UCONN - Math 3435 - Spring 2018 - Problem set 5

Question 1 (Exercise 3.3,3) Find all product solutions of the heat equation

$$
\begin{cases}u_{t}=k u_{x x} & 0 \leq x \leq L, t \geq 0 \\ u(0, t)=0 & u_{x}(L, t)=0 \\ u(x, 0)=f(x) . & \end{cases}
$$

Solution: As the question ask, we will find all solutions of the form $u(x, t)=X(x) T(t)$. We have

$$
u_{t}=X(x) T^{\prime}(t) \quad \text { and } \quad U_{x x}=X^{\prime \prime}(x) T(t)
$$

Using this in the Heat equation we get

$$
X(x) T^{\prime}(t)=k X^{\prime \prime}(x) T(t) \quad \text { equivalently } \quad \frac{T^{\prime}(t)}{k T(t)}=\frac{X^{\prime \prime}(x)}{X(x)}
$$

which can happen both ratios are constant. Say

$$
\frac{T^{\prime}(t)}{k T(t)}=\frac{X^{\prime \prime}(x)}{X(x)}=c
$$

Then we obtain

$$
T^{\prime}(t)-k c T(t)=0 \quad \text { and } \quad X^{\prime \prime}(x)-c X(x)=0
$$

We will also rewrite the boundary conditions in terms of X, T. Since $u(0, t)=X(0) T(t)=0$ we get $X(0)=0$ (otherwise, if we choose $T(t)=0$ we get zero solution). Similarly, $u_{x}(L, t)=X^{\prime}(L) T(t)=0$ which gives us $X^{\prime}(L)=0$. Hence we have $X(0)=0=X^{\prime}(L)$.

We focus on $X^{\prime \prime}(x)-c X(x)=0$ with the boundary conditions $X(0)=0=X^{\prime}(L)$.
When $c=0$ we have $X^{\prime \prime}(x)=0$ which gives us $X(x)=a x+b$ for some constant a, b. Using the boundary conditions $X(0)=0=X^{\prime}(L)$ we get $b=0=a$. Hence no non-trivial solution is coming from $c=0$.

When $\lambda^{2}=c>0$, for some $\lambda>0$, we have $X(x)=a e^{\lambda x}+b e^{-\lambda x}$ for some constant a, b. Using $X(0)=0$ we get $a=-b$ and using $X^{\prime}(L)=0$ we get

$$
X^{\prime}(L)=a \lambda e^{\lambda L}+a \lambda e^{-\lambda L}=0
$$

implies first $a=0$ second $a=-b=0$. Hence we also have trivial solution in this case.
When $-\lambda^{2}=c<0$ for some $\lambda>0$ we then have $X(x)=a \cos (\lambda x)+b \sin (\lambda x)$ for some constant a, b. Since $X(0)=0$ we get $a=0$. Similarly, $X^{\prime}(L)=-b \lambda \cos (\lambda L)=0$, this can happen if $\lambda L=$ is multiple of $\pi / 2=(n+1 / 2) \pi$. Hence $\lambda L=(n+1 / 2) \pi$, hence $\lambda=(n+1 / 2) \pi / L$ for $n=0,1,2, \ldots$ which is our eigenvalue. Hence

$$
\lambda_{n}=\frac{\left(n+\frac{1}{2}\right) \pi}{L} \quad \text { and correcponding eigenfunction } \quad X_{n}(x)=A_{n} \sin \left(\frac{\left(n+\frac{1}{2}\right) \pi x}{L}\right) \quad n=0,1,2, \ldots
$$

for some constant A_{n}. For this value of $c=-\lambda^{2}=-((n+1 / 2) \pi / L)^{2}$ we solve $0=T^{\prime}(t)-k c T(t)=$ $T^{\prime}(t)+k((n+1 / 2) \pi / L)^{2} T(t)$ which has solution

$$
T_{n}(t)=B_{n} e^{-k\left(\left(n+\frac{1}{2}\right) \pi / L\right)^{2} t} \quad n=0,1,2, \ldots
$$

for some constant B_{n}. Hence our solution is

$$
u(x, t)=\sum_{n=0}^{\infty} X_{n}(x) T_{n}(t)=\sum_{n=1}^{\infty} A_{n} B_{n} \sin \left(\frac{\left(n+\frac{1}{2}\right) \pi x}{L}\right) e^{-k\left(\left(n+\frac{1}{2}\right) \pi / L\right)^{2} t}
$$

For simplicity call $A_{n} B_{n}=C_{n}$. Now we shall use the initial condition to find C_{n}.

$$
f(x)=u(x, 0)=\sum_{n=0}^{\infty} C_{n} \sin \left(\frac{\left(n+\frac{1}{2}\right) \pi x}{L}\right)=C_{0} \sin \left(\frac{\pi x}{2 L}\right)+C_{1} \sin \left(\frac{3 \pi x}{2 L}\right)+C_{2} \sin \left(\frac{5 \pi x}{2 L}\right)+\ldots
$$

where $C_{0}, C_{1}, C_{2}, \ldots$ are constant to be found. This will give us the solution.
Question 2 (Exercise 3.3,4) Find all product solutions of the heat equation

$$
\begin{cases}u_{t}=2 u_{x x} & 0 \leq x \leq 1, t \geq 0 \tag{1}\\ u(0, t)=-1 & u_{x}(1, t)=1 \\ u(x, 0)=x+\sin \left(\frac{3 \pi x}{2}\right)-1 . & \end{cases}
$$

Solution: We first should make the non-homogeneous boundary conditions homogeneous. To this end, we look for time-independent or steady-state solution $u_{p}(x, t)$ to heat equation. We know that the only steady state solution is $u_{p}(x, t)=a x+b$ for some a, b. We will figure out a, b so that $u_{p}(0, t)=-1$ and $u_{x}(1, t)=1$ (which are our non-homogeneous boundary conditions). Hence $u_{p}(0, t)=b=-1$ and $\left(u_{p}(x, t)\right)_{x}=a$ which we want to be 1 when $x=1$, i.e. $\left(u_{p}(x, t)\right)_{x}=a=1$. Hence we get $u_{p}(x, t)=x-1$. We now let

$$
v(x, t)=u(x, t)-u_{p}(x, t)
$$

and hope that v will satisfy the heat equation with homogeneous boundary conditions. To see this, as u solves (1), and u_{p} is steady-state solution to heat equation, and heat equation is linear v solves the heat equation $v_{t}=2 v_{x x}$. Next, we check the boundary conditions

$$
v(0, t)=u(0, t)-u_{p}(0, t)=-1-(-1)=0 \quad \text { and } \quad v_{x}(1, t)=u_{x}(1, t)-\left(u_{p}(1, t)\right)_{x}=1-1=0
$$

Hence v satisfies the homogeneous boundary conditions. We next see the initial condition

$$
v(x, 0)=u(x, 0)-u_{p}(x, 0)=x+\sin \left(\frac{3 \pi x}{2}\right)-1-(x-1)=\sin \left(\frac{3 \pi x}{2}\right)
$$

If we summarize what we got for v is that

$$
\begin{cases}v_{t}=2 v_{x x} & 0 \leq x \leq 1, t \geq 0 \\ v(0, t)=0 & v_{x}(1, t)=0 \\ v(x, 0)=\sin \left(\frac{3 \pi x}{2}\right) & \end{cases}
$$

From the first problem, we know that the general solution is (where $k=2, L=1$)

$$
v(x, t)=\sum_{n=0}^{\infty} C_{n} \sin \left(\frac{\left(n+\frac{1}{2}\right) \pi x}{1}\right) e^{-2\left(\left(n+\frac{1}{2}\right) \pi / 1\right)^{2} t}
$$

and using this and the given initial condition for v we get

$$
v(x, 0)=\sum_{n=0}^{\infty} C_{n} \sin \left(\left(n+\frac{1}{2}\right) \pi x\right)=\sin \left(\frac{3 \pi x}{2}\right)
$$

From this we conclude that for $n=1$ we have $C_{1} \sin \left(\frac{3 \pi x}{2}\right)$ and therefore, $C_{1}=1$ and all other $C_{n}=0$. Hence we have

$$
v(x, t)=C_{1} \sin \left(\frac{3 \pi x}{2}\right) e^{-2(3 \pi / 2)^{2} t}=\sin \left(\frac{3 \pi x}{2}\right) e^{-2(3 \pi / 2)^{2} t}
$$

As we put $v(x, t)=u(x, t)-u_{p}(x, t)$ and $u(x, t)$ is the function we are after which solves (1), we can get

$$
u(x, t)=v(x, t)+u_{p}(x, t)=\sin \left(\frac{3 \pi x}{2}\right) e^{-2(3 \pi /(2))^{2} t}+x-1
$$

This is the solution to (1).

$$
\left\{\begin{array}{l}
u_{t}-u_{x x}=e^{-4 t} \cos (t) \sin (2 x), \quad 0 \leq x \leq \pi, t \geq 0 \tag{2}\\
u(0, t)=0, u(\pi, t)=0 \\
u(x, 0)=\sin (3 x)
\end{array}\right.
$$

Solution: Since the boundary conditions are homogeneous, we can pass to the second step. That is we shall look for where $u(x, t)=u_{1}(x, t)+u_{2}(x, t)$ where u_{1} solves the homogeneous heat equation;

$$
\left\{\begin{array}{l}
\left(u_{1}\right)_{t}-\left(u_{1}\right)_{x x}=0, \tag{3}\\
u_{1}(0, t)=0, u_{1}(\pi, t)=0 \\
u_{1}(x, 0)=\sin (3 x)
\end{array}\right.
$$

and u_{2} solves the non-homogeneous heat equation with zero initial condition

$$
\left\{\begin{array}{l}
\left(u_{2}\right)_{t}-\left(u_{2}\right)_{x x}=e^{-4 t} \cos (t) \sin (2 x), \quad 0 \leq x \leq \pi, t \geq 0 \tag{4}\\
u_{2}(0, t)=0, u_{2}(\pi, t)=0 \\
u_{2}(x, 0)=0
\end{array}\right.
$$

Then by linearity of the heat equation we conclude that $u(x, t)=u_{1}(x, t)+u_{2}(x, t)$ solves our original equation (2). We shall first focus on u_{1}, we know the general solution is (you can use the proposition from the book, or our lecture notes)

$$
u_{1}(x, t)=\sum_{n_{1}}^{\infty} C_{n} e^{-n^{2} t} \sin (n x)
$$

and using the initial condition for u_{1} we get

$$
u_{1}(x, 0)=\sin (3 x)=\sum_{n_{1}}^{\infty} C_{n} \sin (n x)
$$

which tells us $C_{3}=1$ and all other $C_{n}=0$. Hence

$$
u_{1}(x, t)=e^{-9 t} \sin (3 x)
$$

solves (3). Now we focus on v_{2}. To solve (4), we shall use the Duhamel's principle. That is,

$$
u_{2}(x, t)=\int_{0}^{t} \tilde{v}(x, t-s ; s) d s
$$

where \tilde{v} solves

$$
\begin{cases}\tilde{v}_{t}-\tilde{v}_{x x}=0, & 0 \leq x \leq \pi, t \geq 0 \tag{5}\\ \tilde{v}(0, t ; s)=0, \tilde{v}(\pi, t ; s)=0, \\ \tilde{v}(x, 0 ; s)=e^{-4 s} \cos (s) \sin (2 x)\end{cases}
$$

Here you should think of $e^{-4 s} \cos (s)$ as a constant independent of t. We know that the general solution is

$$
\tilde{v}(x, t ; s)=\sum_{n_{1}}^{\infty} C_{n} e^{-n^{2} t} \sin (n x)
$$

and using the initial condition in (5) we get

$$
\tilde{v}(x, 0 ; s)=\sum_{n_{1}}^{\infty} C_{n} \sin (n x)=e^{-4 s} \cos (s) \sin (2 x)
$$

which tells us that $C_{2}=e^{-4 s} \cos (s)$ and all other $C_{n}=0$. Hence we have (for $n=2$)

$$
\tilde{v}(x, t ; s)=e^{-4 s} \cos (s) e^{-4 t} \sin (2 x)
$$

Using Duhamel's principle we have

$$
u_{2}(x, t)=\int_{0}^{t} \tilde{v}(x, t-s ; s) d s=\int_{0}^{t} e^{-4 s} \cos (s) e^{-4(t-s)} \sin (2 x) d s
$$

To find u_{2} we need to find that integral. After some algebra we see that

$$
u_{2}(x, t)=\int_{0}^{t} e^{-4 s} \cos (s) e^{-4(t-s)} \sin (2 x) d s=e^{-4 t} \sin (2 x) \int_{0}^{t} \cos (s) d s=e^{-4 t} \sin (2 x) \sin (t)
$$

Combining this with u_{1} we get

$$
u(x, t)=u_{1}(x, t)+u_{2}(x, t)=e^{-9 t} \sin (3 x)+e^{-4 t} \sin (2 x) \sin (t)
$$

is the solution of (2).
Question 4 (Exercise 3.4, 4) Solve

$$
\begin{cases}u_{t}-u_{x x}=t \cos (x) & 0 \leq x \leq \pi, t \geq 0 \tag{6}\\ u_{x}(0, t)=0 & u_{x}(\pi, t)=0 \\ u(x, 0)=0 & \end{cases}
$$

Solution: Since the boundary conditions are zero, past to step two. Since the initial condition is zero, we can use the Duhamel's principle right away. That is, our solution is

$$
u(x, t)=\int_{0}^{t} \tilde{v}(x, t-s ; s) d s
$$

where \tilde{v} solves

$$
\begin{cases}\tilde{v}_{t}-\tilde{v}_{x x}=0 & 0 \leq x \leq \pi, t \geq 0 \\ \tilde{v}_{x}(0, t ; s)=0 & \tilde{v}_{x}(\pi, t ; s)=0 \\ \tilde{v}(x, 0 ; s)=s \cos (x) . & \end{cases}
$$

We know from the last problem of HW4 that the general solution to this PDE is

$$
\tilde{v}(x, t ; s)=\sum_{n=1}^{\infty} C_{n} e^{-n^{2} t} \cos (n x)
$$

and using the initial condition for \tilde{v} we get

$$
\tilde{v}(x, 0 ; s)=\sum_{n=1}^{\infty} C_{n} \cos (n x)=s \cos (x)
$$

From this we get $C_{1}=s$ and all other $C_{n}=0$. Hence (for $n=1$)

$$
\tilde{v}(x, t ; s)=s e^{-t} \cos (x)
$$

As we know that

$$
\begin{aligned}
u(x, t)=\int_{0}^{t} \tilde{v}(x, t-s ; s) d s & =\int_{0}^{t} s e^{-(t-s)} \cos (x) d s=e^{-t} \cos (x) \int_{0}^{t} s e^{s} d s \\
& =e^{-t} \cos (x) \int_{0}^{t} s e^{s} d s=e^{-t} \cos (x)\left(t e^{t}-e^{t}+1\right) \\
& =\cos (x)\left(t-1+e^{-t}\right)
\end{aligned}
$$

is the solution of (6).

$$
\begin{cases}u_{t}-u_{x x}=\frac{1}{\pi} x e^{t}+t\left[2-\frac{2}{\pi} x+\sin (x)\right] & 0 \leq x \leq \pi, t \geq 0 \tag{7}\\ u(0, t)=t^{2} & u(\pi, t)=e^{t} \\ u(x, 0)=\frac{x}{\pi}+\sin (2 x) . & \end{cases}
$$

Solution: As the boundary conditions are non-homogeneous, the first step is to make them homogeneous. To this end, we let

$$
u_{p}(x, t)=(b(t)-a(t)) x / L+a(t)=\left(\frac{e^{t}-t^{2}}{\pi}\right) x+t^{2}
$$

so that $u_{p}(0, t)=t^{2}$ and $u_{p}(\pi, t)=e^{t}$. The second step is to let

$$
v(x, t)=u(x, t)-u_{p}(x, t)
$$

so that the non-homogeneous boundary conditions become homogeneous. Now v solves the nonhomogeneous heat equation

$$
v_{t}-v_{x x}=u_{t}-u_{x x}-\left[\left(u_{p}\right)_{t}-\left(u_{p}\right)_{x x}\right]=\frac{1}{\pi} x e^{t}+t\left[2-\frac{2}{\pi} x+\sin (x)\right]-\left[\left(\frac{e^{t}-2 t}{\pi}\right) x+2 t-0\right]=t \sin (x)
$$

The boundary conditions

$$
v(0, t)=u(0, t)-u_{p}(0, t)=t^{2}-t^{2}=0 \quad \text { and } \quad v(\pi, t)=u(\pi, t)-u_{p}(\pi, t)=e^{t}-e^{t}=0
$$

The initial condition

$$
v(x, 0)=u(x, 0)-u_{p}(x, 0)=\frac{x}{\pi}+\sin (2 x)-\frac{x}{\pi}=\sin (2 x)
$$

Hence, combining all of these we see that v solves

$$
\begin{cases}v_{t}-v_{x x}=t \sin (x) & 0 \leq x \leq \pi, t \geq 0 \tag{8}\\ v(0, t)=0 & v(\pi, t)=0 \\ v(x, 0)=\sin (2 x) & \end{cases}
$$

As v solves the non-homogeneous heat equation with initial conditions, the next step is to look for v_{1}, v_{2} with $v(x, t)=v_{1}(x, t)+v_{2}(x, t)$ where v_{1} solves homogeneous heat equation with the initial condition in (8)

$$
\begin{cases}\left(v_{1}\right)_{t}-\left(v_{1}\right)_{x x}=0 & 0 \leq x \leq \pi, t \geq 0 \tag{9}\\ v_{1}(0, t)=0 & v_{1}(\pi, t)=0 \\ v_{1}(x, 0)=\sin (2 x) & \end{cases}
$$

and v_{2} solves the non-homogeneous heat equation with zero initial condition

$$
\begin{cases}\left(v_{2}\right)_{t}-\left(v_{2}\right)_{x x}=t \sin (x) & 0 \leq x \leq \pi, t \geq 0 \tag{10}\\ v_{2}(0, t)=0 & v_{2}(\pi, t)=0 \\ v_{2}(x, 0)=0 & \end{cases}
$$

We first focus on v_{1}. We know the general solution is

$$
v_{1}(x, t)=\sum_{n=1}^{\infty} C_{n} e^{-n^{2} t} \sin (n x)
$$

Using this and the given initial condition for v_{1} we have

$$
v_{1}(x, t)=\sum_{n=1}^{\infty} C_{n} \sin (n x)=\sin (2 x)
$$

which tells us that $C_{2}=1$ and all other $C_{n}=0$. Hence we have

$$
v_{1}(x, t)=e^{-4 t} \sin (2 x)
$$

We now focus on v_{2}. From Duhamel's principle

$$
v_{2}(x, t)=\int_{0}^{t} \tilde{v}(x, t-s ; s) d s
$$

where $\tilde{v}(x, t ; s)$ solves the following homogeneous heat equation

$$
\begin{cases}\tilde{v}_{t}-\tilde{v}_{x x}=0 & 0 \leq x \leq \pi, t \geq 0 \\ \tilde{v}(0, t ; s)=0 & \tilde{v}(\pi, t ; s)=0 \\ \tilde{v}(x, 0 ; s)=s \sin (x) . & \end{cases}
$$

We know that the general solutions is

$$
\tilde{v}(x, t ; s)=\sum_{n=1}^{\infty} C_{n} e^{-n^{2} t} \sin (n x)
$$

Using this and the initial condition for $\tilde{v}(x, t ; s)$ we get

$$
\tilde{v}(x, 0 ; s)=s \sin (x)=\sum_{n=1}^{\infty} C_{n} \sin (n x)
$$

From this, we see that $C_{1}=s$ and all other $C_{n}=0$. Hence

$$
\tilde{v}(x, t ; s)=s e^{-t} \sin (x)
$$

Using this we get

$$
\begin{aligned}
v_{2}(x, t) & =\int_{0}^{t} \tilde{v}(x, t-s ; s) d s \\
& =\int_{0}^{t} s e^{-(t-s)} \sin (x) d s \\
& =e^{-t} \sin (x) \int_{0}^{t} s e^{s} d s \\
& =e^{-t} \sin (x)\left[t e^{t}-e^{t}+1\right] \\
& =\sin (x)\left[t-1+e^{-} t\right] .
\end{aligned}
$$

Hence

$$
v(x, t)=v_{1}(x, t)+v_{2}(x, t)=e^{-4 t} \sin (2 x)+\sin (x)\left(t-1+e^{-} t\right)
$$

Finally,

$$
u(x, t)=v(x, t)+u_{p}(x, t)=e^{-4 t} \sin (2 x)+\sin (x)\left(t-1+e^{-t}\right)+\left(\frac{e^{t}-t^{2}}{\pi}\right) x+t^{2}
$$

is the solution to (7).

$$
\begin{cases}u_{t}-4 u_{x x}=e^{t} \sin \left(\frac{x}{2}\right)-\sin (t) & 0 \leq x \leq \pi, t \geq 0 \tag{11}\\ u(0, t)=\cos (t) & u_{x}(\pi, t)=0 \\ u(x, 0)=1 & \end{cases}
$$

Solution: As we have a non-homogeneous boundary condition, the first step is to make it homogeneous. That is, we need to find $u_{p}(x, t)$ such that

$$
u_{p}(0, t)=\cos (t) \quad \text { and } \quad\left(u_{p}\right)_{x}(\pi, t)=0
$$

To this end, we mimic the steady-state solution, but cheating a little. That is, let $u_{p}(x, t)=a(t) x+b(t)$ where we are gonna choose $a(t)$ and $b(t)$. Since we want $u_{p}(0, t)=\cos (t)=b(t)$. Hence we have $u_{p}(x, t)=a(t) x+\cos (t)$. On the other hand, $\left(u_{p}\right)_{x}(\pi, t)=a(t)=0$, we get $a(t)=0$. Hence $u_{p}(x, t)=$ $\cos (t)$. The next step is to let

$$
v(x, t)=u(x, t)-u_{p}(x, t)=u(x, t)-\cos (t)
$$

From this we see that $v(x, t)$ satisfies the following non-homogeneous heat equation

$$
v_{t}-4 v_{x x}=u_{t}-4 u_{x x}-\left[\left(u_{p}\right)_{t}-4\left(u_{p}\right)_{x x}\right]=e^{t} \sin \left(\frac{x}{2}\right)-\sin (t)+\sin (t)=e^{t} \sin \left(\frac{x}{2}\right)
$$

The boundary conditions becomes homogeneous

$$
v(0, t)=u(0, t)-\cos (t)=\cos (t)-\cos (t)=0 \quad \text { and } \quad v_{x}(x, t)=u_{x}(x, t)-0=0-0=0
$$

Finally, the initial condition is

$$
v(x, 0)=u(x, 0)-\cos (0)=1-1=0
$$

Hence, v solves a non-homogeneous heat equation

$$
\begin{cases}v_{t}-4 v_{x x}=e^{t} \sin \left(\frac{x}{2}\right) & 0 \leq x \leq \pi, t \geq 0 \tag{12}\\ v(0, t)=0 & v_{x}(\pi, t)=0 \\ v(x, 0)=0 & \end{cases}
$$

Since the initial condition is zero we can right away use the Duhamel's principle to find $v(x, t)$

$$
v(x, t)=\int_{0}^{t} \tilde{v}(x, t-s ; s) d s
$$

where $\tilde{v}(x, t ; s)$ solves the homogeneous Heat equation with homogeneous boundary conditions

$$
\begin{cases}\tilde{v}_{t}-4 \tilde{v}_{x x}=0 & 0 \leq x \leq \pi, t \geq 0 \\ \tilde{v}(0, t ; s)=0 & \tilde{v}_{x}(\pi, t ; s)=0 \\ \tilde{v}(x, 0 ; s)=e^{s} \sin \left(\frac{x}{2}\right) . & \end{cases}
$$

From the first problem, we know the general solution is (with $k=4, L=1$)

$$
\tilde{v}(x, t ; s)=\sum_{n=1}^{\infty} C_{n} \sin \left(\frac{n x}{2}\right) e^{-n^{2} t}
$$

Using the initial condition we can find C_{n}

$$
\tilde{v}(x, 0 ; s)=\sum_{n=1}^{\infty} C_{n} \sin \left(\frac{n x}{2}\right)=e^{s} \sin \left(\frac{x}{2}\right)
$$

which gives us that $C_{1}=e^{s}$ and all other $C_{n}=0$. Hence

$$
\tilde{v}(x, t ; s)=e^{s} \sin \left(\frac{x}{2}\right) e^{-t} .
$$

Using this we can $v(x, t)$

$$
\begin{aligned}
v(x, t) & =\int_{0}^{t} \tilde{v}(x, t-s ; s) d s \\
& =\int_{0}^{t} e^{s} \sin \left(\frac{x}{2}\right) e^{-(t-s)} d s \\
& =\sin \left(\frac{x}{2}\right) e^{-t} \int_{0}^{t} e^{2 s} d s \\
& =\sin \left(\frac{x}{2}\right) e^{-t} \frac{1}{2}\left[e^{2} t-1\right]=\frac{1}{2} \sin \left(\frac{x}{2}\right)\left[e^{t}-e^{-t}\right] .
\end{aligned}
$$

From this we can find the solution to (11)

$$
u(x, t)=v(x, t)+u_{p}(x, t)=\frac{1}{2} \sin \left(\frac{x}{2}\right)\left[e^{t}-e^{-t}\right]+\cos (t)
$$

