UCONN - Math 3435 - Spring 2018 - Problem set 6

Question 1 (Exercise 4.1, 2a) Using the trigonometric identities, find the Fourier series of

$$
f(x)=\cos ^{2}(\pi x) \sin ^{2}(\pi x) \quad \text { when }-1 \leq x \leq 1
$$

Solution: Since

$$
\cos ^{2}(\theta)=\frac{1}{2}(\cos (2 \theta)+1) \quad \text { and } \quad \sin ^{2}(\theta)=1-\cos ^{2}(\theta)
$$

Using these with $\theta=\pi x$ we get

$$
\begin{aligned}
f(x) & =\cos ^{2}(\pi x) \sin ^{2}(\pi x) \\
& =\cos ^{2}(\pi x)\left[1-\cos ^{2}(\pi x)\right] \\
& =\cos ^{2}(\pi x)-\cos ^{4}(\pi x) \\
& =\frac{1}{2}(\cos (2 \pi x)+1)-\left(\frac{1}{2}[\cos (2 \pi x)+1)\right)^{2} \\
& =\frac{1}{2} \cos (2 \pi x)+\frac{1}{2}-\frac{\cos ^{2}(2 \pi x)}{4}-\frac{\cos (2 \pi x)}{2}-\frac{1}{4} \\
& =\frac{1}{2} \cos (2 \pi x)+\frac{1}{2}-\frac{\cos (4 \pi x)}{8}-\frac{1}{8}-\frac{\cos (2 \pi x)}{2}-\frac{1}{4} \\
& =\frac{1}{8}-\frac{1}{8} \cos (4 \pi x)
\end{aligned}
$$

which is the Fourier series $\mathcal{F}(x)$ of $f(x)$.
Question 2 (Exercise 4.1, 2b) Using the trigonometric identities, find the Fourier series of

$$
f(x)=\sin (x)[\sin (x)+\cos (x)]^{2} \quad \text { when }-\pi \leq x \leq \pi
$$

Solution: We again use the above identities to get (additionally, $\sin ^{2}(\theta)+\cos ^{2}(\theta)=1$ and $\sin (2 x)=$ $2 \sin (x) \cos (x))$

$$
\begin{aligned}
f(x) & =\sin (x)[\sin (x)+\cos (x)]^{2}=\sin (x)\left[\sin ^{2}(x)+2 \sin (x) \cos (x)+\cos ^{2}(x)\right] \\
& =\sin (x)[1+\sin (2 x)] \\
& =\sin (x)+\sin (x) \sin (2 x)
\end{aligned}
$$

Moreover, we also use

$$
\sin (\alpha) \sin (\beta)=\frac{1}{2}[\cos (\alpha-\beta)-\cos (\alpha+\beta)]
$$

with $\alpha=x$ and $\beta=2 x$ to get

$$
f(x)=\frac{1}{2} \cos (x)+\sin (x)-\frac{1}{2} \cos (3 x) .
$$

Question 3 (Exercise 4.1, 4a) Find the Fourier series of $f(x)$ on $[-L, L]$

$$
f(x)=\left\{\begin{array}{l}
1 \text { when } 0 \leq x \leq L \\
0 \text { when }-L \leq x<0
\end{array}\right.
$$

Solution: Notice that the function is neither even nor odd. Hence we have to find all the terms. We start with a_{0}

$$
a_{0}=\frac{1}{L} \int_{-L}^{L} f(x) d x=\frac{1}{L} \int_{0}^{L} 1 d x=1
$$

Then $a_{n}, n=1,2, \ldots$,

$$
\begin{aligned}
a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x & =\frac{1}{L} \int_{0}^{L} 1 \cos \left(\frac{n \pi x}{L}\right) d x \\
& =\left.\frac{1}{L} \frac{\sin \left(\frac{n \pi x}{L}\right)}{\frac{n \pi}{L}}\right|_{0} ^{L} \\
& =\frac{1}{L} \frac{\sin (n \pi)}{\frac{n \pi}{L}}-\frac{1}{L} \frac{1}{\frac{n \pi}{L}} \\
& =\frac{\sin (n \pi)}{n \pi}-\frac{0}{n \pi}=0 .
\end{aligned}
$$

We next find $b_{n}, n=1,2, \ldots$,

$$
\begin{aligned}
b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x & =\frac{1}{L} \int_{0}^{L} 1 \sin \left(\frac{n \pi x}{L}\right) d x \\
& =\left.\frac{1}{L}\left[-\frac{\cos \left(\frac{n \pi x}{L}\right)}{\frac{n \pi}{L}}\right]\right|_{0} ^{L} \\
& =-\frac{\cos (n \pi)}{n \pi}+\frac{1}{n \pi}=-\frac{(-1)^{n}}{n \pi}+\frac{1}{n \pi}
\end{aligned}
$$

Hence

$$
\begin{aligned}
\mathcal{F}(x) & =\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{n \pi x}{L}\right)+b_{n} \sin \left(\frac{n \pi x}{L}\right)\right] \\
& =\frac{1}{2}+\sum_{n=1}^{\infty} \frac{1-(-1)^{n}}{\pi n} \sin \left(\frac{n \pi x}{L}\right)
\end{aligned}
$$

Question 4 (Exercise 4.1, 4b) Find the Fourier series of $f(x)$ on $[-L, L]$

$$
f(x)=|x|= \begin{cases}x & \text { when } 0 \leq x \leq L \\ -x & \text { when }-L \leq x<0\end{cases}
$$

Notice that the function $f(x)$ is an even function. Therefore, the Fourier series of $f(x)$ will be a cosine series and all $b_{n}=0$. We first find a_{0} and then a_{n}. We also use the fact that if $G(x)$ is an even function on $[-L, L]$ then

$$
\int_{-L}^{L} G(x) d x=2 \int_{0}^{L} G(x) d x
$$

Using this we have

$$
a_{0}=\frac{1}{L} \int_{-L}^{L} f(x) d x=2 \frac{1}{L} \int_{0}^{L} f(x) d x=2 \frac{1}{L} \int_{0}^{L} x d x=\left.2 \frac{1}{L} \frac{x^{2}}{2}\right|_{0} ^{L}=L
$$

Similarly, we have

$$
\begin{aligned}
a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x & =2 \frac{1}{L} \int_{0}^{L} x \cos \left(\frac{n \pi x}{L}\right) d x \\
& =\frac{2}{L}\left[\left.\frac{x \sin \left(\frac{n \pi x}{L}\right)}{\frac{n \pi}{L}}\right|_{0} ^{L}-\frac{1}{\frac{n \pi}{L}} \int_{0}^{L} \sin \left(\frac{n \pi x}{L}\right) d x\right] \\
& =\frac{2}{L}\left[\frac{L \sin \left(\frac{n \pi L}{L}\right)}{\frac{n \pi}{L}}-0+\left.\frac{\cos \left(\frac{n \pi x}{L}\right)}{\left(\frac{n \pi}{L}\right)^{2}}\right|_{0} ^{L}\right] \\
& =\frac{2}{L}\left[0-0+\frac{\cos \left(\frac{n \pi L}{L}\right)}{\left(\frac{n \pi}{L}\right)^{2}}-\frac{1}{\left(\frac{n \pi}{L}\right)^{2}}\right] \\
& =\frac{2}{L}\left[\frac{(-1)^{n}}{\left(\frac{n \pi}{L}\right)^{2}}-\frac{1}{\left(\frac{n \pi}{L}\right)^{2}}\right] .
\end{aligned}
$$

Hence

$$
a_{n}=\frac{2 L}{\pi^{2} n^{2}}\left((-1)^{n}-1\right)
$$

Hence

$$
\begin{aligned}
\mathcal{F}(x) & =\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{n \pi x}{L}\right)+b_{n} \sin \left(\frac{n \pi x}{L}\right)\right] \\
& =\frac{L}{2}+\sum_{n=1}^{\infty} \frac{2 L}{\pi^{2} n^{2}}\left((-1)^{n}-1\right) \cos \left(\frac{n \pi x}{L}\right) .
\end{aligned}
$$

Question 5 (Problem 2) Let $f(x)$ be given as

$$
f(x)=\left\{\begin{array}{l}
0 \text { when }-\pi \leq x \leq 0 \\
x \text { when } 0 \leq x<\pi
\end{array}\right.
$$

1. Find the Fourier series $\mathcal{F}(x)$ of $f(x)$ on $-\pi \leq x \leq \pi$.
2. Using the first part verify that

$$
\frac{\pi}{4}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)}
$$

3. Using the first part verify also that

$$
\frac{\pi^{2}}{8}=\sum_{n=0}^{\infty} \frac{1}{(2 n+1)^{2}}
$$

Solution: We will first find the Fourier series of $f(x)$. We first find a_{0};

$$
a_{0}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) d x=\frac{1}{\pi} \int_{0}^{\pi} x d x=\left.\frac{1}{\pi} \frac{x^{2}}{2}\right|_{0} ^{\pi}=\frac{1}{\pi} \frac{\pi^{2}}{2}=\frac{\pi}{2}
$$

Then $a_{n}, n=1,2, \ldots$,

$$
\begin{aligned}
a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos \left(\frac{n \pi x}{\pi}\right) d x & =\frac{1}{\pi} \int_{0}^{\pi} x \cos (n x) d x \\
& =\frac{1}{\pi}\left[\left.\frac{x \sin (n x)}{n}\right|_{0} ^{\pi}-\frac{1}{n} \int_{0}^{\pi} \sin (n x) d x\right] \\
& =\frac{1}{\pi}\left[\frac{\pi \sin (\pi n)}{\pi}-0+\left.\frac{1}{n^{2}} \cos (n x)\right|_{0} ^{\pi}\right] \\
& =\frac{1}{\pi}[0-0+\cos (\pi n)-\cos (0)]=\frac{1}{\pi} \frac{1}{n^{2}}\left((-1)^{n}-1\right)
\end{aligned}
$$

where we have used $\cos (\pi n)=(-1)^{n}$. Also when n is even we have $a_{n}=0$. We next find b_{n}

$$
\begin{aligned}
b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin \left(\frac{n \pi x}{\pi}\right) d x & =\frac{1}{\pi} \int_{0}^{\pi} x \sin (n x) d x \\
& =\frac{1}{\pi}\left[-\left.\frac{x \cos (n x)}{n}\right|_{0} ^{\pi}+\frac{1}{n} \int_{0}^{\pi} \cos (n x) d x\right. \\
& =\frac{1}{\pi}\left[-\frac{\pi \cos (\text { pin })}{n}-0+\left.\frac{1}{n^{2}} \sin (n x)\right|_{0} ^{\pi}\right] \\
& =\frac{1}{\pi}\left[-\frac{\pi(-1)^{n}}{n}-0+\frac{1}{n^{2}}[0-0]\right]=-\frac{1}{\pi} \frac{\pi(-1)^{n}}{n} \\
& =\frac{(-1)^{n+1}}{n}
\end{aligned}
$$

Hence we have

$$
\begin{aligned}
\mathcal{F}(x) & =\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{n \pi x}{\pi}+b_{n} \sin \left(\frac{n \pi x}{\pi}\right)\right]\right. \\
& =\frac{\pi}{4}+\sum_{n=1}^{\infty}\left[\frac{1}{\pi} \frac{1}{n^{2}}\left((-1)^{n}-1\right) \cos (n x)+\frac{(-1)^{n+1}}{n} \sin (n x)\right]
\end{aligned}
$$

Now to verify the first identity, we use (we will show this next section) that $\mathcal{F}(x)=f(x)$ on $-\pi<x<$ π and can choose $x=\pi / 2$ to get

$$
\begin{aligned}
\frac{\pi}{2} & =f\left(\frac{\pi}{2}\right) \\
& =\mathcal{F}\left(\frac{\pi}{2}\right)=\frac{\pi}{4}+\sum_{n=1}^{\infty}\left[\frac{1}{\pi} \frac{1}{n^{2}}\left((-1)^{n}-1\right) \cos \left(n \frac{\pi}{2}\right)+\frac{(-1)^{n+1}}{n} \sin \left(n \frac{\pi}{2}\right)\right]
\end{aligned}
$$

Now we need to make couple observations; when $(-1)^{n}-1=0$ when n is even. Also $\cos \left(n \frac{\pi}{2}\right)=0$ when n is odd. Hence the cosine terms are all zero. We only left with sine term and the constant terms. Also, $\sin \left(n \frac{\pi}{2}\right)$ is 1 or -1 when n is odd and it is 0 when n is even. Hence if we let $n=2 k+1$ we have $\sin \left(n \frac{\pi}{2}\right)=\sin \left((2 k+1) \frac{\pi}{2}\right)$ and it is 1 when k is even and it is -1 when k is odd. Hence,

$$
\sin \left(n \frac{\pi}{2}\right)=\sin \left((2 k+1) \frac{\pi}{2}\right)=(-1)^{k} \quad k=0,1,2, \ldots
$$

Combining all of these we have

$$
\begin{aligned}
\frac{\pi}{4} & =\frac{\pi}{2}-\frac{\pi}{4}=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin \left(n \frac{\pi}{2}\right) \\
& =\sum_{k=0}^{\infty} \frac{(-1)^{(2 k+1)+1}}{2 k+1}(-1)^{k} \\
& =\sum_{k=0}^{\infty} \frac{(-1)^{k}}{2 k+1}
\end{aligned}
$$

In order to verify the second identity, we choose $x=0$ which is in $-\pi<x<\pi$ and use $\mathcal{F}(x)=f(x)$ to get

$$
\begin{aligned}
0=f(0) & =\mathcal{F}(0)=\frac{\pi}{4}+\sum_{n=1}^{\infty}\left[\frac{1}{\pi} \frac{1}{n^{2}}\left((-1)^{n}-1\right) \cos (0)+\frac{(-1)^{n+1}}{n} \sin (0)\right] \\
& =\frac{\pi}{4}+\sum_{n=1}^{\infty} \frac{1}{\pi} \frac{1}{n^{2}}\left((-1)^{n}-1\right)
\end{aligned}
$$

Note that $(-1)^{n}-1=0$ when n is even and it is -2 when n is odd. Therefore, if we let $n=2 k+1$ for $k=0,1, \ldots$, we have

$$
-\frac{\pi}{4}=\sum_{n=1}^{\infty} \frac{1}{\pi} \frac{1}{n^{2}}\left((-1)^{n}-1\right)=-2 \sum_{k=0}^{\infty} \frac{1}{\pi} \frac{1}{(2 k+1)^{2}}
$$

which in turn gives us

$$
\frac{\pi^{2}}{8}=\sum_{k=0}^{\infty} \frac{1}{(2 k+1)^{2}}
$$

Question 6 (Problem 3) Let $f(x)$ be given as

$$
f(x)=\left\{\begin{array}{l}
0 \text { when }-\pi \leq x<0 \\
1 \text { when } 0 \leq x<\pi
\end{array}\right.
$$

- Find the Fourier series $\mathcal{F}(x)$ of $f(x)$ on $-\pi \leq x \leq \pi$.
- Using the first part verify that

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{2 n-1}=\frac{\pi}{4}
$$

Solution: We use solution of Question 3 of this HW with $L=\pi$ to get

$$
\begin{aligned}
\mathcal{F}(x) & =\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{n \pi x}{L}\right)+b_{n} \sin \left(\frac{n \pi x}{L}\right)\right] \\
& =\frac{1}{2}+\sum_{n=1}^{\infty} \frac{1-(-1)^{n}}{\pi n} \sin \left(\frac{n \pi x}{\pi}\right)
\end{aligned}
$$

Notice that $1-(-1)^{n}=0$ when n is even and it is 2 when n is odd. Hence if we replace $n=2 k+1$ we have

$$
\mathcal{F}(x)=\frac{1}{2}+\sum_{k=0}^{\infty} \frac{2}{\pi(2 k+1)} \sin ((2 k+1) x)
$$

Using the given hint $\mathcal{F}(x)=f(x)$ on $0<x<\pi$ and choosing $x=\pi / 2$ we get

$$
1=f\left(\frac{\pi}{2}\right)=\mathcal{F}\left(\frac{\pi}{2}\right)=\frac{1}{2}+\sum_{k=0}^{\infty} \frac{2}{\pi(2 k+1)} \sin \left((2 k+1) \frac{\pi}{2}\right)
$$

After some algebra we get

$$
\frac{\pi}{4}=\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{2 k-1}=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{2 k+1}
$$

