UCONN - Math 3435 - Spring 2018 - Problem set 7

Question 1 (Exercise 5.2, 1a) Find the solution of

$$
\begin{cases}u_{t t}=a^{2} u_{x x} & 0 \leq x \leq L,-\infty<t<\infty \\ u(0, t)=0=u(L, t) & -\infty<t<\infty \\ u(x, 0)=3 \sin \left(\frac{\pi x}{L}\right)-\sin \left(\frac{4 \pi x}{L}\right) & 0 \leq x \leq L \\ u_{t}(x, 0)=\frac{1}{2} \sin \left(\frac{2 \pi x}{L}\right) & 0 \leq x \leq L\end{cases}
$$

Solution: From Proposition 1 we know that the general solution is

$$
u(x, t)=\sum_{n=1}^{\infty}\left[A_{n} \sin \left(\frac{n \pi a t}{L}\right)+B_{n} \cos \left(\frac{n \pi a t}{L}\right)\right] \sin \left(\frac{n \pi x}{L}\right)
$$

Using given initial conditions we will find A_{n} and B_{n}. Using the first initial condition and the general solution we have

$$
u(x, 0)=3 \sin \left(\frac{\pi x}{L}\right)-\sin \left(\frac{4 \pi x}{L}\right)=\sum_{n=1}^{\infty}\left[A_{n} 0+B_{n} \cos (0)\right] \sin \left(\frac{n \pi x}{L}\right)
$$

Hence we get

$$
3 \sin \left(\frac{\pi x}{L}\right)-\sin \left(\frac{4 \pi x}{L}\right)=\sum_{n=1}^{\infty} B_{n} \sin \left(\frac{n \pi x}{L}\right)
$$

From this we see that $B_{1}=3$ and $B_{4}=-1$ and all other $B_{n}=0$. We next use the second initial condition to find A_{n}. To this end, we first see

$$
u_{t}(x, t)=\sum_{n=1}^{\infty}\left[A_{n} \frac{n \pi a}{L} \cos \left(\frac{n \pi a t}{L}\right)-B_{n} \frac{n \pi a}{L} \sin \left(\frac{n \pi a t}{L}\right)\right] \sin \left(\frac{n \pi x}{L}\right)
$$

Evaluating this at $t=0$ we have

$$
u_{t}(x, 0)=\frac{1}{2} \sin \left(\frac{2 \pi x}{L}\right)=\sum_{n=1}^{\infty}\left[A_{n} \frac{n \pi a}{L} \cos (0)-B_{n} \frac{n \pi a}{L} \sin (0)\right] \sin \left(\frac{n \pi x}{L}\right)
$$

From this we get

$$
\frac{1}{2} \sin \left(\frac{2 \pi x}{L}\right)=\sum_{n=1}^{\infty}\left[A_{n} \frac{n \pi a}{L} \sin \left(\frac{n \pi x}{L}\right)\right.
$$

Hence $A_{2} \frac{2 \pi a}{L}=1 / 2$ and all other $A_{n}=0$. Hence $A_{2}=L /(2 n \pi a)$ Combining all these, we get

$$
\begin{aligned}
u(x, t) & =A_{2} \sin \left(\frac{2 \pi a t}{L}\right) \sin \left(\frac{2 \pi x}{L}\right)+B_{1} \cos \left(\frac{\pi a t}{L}\right) \sin \left(\frac{n \pi x}{L}\right)+B_{4} \cos \left(\frac{4 \pi a t}{L}\right) \sin \left(\frac{4 \pi x}{L}\right) \\
& =\frac{L}{4 \pi a} \sin \left(\frac{2 \pi a t}{L}\right) \sin \left(\frac{2 \pi x}{L}\right)+3 \cos \left(\frac{\pi a t}{L}\right) \sin \left(\frac{\pi x}{L}\right)-\cos \left(\frac{4 \pi a t}{L}\right) \sin \left(\frac{4 \pi x}{L}\right)
\end{aligned}
$$

Question 2 (Exercise 5.2,1c) Find the solution of

$$
\begin{cases}u_{t t}=a^{2} u_{x x} & 0 \leq x \leq L,-\infty<t<\infty \\ u(0, t)=0=u(L, t) & -\infty<t<\infty \\ u(x, 0)=0 & 0 \leq x \leq L \\ u_{t}(x, 0)=\sin \left(\frac{\pi x}{L}\right) \cos ^{2}\left(\frac{\pi x}{L}\right) & 0 \leq x \leq L\end{cases}
$$

Solution: We first use the given hint that we need to rewrite $\sin \left(\frac{\pi x}{L}\right) \cos ^{2}\left(\frac{\pi x}{L}\right)$ without the square. We can use the following trig identity

$$
\cos ^{2}\left(\frac{\pi x}{L}\right)=1-\sin ^{2}\left(\frac{\pi x}{L}\right) \quad \text { and } \quad \sin ^{2}\left(\frac{\pi x}{L}\right)=\frac{1}{2}\left[1-\cos \left(\frac{2 \pi x}{L}\right)\right]
$$

and

$$
\sin \left(\frac{\pi x}{L}\right) \cos \left(\frac{2 \pi x}{L}\right)=\frac{1}{2}\left[\sin \left(\frac{\pi x}{L}+\frac{2 \pi x}{L}\right)+\sin \left(\frac{\pi x}{L}-\frac{2 \pi x}{L}\right)\right.
$$

then

$$
\begin{aligned}
\sin \left(\frac{\pi x}{L}\right) \cos ^{2}\left(\frac{\pi x}{L}\right) & =\sin \left(\frac{\pi x}{L}\right)-\sin ^{3}\left(\frac{\pi x}{L}\right)=\sin \left(\frac{\pi x}{L}\right)-\sin ^{2}\left(\frac{\pi x}{L}\right) \sin \left(\frac{\pi x}{L}\right) \\
& =\sin \left(\frac{\pi x}{L}\right)-\sin \left(\frac{\pi x}{L}\right) \frac{1}{2}\left[1-\cos \left(\frac{2 \pi x}{L}\right)\right] \\
& =\frac{1}{2} \sin \left(\frac{\pi x}{L}\right)+\frac{1}{2} \sin \left(\frac{\pi x}{L}\right) \cos \left(\frac{2 \pi x}{L}\right) \\
& =\frac{1}{2} \sin \left(\frac{\pi x}{L}\right)+\frac{1}{4}\left[\sin \left(\frac{\pi x}{L}+\frac{2 \pi x}{L}\right)+\sin \left(\frac{\pi x}{L}-\frac{2 \pi x}{L}\right)\right] \\
& =\frac{1}{4} \sin \left(\frac{\pi x}{L}\right)+\frac{1}{4} \sin \left(\frac{3 \pi x}{L}\right) .
\end{aligned}
$$

Now we can solve the Wave equation. Once again from Proposition 1 we know that the general solution is

$$
u(x, t)=\sum_{n=1}^{\infty}\left[A_{n} \sin \left(\frac{n \pi a t}{L}\right)+B_{n} \cos \left(\frac{n \pi a t}{L}\right)\right] \sin \left(\frac{n \pi x}{L}\right)
$$

To find A_{n} and B_{n} we use the initial conditions.

$$
u(x, 0)=0=\sum_{n=1}^{\infty}\left[A_{n} \sin (0)+B_{n} \cos (0)\right] \sin \left(\frac{n \pi x}{L}\right)
$$

From this we get $B_{n}=0$ for all $n=1,2, \ldots$ Similarly,

$$
u_{t}(x, t)=\sum_{n=1}^{\infty}\left[A_{n} \frac{n \pi a}{L} \cos \left(\frac{n \pi a t}{L}\right)-B_{n} \frac{n \pi a}{L} \sin \left(\frac{n \pi a t}{L}\right)\right] \sin \left(\frac{n \pi x}{L}\right)
$$

Evaluating this at $t=0$ we have

$$
u_{t}(x, 0)=\frac{1}{4} \sin \left(\frac{\pi x}{L}\right)+\frac{1}{4} \sin \left(\frac{3 \pi x}{L}\right)=\sum_{n=1}^{\infty}\left[A_{n} \frac{n \pi a}{L} \cos (0)-B_{n} \frac{n \pi a}{L} \sin (0)\right] \sin \left(\frac{n \pi x}{L}\right)
$$

Therefore

$$
\frac{1}{4} \sin \left(\frac{\pi x}{L}\right)+\frac{1}{4} \sin \left(\frac{3 \pi x}{L}\right)=\sum_{n=1}^{\infty}\left[A_{n} \frac{n \pi a}{L} \sin \left(\frac{n \pi x}{L}\right)\right.
$$

From this we get $A_{1} \frac{\pi a}{L}=1 / 4$ and $A_{3} \frac{3 \pi a}{L}=1 / 4$ and all other $A_{n}=0$. That is, $A_{1}=L /(4 \pi a)$ and $A_{3}=L /(12 \pi a)$. Collecting all of these we get

$$
\begin{aligned}
u(x, t) & =A_{1} \sin \left(\frac{\pi a t}{L}\right) \sin \left(\frac{\pi x}{L}\right)+A_{3} \sin \left(\frac{3 \pi a t}{L}\right) \sin \left(\frac{3 \pi x}{L}\right) \\
& =\frac{L}{4 \pi a} \sin \left(\frac{\pi a t}{L}\right) \sin \left(\frac{\pi x}{L}\right)+\frac{L}{12 \pi a} \sin \left(\frac{3 \pi a t}{L}\right) \sin \left(\frac{3 \pi x}{L}\right)
\end{aligned}
$$

Question 3 (Exercise 5.2,5a) Let $v(x, t)$ and $w(x, t)$ be two C^{2} solutions of the problem

$$
\begin{cases}u_{t t}=a^{2} u_{x x} & 0 \leq x \leq L,-\infty<t<\infty \\ u(0, t)=0=u(L, t) & -\infty<t<\infty\end{cases}
$$

Show that

$$
\frac{d}{d t} \int_{0}^{L}\left[a^{2} v_{x}(x, t) w_{x}(x, t)+v_{t}(x, t) w_{t}(x, t)\right] d x=0
$$

Solution: We can take the derivative inside the integral as we have C^{2} solutions. Therefore,

$$
\begin{aligned}
\frac{d}{d t} \int_{0}^{L}\left[a^{2} v_{x}(x, t) w_{x}(x, t)+v_{t}(x, t) w_{t}(x, t)\right] d x & =\int_{0}^{L} \frac{d}{d t}\left[a^{2} v_{x}(x, t) w_{x}(x, t)+v_{t}(x, t) w_{t}(x, t)\right] d x \\
& =\int_{0}^{L}\left[a^{2} v_{x t} w_{x}+a^{2} v_{x} w_{x t}+v_{t t} w_{t}+v_{t} w_{t t}\right] d x
\end{aligned}
$$

Since v and w are solutions then we can replace $v_{t t}$ by $a^{2} v_{x x}$ and $w_{t t}$ by $a^{2} w_{x x}$ to get

$$
\begin{aligned}
\frac{d}{d t} & \int_{0}^{L}\left[a^{2} v_{x}(x, t) w_{x}(x, t)+v_{t}(x, t) w_{t}(x, t)\right] d x=\int_{0}^{L}\left[a^{2} v_{x t} w_{x}+a^{2} v_{x} w_{x t}+v_{t t} w_{t}+v_{t} w_{t t}\right] d x \\
& =\int_{0}^{L}\left[a^{2} v_{x t} w_{x}+a^{2} v_{x} w_{x t}+a^{2} v_{x x} w_{t}+v_{t} a^{2} w_{x x}\right] d x \\
& =a^{2} \int_{0}^{L}\left[v_{x t} w_{x}+v_{x} w_{x t}+v_{x x} w_{t}+v_{t} w_{x x}\right] d x \\
& =a^{2} \int_{0}^{L}\left(v_{t} w_{x}+v_{x} w_{t}\right)_{x} d x \\
& =a^{2}\left[v_{t} w_{x}+v_{x} w_{t}\right]_{x=0}^{x=L} \\
& =a^{2}\left[v_{t}(L, t) w_{x}(L, t)+v_{x}(L, t) w_{t}(L, t)-v_{t}(0, t) w_{x}(0, t)-v_{x}(0, t) w_{t}(0, t)\right]
\end{aligned}
$$

Notice that as v, w solve the Wave equation with boundary conditions we have $v(L, t)=0$ which gives us $v_{t}(L, t)=0$. Similarly, it is true for $w ; w_{t}(L, t)=0$. Likewise, $v(0, t)=0$ which gives us $v_{t}(0, t)=0$. Similarly, it is true for $w ; w_{t}(0, t)=0$. Using these above, we have

$$
\begin{aligned}
& \frac{d}{d t} \int_{0}^{L}\left[a^{2} v_{x}(x, t) w_{x}(x, t)+v_{t}(x, t) w_{t}(x, t)\right] d x \\
& \quad=a^{2}\left[v_{t}(L, t) w_{x}(L, t)+v_{x}(L, t) w_{t}(L, t)-v_{t}(0, t) w_{x}(0, t)-v_{x}(0, t) w_{t}(0, t)\right]=0
\end{aligned}
$$

Question 4 (Exercise $5.2,9$) Use the separation of variables to find all product solutions of the problem (with $k>0$)

$$
\begin{cases}u_{t t}=a^{2} u_{x x}-k u_{t} & 0 \leq x \leq L,-\infty<t<\infty \\ u(0, t)=0=u(L, t) & -\infty<t<\infty\end{cases}
$$

for the string with air resistance and fixed ends.
Solution: Let $u(x, t)=X(x) T(t)$ be the separable solutions. Then

$$
u_{t}=X T^{\prime}, \quad u_{t t}=X T^{\prime \prime}, \quad \text { and } \quad u_{x x}=X^{\prime \prime} T
$$

Note that we we can rewrite the equation $u_{t t}=a^{2} u_{x x}-k u_{t}$ as $u_{t t}-a^{2} u_{x x}+k u_{t}=0$. Hence

$$
0=u_{t t}-a^{2} u_{x x}+k u_{t}=X T^{\prime \prime}-a^{2} X^{\prime \prime} T-k X T^{\prime}
$$

Moving X^{\prime} s one side and T's other side we get

$$
\frac{X^{\prime \prime}}{X}=\frac{T^{\prime \prime}-k T^{\prime}}{a^{2} T}=\lambda
$$

From this we get two differential equations

$$
X^{\prime \prime}-\lambda X=0 \quad \text { and } \quad T^{\prime \prime}-k T^{\prime}-a^{2} \lambda T=0
$$

We now rewrite the boundary conditions in terms of X and T.

$$
u(0, t)=X(0) T(t)=0 \quad \text { and } \quad u(L, t)=X(L) T(t)=0 .
$$

From these we see that $X(0)=0=X(L)$. (Otherwise, we get the trivial solution). From the Heat part, we know that the equation with boundary conditions

$$
X^{\prime \prime}-\lambda X=0 \quad \text { and } \quad X(0)=0=X(L)
$$

has solutions only when $\lambda<0$, say $\lambda=-m^{2}$. Indeed, we have $X^{\prime \prime}-\lambda X=X^{\prime \prime}+m^{2} X=0$ and solutions are

$$
X(x)=A \sin (m x)+B \cos (m x)
$$

Using the boundary values we have

$$
X(0)=0=B
$$

Hence $X(x)=A \sin (m x)$. Using the second boundary value we have

$$
X(L)=0=A \sin (m L)
$$

and this happens when $m L=n \pi$ for $n=1,2, \ldots$. Therefore, $m=n \pi / L$ and $\lambda=-m^{2}=-(n \pi / L)^{2}$. Solutions are (we neglect the constant A as we will have constants coming from second equation corresponding to T as we did earlier while dealing with the Heat equation)

$$
X_{n}(x)=\sin \left(\frac{n \pi x}{L}\right) \text { for } n=1,2, \ldots
$$

We now return to differential equation for T and we will solve that equation when $\lambda=-m^{2}=$ $-(n \pi / L)^{2}$

$$
0=T^{\prime \prime}-k T^{\prime}-a^{2} \lambda T=T^{\prime \prime}-k T^{\prime}+\frac{a^{2} n^{2} \pi^{2}}{L^{2}} T
$$

The corresponding characteristic equation is

$$
r^{2}-k r+\frac{a^{2} n^{2} \pi^{2}}{L^{2}}=0
$$

and we shall find the roots of this equation.

$$
\left(r-\frac{k}{2}\right)^{2}-\frac{k^{2}}{4}+\frac{a^{2} n^{2} \pi^{2}}{L^{2}}=0
$$

From this we get

$$
r_{1,2}=\frac{k}{2} \pm \sqrt{\frac{k^{2}}{4}-\frac{a^{2} n^{2} \pi^{2}}{L^{2}}}
$$

Hence solutions are

$$
T(t)=A_{n} e^{r_{1} t}+B_{n} e^{r_{2} t}
$$

Combining this with the solution correspond to X we get

$$
u(x, t)=X(x) T(t)=\sum_{n=1}^{\infty} X_{n}(x) T_{n}(t)=\sum_{n=1}^{\infty}\left[A_{n} e^{r_{1} t}+B_{n} e^{r_{2} t}\right] \sin \left(\frac{n \pi x}{L}\right)
$$

where r_{1} and r_{2} are roots we found above.
Here notice that $\frac{k^{2}}{4}-\frac{a^{2} n^{2} \pi^{2}}{L^{2}}$ will be negative for some n and in this case we have solutions sine and cosine but we still can write them as exponential by using a well-known identity.

