
UCONN - Math 3435 - Spring 2018 - Problem set 7

Question 1 (Exercise 5.2, 1a) Find the solution of
utt = a2uxx 0 ≤ x ≤ L, −∞ < t < ∞
u(0, t) = 0 = u(L, t) −∞ < t < ∞
u(x, 0) = 3 sin(πx

L )− sin(4πx
L ) 0 ≤ x ≤ L

ut(x, 0) = 1
2 sin(2πx

L ) 0 ≤ x ≤ L.

Solution: From Proposition 1 we know that the general solution is

u(x, t) =
∞

∑
n=1

[An sin(
nπat

L
) + Bn cos(

nπat
L

)] sin(
nπx

L
).

Using given initial conditions we will find An and Bn. Using the first initial condition and the general
solution we have

u(x, 0) = 3 sin(
πx
L
)− sin(

4πx
L

) =
∞

∑
n=1

[An0 + Bn cos(0)] sin(
nπx

L
)

Hence we get

3 sin(
πx
L
)− sin(

4πx
L

) =
∞

∑
n=1

Bn sin(
nπx

L
)

From this we see that B1 = 3 and B4 = −1 and all other Bn = 0. We next use the second initial condition
to find An. To this end, we first see

ut(x, t) =
∞

∑
n=1

[An
nπa

L
cos(

nπat
L

)− Bn
nπa

L
sin(

nπat
L

)] sin(
nπx

L
).

Evaluating this at t = 0 we have

ut(x, 0) =
1
2

sin(
2πx

L
) =

∞

∑
n=1

[An
nπa

L
cos(0)− Bn

nπa
L

sin(0)] sin(
nπx

L
).

From this we get
1
2

sin(
2πx

L
) =

∞

∑
n=1

[An
nπa

L
sin(

nπx
L

).

Hence A2
2πa

L = 1/2 and all other An = 0. Hence A2 = L/(2nπa)Combining all these, we get

u(x, t) = A2 sin(
2πat

L
) sin(

2πx
L

) + B1 cos(
πat

L
) sin(

nπx
L

) + B4 cos(
4πat

L
) sin(

4πx
L

)

=
L

4πa
sin(

2πat
L

) sin(
2πx

L
) + 3 cos(

πat
L

) sin(
πx
L
)− cos(

4πat
L

) sin(
4πx

L
)

Question 2 (Exercise 5.2, 1c) Find the solution of
utt = a2uxx 0 ≤ x ≤ L, −∞ < t < ∞
u(0, t) = 0 = u(L, t) −∞ < t < ∞
u(x, 0) = 0 0 ≤ x ≤ L
ut(x, 0) = sin(πx

L ) cos2(πx
L ) 0 ≤ x ≤ L.
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Solution: We first use the given hint that we need to rewrite sin(πx
L ) cos2(πx

L ) without the square. We
can use the following trig identity

cos2(
πx
L
) = 1− sin2(

πx
L
) and sin2(

πx
L
) =

1
2
[1− cos(

2πx
L

)]

and
sin(

πx
L
) cos(

2πx
L

) =
1
2
[sin(

πx
L

+
2πx

L
) + sin(

πx
L
− 2πx

L
)

then

sin(
πx
L
) cos2(

πx
L
) = sin(

πx
L
)− sin3(

πx
L
) = sin(

πx
L
)− sin2(

πx
L
) sin(

πx
L
)

= sin(
πx
L
)− sin(

πx
L
)

1
2
[1− cos(

2πx
L

)]

=
1
2

sin(
πx
L
) +

1
2

sin(
πx
L
) cos(

2πx
L

)

=
1
2

sin(
πx
L
) +

1
4
[sin(

πx
L

+
2πx

L
) + sin(

πx
L
− 2πx

L
)]

=
1
4

sin(
πx
L
) +

1
4

sin(
3πx

L
).

Now we can solve the Wave equation. Once again from Proposition 1 we know that the general solution
is

u(x, t) =
∞

∑
n=1

[An sin(
nπat

L
) + Bn cos(

nπat
L

)] sin(
nπx

L
).

To find An and Bn we use the initial conditions.

u(x, 0) = 0 =
∞

∑
n=1

[An sin(0) + Bn cos(0)] sin(
nπx

L
).

From this we get Bn = 0 for all n = 1, 2, . . .. Similarly,

ut(x, t) =
∞

∑
n=1

[An
nπa

L
cos(

nπat
L

)− Bn
nπa

L
sin(

nπat
L

)] sin(
nπx

L
).

Evaluating this at t = 0 we have

ut(x, 0) =
1
4

sin(
πx
L
) +

1
4

sin(
3πx

L
) =

∞

∑
n=1

[An
nπa

L
cos(0)− Bn

nπa
L

sin(0)] sin(
nπx

L
).

Therefore
1
4

sin(
πx
L
) +

1
4

sin(
3πx

L
) =

∞

∑
n=1

[An
nπa

L
sin(

nπx
L

)

From this we get A1
πa
L = 1/4 and A3

3πa
L = 1/4 and all other An = 0. That is, A1 = L/(4πa) and

A3 = L/(12πa). Collecting all of these we get

u(x, t) = A1 sin(
πat

L
) sin(

πx
L
) + A3 sin(

3πat
L

) sin(
3πx

L
)

=
L

4πa
sin(

πat
L

) sin(
πx
L
) +

L
12πa

sin(
3πat

L
) sin(

3πx
L

).
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Question 3 (Exercise 5.2, 5a) Let v(x, t) and w(x, t) be two C2 solutions of the problem{
utt = a2uxx 0 ≤ x ≤ L, −∞ < t < ∞
u(0, t) = 0 = u(L, t) −∞ < t < ∞.

Show that
d
dt

∫ L

0
[a2vx(x, t)wx(x, t) + vt(x, t)wt(x, t)]dx = 0.

Solution: We can take the derivative inside the integral as we have C2 solutions. Therefore,

d
dt

∫ L

0
[a2vx(x, t)wx(x, t) + vt(x, t)wt(x, t)]dx =

∫ L

0

d
dt
[a2vx(x, t)wx(x, t) + vt(x, t)wt(x, t)]dx

=
∫ L

0
[a2vxtwx + a2vxwxt + vttwt + vtwtt]dx.

Since v and w are solutions then we can replace vtt by a2vxx and wtt by a2wxx to get

d
dt

∫ L

0
[a2vx(x, t)wx(x, t) + vt(x, t)wt(x, t)]dx =

∫ L

0
[a2vxtwx + a2vxwxt + vttwt + vtwtt]dx

=
∫ L

0
[a2vxtwx + a2vxwxt + a2vxxwt + vta2wxx]dx

= a2
∫ L

0
[vxtwx + vxwxt + vxxwt + vtwxx]dx

= a2
∫ L

0
(vtwx + vxwt)xdx

= a2[vtwx + vxwt]
x=L
x=0

= a2[vt(L, t)wx(L, t) + vx(L, t)wt(L, t)− vt(0, t)wx(0, t)− vx(0, t)wt(0, t)].

Notice that as v, w solve the Wave equation with boundary conditions we have v(L, t) = 0 which gives
us vt(L, t) = 0. Similarly, it is true for w; wt(L, t) = 0. Likewise, v(0, t) = 0 which gives us vt(0, t) = 0.
Similarly, it is true for w; wt(0, t) = 0. Using these above, we have

d
dt

∫ L

0
[a2vx(x, t)wx(x, t) + vt(x, t)wt(x, t)]dx

= a2[vt(L, t)wx(L, t) + vx(L, t)wt(L, t)− vt(0, t)wx(0, t)− vx(0, t)wt(0, t)] = 0.

Question 4 (Exercise 5.2, 9) Use the separation of variables to find all product solutions of the problem (with
k > 0)) {

utt = a2uxx − kut 0 ≤ x ≤ L, −∞ < t < ∞
u(0, t) = 0 = u(L, t) −∞ < t < ∞.

for the string with air resistance and fixed ends.
Solution: Let u(x, t) = X(x)T(t) be the separable solutions. Then

ut = XT′, utt = XT′′, and uxx = X′′T.

Note that we we can rewrite the equation utt = a2uxx − kut as utt − a2uxx + kut = 0. Hence

0 = utt − a2uxx + kut = XT′′ − a2X′′T − kXT′.
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Moving X’s one side and T’s other side we get

X′′

X
=

T′′ − kT′

a2T
= λ.

From this we get two differential equations

X′′ − λX = 0 and T′′ − kT′ − a2λT = 0.

We now rewrite the boundary conditions in terms of X and T.

u(0, t) = X(0)T(t) = 0 and u(L, t) = X(L)T(t) = 0.

From these we see that X(0) = 0 = X(L). (Otherwise, we get the trivial solution). From the Heat part,
we know that the equation with boundary conditions

X′′ − λX = 0 and X(0) = 0 = X(L)

has solutions only when λ < 0, say λ = −m2. Indeed, we have X′′−λX = X′′+m2X = 0 and solutions
are

X(x) = A sin(mx) + B cos(mx).
Using the boundary values we have

X(0) = 0 = B.
Hence X(x) = A sin(mx). Using the second boundary value we have

X(L) = 0 = A sin(mL)

and this happens when mL = nπ for n = 1, 2, . . .. Therefore, m = nπ/L and λ = −m2 = −(nπ/L)2.
Solutions are (we neglect the constant A as we will have constants coming from second equation corre-
sponding to T as we did earlier while dealing with the Heat equation)

Xn(x) = sin(
nπx

L
) for n = 1, 2, . . . .

We now return to differential equation for T and we will solve that equation when λ = −m2 =
−(nπ/L)2

0 = T′′ − kT′ − a2λT = T′′ − kT′ +
a2n2π2

L2 T.

The corresponding characteristic equation is

r2 − kr +
a2n2π2

L2 = 0

and we shall find the roots of this equation.

(r− k
2
)2 − k2

4
+

a2n2π2

L2 = 0

From this we get

r1,2 =
k
2
±
√

k2

4
− a2n2π2

L2 .

Hence solutions are
T(t) = Aner1t + Bner2t

Combining this with the solution correspond to X we get

u(x, t) = X(x)T(t) =
∞

∑
n=1

Xn(x)Tn(t) =
∞

∑
n=1

[Aner1t + Bner2t] sin(
nπx

L
)

where r1 and r2 are roots we found above.
Here notice that k2

4 −
a2n2π2

L2 will be negative for some n and in this case we have solutions sine and
cosine but we still can write them as exponential by using a well-known identity.
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