UCONN - Math 3435 - Spring 2018 - Problem set 6

Question 1 (Exercise 4.1, 2a) Using the trigonometric identities, find the Fourier series of
f(x) = cos?(mx) sin®(7tx) when —1<x < 1.

Solution: Since .
cos?(6) = 5((:05(29) +1) and sin?(f) =1 — cos?(9)
Using these with 6 = 7rx we get
f(x) = cos?(rrx) sin®(7rx)
= cos?(7rx)[1 — cos?(7x)]
= cos?(mrx) — cos(mx)

= 1(cos(27tx) +1) - (%[cos(an) +1))?
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which is the Fourier series F (x) of f(x).
Question 2 (Exercise 4.1, 2b) Using the trigonometric identities, find the Fourier series of
f(x) = sin(x)[sin(x) + cos(x)]* when —m < x < .

Solution: We again use the above identities to get (additionally, sin?(6) + cos?(8) = 1 and sin(2x) =
2ssin(x) cos(x))

f(x) = sin(x)[sin(x) + cos(x)]* = sin(x)[sin?(x) + 2sin(x) cos(x) + cos?(x)]
= sin(x)[1 + sin(2x)]
= sin(x) + sin(x) sin(2x).

Moreover, we also use .
sin(a) sin(B) = E[cos(cx —B) — cos(a + B)]

with « = x and B = 2x to get

f(x) = %cos(x) + sin(x) — %cos(3x).

Question 3 (Exercise 4.1, 4a) Find the Fourier series of f(x) on [—L, L]

Flx) = 1 when 0 <x<IL,
1 0 when —L<x<0.



Solution: Notice that the function is neither even nor odd. Hence we have to find all the terms. We

start with ag
L / flx / ldx =
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Question 4 (Exercise 4.1, 4b) Find the Fourier series of f(x) on [—L, L]

Flx) = |x| = x  when 0<x<IL,
- 1 —x when —L<x<0.

Notice that the function f(x) is an even function. Therefore, the Fourier series of f(x) will be a
cosine series and all b, = 0. We first find a9 and then a,. We also use the fact that if G(x) is an even

function on [—L, L] then
L L
/ G(x)dx:2/ G(x)dx
—L 0

Using this we have
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Similarly, we have
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Question 5 (Problem 2) Let f(x) be given as

Flx) = 0 when —m<x<0,
] x when 0 < x < 7.

1. Find the Fourier series F(x) of f(x) on —m < x < 1.

2. Using the first part verify that

L G,
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3. Using the first part verify also that
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where we have used cos(7tn) = (—1)". Also when 7 is even we have a4, = 0. We next find b,
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Hence we have
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Now to verify the first identity, we use (we will show this next section) that F(x) = f(x) on —71 < x <
7t and can choose x = 71/2 to get
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Now we need to make couple observations; when (—1)" —1 = 0 when 7 is even. Also cos(n%) = 0
when 7 is odd. Hence the cosine terms are all zero. We only left with sine term and the constant terms.
Also, sin(n%) is 1 or —1 when 7 is odd and it is 0 when 7 is even. Hence if we let n = 2k 4 1 we have
sin(n%) = sin((2k 4+ 1)%) and it is 1 when k is even and it is —1 when k is odd. Hence,

sin(ng) = sin((2k + 1)E
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Combining all of these we have
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In order to verify the second identity, we choose x = 0 which isin —71 < x < 7t and use F(x) = f(x)
to get

&1 , (-1t
0=f(0) =F(0) = Z+ Z[En ((—-1) —1)cos(0)+Tsm(0)]
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Note that (—1)" — 1 = 0 when 7 is even and it is —2 when 7 is odd. Therefore, if we let n = 2k + 1 for
k=0,1,...,wehave
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which in turn gives us
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Question 6 (Problem 3) Let f(x) be given as

Flx) = 0 when —mt<x<0,
11 when 0 < x < 1.

e Find the Fourier series F(x) of f(x) on —mt < x < 71.

o Using the first part verify that
= (—1)"

T
2n—1 4

n=1

Solution: We use solution of Question 3 of this HW with L = 7 to get

2 ay cos( —I—bn s1n(n7L[x)]

I\J|*—‘ ng

i )n sin(n;x).

Notice that 1 — (—1)" = 0 when # is even and it is 2 when 7 is odd. Hence if we replace n = 2k + 1 we

have
1 ad 2 .
.7:(3() = E +k§)m sm((2k+ 1)x)

Using the given hint F(x) = f(x) on 0 < x < 7t and choosing x = 71/2 we get
1= =F =iy 2 snr+ 1))
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After some algebra we get




