat equation. We know that the only
steady state solution is up(x, t) = ax + b for some a, b. We will figure out a, b so that up(0, t) = −1
and ux(1, t) = 1 (which are our non-homogeneous boundary conditions). Hence up(0, t) = b = −1
and (up(x, t))x = a which we want to be 1 when x = 1, i.e. (up(x, t))x = a = 1. Hence we get
up(x, t) = x− 1. We now let

v(x, t) = u(x, t)− up(x, t)

and hope that v will satisfy the heat equation with homogeneous boundary conditions. To see this, as u
solves (1), and up is steady-state solution to heat equation, and heat equation is linear v solves the heat
equation vt = 2vxx. Next, we check the boundary conditions

v(0, t) = u(0, t)− up(0, t) = −1− (−1) = 0 and vx(1, t) = ux(1, t)− (up(1, t))x = 1− 1 = 0.

Hence v satisfies the homogeneous boundary conditions. We next see the initial condition

v(x, 0) = u(x, 0)− up(x, 0) = x + sin(
3πx

2
)− 1− (x− 1) = sin(

3πx
2

).

If we summarize what we got for v is that
vt = 2vxx 0 ≤ x ≤ 1, t ≥ 0
v(0, t) = 0 vx(1, t) = 0
v(x, 0) = sin(3πx

2 ).

From the first problem, we know that the general solution is (where k = 2, L = 1)

v(x, t) =
∞

∑
n=0

Cn sin(
(n + 1

2)πx
1

)e−2((n+ 1
2 )π/1)2t

and using this and the given initial condition for v we get

v(x, 0) =
∞

∑
n=0

Cn sin((n +
1
2
)πx) = sin(

3πx
2

).

From this we conclude that for n = 1 we have C1 sin(3πx
2 ) and therefore, C1 = 1 and all other Cn = 0.

Hence we have
v(x, t) = C1 sin(

3πx
2

)e−2(3π/2)2t = sin(
3πx

2
)e−2(3π/2)2t.

As we put v(x, t) = u(x, t)− up(x, t) and u(x, t) is the function we are after which solves (1), we can
get

u(x, t) = v(x, t) + up(x, t) = sin(
3πx

2
)e−2(3π/(2))2t + x− 1.

This is the solution to (1).
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Question 3 (Exercise 3.4, 3) Solve ut − uxx = e−4t cos(t) sin(2x), 0 ≤ x ≤ π, t ≥ 0,
u(0, t) = 0, u(π, t) = 0,
u(x, 0) = sin(3x).

(2)

Solution: Since the boundary conditions are homogeneous, we can pass to the second step. That is we
shall look for where u(x, t) = u1(x, t) + u2(x, t) where u1 solves the homogeneous heat equation;

(u1)t − (u1)xx = 0, 0 ≤ x ≤ π, t ≥ 0,
u1(0, t) = 0, u1(π, t) = 0,
u1(x, 0) = sin(3x).

(3)

and u2 solves the non-homogeneous heat equation with zero initial condition (u2)t − (u2)xx = e−4t cos(t) sin(2x), 0 ≤ x ≤ π, t ≥ 0,
u2(0, t) = 0, u2(π, t) = 0,
u2(x, 0) = 0.

(4)

Then by linearity of the heat equation we conclude that u(x, t) = u1(x, t) + u2(x, t) solves our original
equation (2). We shall first focus on u1, we know the general solution is (you can use the proposition
from the book, or our lecture notes)

u1(x, t) =
∞

∑
n1

Cne−n2t sin(nx)

and using the initial condition for u1 we get

u1(x, 0) = sin(3x) =
∞

∑
n1

Cn sin(nx)

which tells us C3 = 1 and all other Cn = 0. Hence

u1(x, t) = e−9t sin(3x).

solves (3). Now we focus on v2. To solve (4), we shall use the Duhamel’s principle. That is,

u2(x, t) =
∫ t

0
ṽ(x, t− s; s)ds

where ṽ solves 
ṽt − ṽxx = 0, 0 ≤ x ≤ π, t ≥ 0,
ṽ(0, t; s) = 0, ṽ(π, t; s) = 0,
ṽ(x, 0; s) = e−4s cos(s) sin(2x).

(5)

Here you should think of e−4s cos(s) as a constant independent of t. We know that the general solution
is

ṽ(x, t; s) =
∞

∑
n1

Cne−n2t sin(nx)

and using the initial condition in (5) we get

ṽ(x, 0; s) =
∞

∑
n1

Cn sin(nx) = e−4s cos(s) sin(2x)
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which tells us that C2 = e−4s cos(s) and all other Cn = 0. Hence we have (for n = 2)

ṽ(x, t; s) = e−4s cos(s)e−4t sin(2x).

Using Duhamel’s principle we have

u2(x, t) =
∫ t

0
ṽ(x, t− s; s)ds =

∫ t

0
e−4s cos(s)e−4(t−s) sin(2x)ds

To find u2 we need to find that integral. After some algebra we see that

u2(x, t) =
∫ t

0
e−4s cos(s)e−4(t−s) sin(2x)ds = e−4t sin(2x)

∫ t

0
cos(s)ds = e−4t sin(2x) sin(t)

Combining this with u1 we get

u(x, t) = u1(x, t) + u2(x, t) = e−9t sin(3x) + e−4t sin(2x) sin(t)

is the solution of (2).

Question 4 (Exercise 3.4, 4) Solve
ut − uxx = t cos(x) 0 ≤ x ≤ π, t ≥ 0
ux(0, t) = 0 ux(π, t) = 0
u(x, 0) = 0.

(6)

Solution: Since the boundary conditions are zero, past to step two. Since the initial condition is zero,
we can use the Duhamel’s principle right away. That is, our solution is

u(x, t) =
∫ t

0
ṽ(x, t− s; s)ds

where ṽ solves 
ṽt − ṽxx = 0 0 ≤ x ≤ π, t ≥ 0
ṽx(0, t; s) = 0 ṽx(π, t; s) = 0
ṽ(x, 0; s) = s cos(x).

We know from the last problem of HW4 that the general solution to this PDE is

ṽ(x, t; s) =
∞

∑
n=1

Cne−n2t cos(nx)

and using the initial condition for ṽ we get

ṽ(x, 0; s) =
∞

∑
n=1

Cn cos(nx) = s cos(x)

From this we get C1 = s and all other Cn = 0. Hence (for n = 1)

ṽ(x, t; s) = se−t cos(x).

As we know that

u(x, t) =
∫ t

0
ṽ(x, t− s; s)ds =

∫ t

0
se−(t−s) cos(x)ds = e−t cos(x)

∫ t

0
sesds

= e−t cos(x)
∫ t

0
sesds = e−t cos(x)(tet − et + 1)

= cos(x)(t− 1 + e−t)

is the solution of (6).
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Question 5 (Exercise 3.4, 7) Solve ut − uxx = 1
π xet + t[2− 2

π x + sin(x)] 0 ≤ x ≤ π, t ≥ 0
u(0, t) = t2 u(π, t) = et

u(x, 0) = x
π + sin(2x).

(7)

Solution: As the boundary conditions are non-homogeneous, the first step is to make them homoge-
neous. To this end, we let

up(x, t) = (b(t)− a(t))x/L + a(t) = (
et − t2

π
)x + t2

so that up(0, t) = t2 and up(π, t) = et. The second step is to let

v(x, t) = u(x, t)− up(x, t)

so that the non-homogeneous boundary conditions become homogeneous. Now v solves the non-
homogeneous heat equation

vt − vxx = ut − uxx − [(up)t − (up)xx] =
1
π

xet + t[2− 2
π

x + sin(x)]− [(
et − 2t

π
)x + 2t− 0] = t sin(x).

The boundary conditions

v(0, t) = u(0, t)− up(0, t) = t2 − t2 = 0 and v(π, t) = u(π, t)− up(π, t) = et − et = 0.

The initial condition

v(x, 0) = u(x, 0)− up(x, 0) =
x
π
+ sin(2x)− x

π
= sin(2x).

Hence, combining all of these we see that v solves
vt − vxx = t sin(x) 0 ≤ x ≤ π, t ≥ 0,
v(0, t) = 0 v(π, t) = 0,
v(x, 0) = sin(2x).

(8)

As v solves the non-homogeneous heat equation with initial conditions, the next step is to look for v1, v2
with v(x, t) = v1(x, t) + v2(x, t) where v1 solves homogeneous heat equation with the initial condition
in (8) 

(v1)t − (v1)xx = 0 0 ≤ x ≤ π, t ≥ 0
v1(0, t) = 0 v1(π, t) = 0
v1(x, 0) = sin(2x).

(9)

and v2 solves the non-homogeneous heat equation with zero initial condition
(v2)t − (v2)xx = t sin(x) 0 ≤ x ≤ π, t ≥ 0
v2(0, t) = 0 v2(π, t) = 0
v2(x, 0) = 0.

(10)

We first focus on v1. We know the general solution is

v1(x, t) =
∞

∑
n=1

Cne−n2t sin(nx).
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Using this and the given initial condition for v1 we have

v1(x, t) =
∞

∑
n=1

Cn sin(nx) = sin(2x)

which tells us that C2 = 1 and all other Cn = 0. Hence we have

v1(x, t) = e−4t sin(2x).

We now focus on v2. From Duhamel’s principle

v2(x, t) =
∫ t

0
ṽ(x, t− s; s)ds

where ṽ(x, t; s) solves the following homogeneous heat equation
ṽt − ṽxx = 0 0 ≤ x ≤ π, t ≥ 0
ṽ(0, t; s) = 0 ṽ(π, t; s) = 0
ṽ(x, 0; s) = s sin(x).

We know that the general solutions is

ṽ(x, t; s) =
∞

∑
n=1

Cne−n2t sin(nx).

Using this and the initial condition for ṽ(x, t; s) we get

ṽ(x, 0; s) = s sin(x) =
∞

∑
n=1

Cn sin(nx)

From this, we see that C1 = s and all other Cn = 0. Hence

ṽ(x, t; s) = se−t sin(x).

Using this we get

v2(x, t) =
∫ t

0
ṽ(x, t− s; s)ds

=
∫ t

0
se−(t−s) sin(x)ds

= e−t sin(x)
∫ t

0
sesds

= e−t sin(x)[tet − et + 1]

= sin(x)[t− 1 + e−t].

Hence
v(x, t) = v1(x, t) + v2(x, t) = e−4t sin(2x) + sin(x)(t− 1 + e−t).

Finally,

u(x, t) = v(x, t) + up(x, t) = e−4t sin(2x) + sin(x)(t− 1 + e−t) + (
et − t2

π
)x + t2

is the solution to (7).
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Question 6 (Exercise 3.4, 8) Solve ut − 4uxx = et sin( x
2 )− sin(t) 0 ≤ x ≤ π, t ≥ 0

u(0, t) = cos(t) ux(π, t) = 0
u(x, 0) = 1.

(11)

Solution: As we have a non-homogeneous boundary condition, the first step is to make it homoge-
neous. That is, we need to find up(x, t) such that

up(0, t) = cos(t) and (up)x(π, t) = 0.

To this end, we mimic the steady-state solution, but cheating a little. That is, let up(x, t) = a(t)x + b(t)
where we are gonna choose a(t) and b(t). Since we want up(0, t) = cos(t) = b(t). Hence we have
up(x, t) = a(t)x + cos(t). On the other hand, (up)x(π, t) = a(t) = 0, we get a(t) = 0. Hence up(x, t) =
cos(t). The next step is to let

v(x, t) = u(x, t)− up(x, t) = u(x, t)− cos(t).

From this we see that v(x, t) satisfies the following non-homogeneous heat equation

vt − 4vxx = ut − 4uxx − [(up)t − 4(up)xx] = et sin(
x
2
)− sin(t) + sin(t) = et sin(

x
2
).

The boundary conditions becomes homogeneous

v(0, t) = u(0, t)− cos(t) = cos(t)− cos(t) = 0 and vx(x, t) = ux(x, t)− 0 = 0− 0 = 0.

Finally, the initial condition is

v(x, 0) = u(x, 0)− cos(0) = 1− 1 = 0.

Hence, v solves a non-homogeneous heat equation vt − 4vxx = et sin( x
2 ) 0 ≤ x ≤ π, t ≥ 0

v(0, t) = 0 vx(π, t) = 0
v(x, 0) = 0.

(12)

Since the initial condition is zero we can right away use the Duhamel’s principle to find v(x, t)

v(x, t) =
∫ t

0
ṽ(x, t− s; s)ds

where ṽ(x, t; s) solves the homogeneous Heat equation with homogeneous boundary conditions
ṽt − 4ṽxx = 0 0 ≤ x ≤ π, t ≥ 0
ṽ(0, t; s) = 0 ṽx(π, t; s) = 0
ṽ(x, 0; s) = es sin( x

2 ).

From the first problem, we know the general solution is (with k = 4, L = 1)

ṽ(x, t; s) =
∞

∑
n=1

Cn sin(
nx
2
)e−n2t

Using the initial condition we can find Cn

ṽ(x, 0; s) =
∞

∑
n=1

Cn sin(
nx
2
) = es sin(

x
2
)
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which gives us that C1 = es and all other Cn = 0. Hence

ṽ(x, t; s) = es sin(
x
2
)e−t.

Using this we can v(x, t)

v(x, t) =
∫ t

0
ṽ(x, t− s; s)ds

=
∫ t

0
es sin(

x
2
)e−(t−s)ds

= sin(
x
2
)e−t

∫ t

0
e2sds

= sin(
x
2
)e−t 1

2
[e2t− 1] =

1
2

sin(
x
2
)[et − e−t].

From this we can find the solution to (11)

u(x, t) = v(x, t) + up(x, t) =
1
2

sin(
x
2
)[et − e−t] + cos(t).
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