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Question 1 (Exercise 5.2, 1a) Find the solution of

utt = a2uxx −∞ < x < ∞, −∞ < t < ∞
u(x, 0) = x2 −∞ < x < ∞,
ut(x, 0) = x −∞ < x < ∞.

Solution: We shall use the D’Alembert’s formula to find the solution.

u(x, t) =
1
2
[ f (x + at) + f (x− at)] +

1
2a

∫ x+at

x−at
g(r)dr

where here f (x) = x2 and g(x) = x. Hence we have

u(x, t) =
1
2
[(x + at)2 + (x− at)2] +

1
2a

∫ x+at

x−at
rdr =

1
2
[x2 + 2xat + a2t2 + x2 − 2xat + a2t2 +

1
2a

r2

2
|x+at
x−at

= x2 + a2t2 +
1
4a

[(x + at)2 − (x− at)2]

= x2 + a2t2 +
1
4a

4axt

= x2 + a2t2 + xt.

Question 2 (Exercise 5.2, 1c) Find the solution of utt = a2uxx −∞ < x < ∞, −∞ < t < ∞
u(x, 0) = 0 −∞ < x < ∞,
ut(x, 0) = 1 −∞ < x < ∞.

Solution: Here f (x) = 0 and g(x) = 1 where

u(x, t) =
1
2
[ f (x + at) + f (x− at)] +

1
2a

∫ x+at

x−at
g(r)dr.

Hence

u(x, t) = 0 +
1
2a

∫ x+at

x−at
1dr =

1
2a

r|x+at
x−at = t.

Question 3 (Exercise 5.2, 1d) Find the solution of utt = a2uxx −∞ < x < ∞, −∞ < t < ∞
u(x, 0) = 1 −∞ < x < ∞,
ut(x, 0) = 0 −∞ < x < ∞.

Solution: Here f (x) = 1 and g(x) = 0 where

u(x, t) =
1
2
[ f (x + at) + f (x− at)] +

1
2a

∫ x+at

x−at
g(r)dr.

Hence
u(x, t) =

1
2
[1 + 1] + 0 = 1.
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Question 4 (Exercise 5.2, 1e) Find the solution of utt = a2uxx −∞ < x < ∞, −∞ < t < ∞
u(x, 0) = sin(x) −∞ < x < ∞,
ut(x, 0) = a cos(x) −∞ < x < ∞.

Solution: Here f (x) = sin(x) and g(x) = a cos(x) where

u(x, t) =
1
2
[sin(x + at) + sin(x− at)] +

1
2a

∫ x+at

x−at
a cos(r)dr.

Hence

u(x, t) =
1
2
[sin(x + at) + sin(x− at)] +

1
2a

∫ x+at

x−at
a cos(r)dr

=
1
2
[sin(x + at) + sin(x− at)] +

1
2

sin(r)|x+at
x−at

=
1
2
[sin(x + at) + sin(x− at)] +

1
2
[sin(x + at)− sin(x− at)]

= sin(x + at).

Question 5 (Exercise 5.2, 6) Let u(x, t) be a solution to
utt = a2uxx −∞ < x < ∞, −∞ < t < ∞
u(x, 0) = x2 −∞ < x < ∞,
ut(x, 0) = x −∞ < x < ∞.

Here f (x) is C2 and g(x) is C1 and both vanish outside of [−b, b] for some b > 0. Then show that

lim
t→∞

u(x, t) =
1
2a

∫ ∞

∞
g(r)dr =

1
2a

∫ b

−b
g(r)dr.

Solution: As f ∈ C2 and g ∈ C1 and defined on −∞ < x < ∞ then we can use D’Alambert’s formula
to get

u(x, t) =
1
2
[ f (x + at) + f (x− at)] +

1
2a

∫ x+at

x−at
g(r)dr.

Now we can take limit as t→ ∞

lim
t→∞

u(x, t) = lim
t→∞

[
1
2
[ f (x + at) + f (x− at)] +

1
2a

∫ x+at

x−at
g(r)dr].

We first observe that t is large enough so that x− at < −b and x + at > b then f vanishes. Hence we
get

lim
t→∞

u(x, t) = 0 + 0 + lim
t→∞

1
2a

∫ x+at

x−at
g(r)dr =

1
2a

∫ ∞

∞
g(r)dr.

Since g also vanishes outside of [−b, b] then integral is zero, therefore there is no contribution from
those parts. What is left if

lim
t→∞

u(x, t) =
1
2a

∫ ∞

∞
g(r)dr =

1
2a

∫ b

−b
g(r)dr.

2



Question 6 (Exercise 5.2, 7) Verify that the solution you found in HW7 Problem 1a (Section 5.1 exercise 1a)to
the Wave equation

utt = a2uxx 0 ≤ x ≤ L, −∞ < t < ∞
u(0, t) = 0 = u(L, t) −∞ < t < ∞
u(x, 0) = f (x) = 3 sin(πx

L )− sin(4πx
L ) 0 ≤ x ≤ L

ut(x, 0) = g(x) = 1
2 sin(2πx

L ) 0 ≤ x ≤ L.

will agree with the solution you will get by using the D’Alembert’s formula.
Solution: In order to use D’Alembert’s formula we need to extend initial conditions to all x, ∞ <

x < ∞. To this end, we first extend f with odd extension to [−L, L] by letting

fo(x) :=
{

f (x) when 0 ≤ x ≤ L,
− f (−x) when − L ≤ x ≤ 0.

Notice that f (x) = 3 sin(πx
L )− sin(4πx

L ) is an odd function therefore,

fo(x) = 3 sin(
πx
L
)− sin(

4πx
L

) when [−L, L].

Next step is to extend fo to all −∞ < x < ∞ by extending periodically. That is,

F(x) = F(x + 2L) and F(x) = fo(x) when x ∈ [−L, L].

Notice that fo is an periodic function with period 2L. Hence

F(x) = 3 sin(
πx
L
)− sin(

4πx
L

) when −∞ < x < ∞.

With the same approach, we first extend g with odd extension to [−L, L] by letting

go(x) :=
{

g(x) when 0 ≤ x ≤ L,
−g(−x) when − L ≤ x ≤ 0.

Notice that g(x) = 1
2 sin(2πx

L ) is an odd function therefore,

go(x) =
1
2

sin(
2πx

L
) when [−L, L].

Next step is to extend go to all −∞ < x < ∞ by extending periodically. That is,

G(x) = G(x + 2L) and G(x) = go(x) when x ∈ [−L, L].

Notice that go is an periodic function with period 2L. Hence

G(x) =
1
2

sin(
2πx

L
) when −∞ < x < ∞.

The solution we get from D’Alembert’s formula is

u(x, t) =
1
2
[F(x + at) + F(x− at)] +

1
2a

∫ x+at

x−at
G(r)dr =

1
2
[ f (x + at) + f (x− at)] +

1
2a

∫ x+at

x−at
g(r)dr
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where f (x) = 3 sin(πx
L )− sin(4πx

L ) and g(x) = 1
2 sin(2πx

L ). Hence

u(x, t) =
1
2
[ f (x + at) + f (x− at)] +

1
2a

∫ x+at

x−at
g(r)dr

=
3
2

sin(
π(x + at)

L
) +

3
2

sin(
π(x− at)

L
)− 1

2
sin(

4π(x + at)
L

)− 1
2

sin(
4π(x− at)

L
)] +

1
4a

∫ x+at

x−at
sin(

2πr
L

)dr

= 3 sin(1/2(
π(x + at)

L
+

π(x− at)
L

)) cos(1/2(
π(x + at)

L
− π(x− at)

L
))

− sin(1/2(
4π(x + at)

L
+

4π(x− at)
L

) cos(1/2(
4π(x + at)

L
+

4π(x− at)
L

))

− 1
4a

1
2πr

L
cos(r)|x+at

x−at

= 3 sin(
πx
L
) cos(

πat
L

)− sin(
4πx

L
) cos(

4πat
L

)− L
8πra

[cos(x + at)− cos(x− at)]

= 3 sin(
πx
L
) cos(

πat
L

)− sin(
4πx

L
) cos(

4πat
L

)− L
4πa

sin(
2πat

L
) sin(

2πx
L

)

which is exactly the same solution as in 1a in the previous problem.
Here we have used the following trig identities.

sin(x) + sin(y) = 2 sin((x + y)/2) cos((x− y)/2)

and
cos(x)− cos(y) = −2 sin((x + y)/2) sin((x− y)/2).

Question 7 (Exercise 5.3, 2) Solve
utt = a2uxx 0 ≤ x ≤ π, −∞ < t < ∞
ux(0, t) = 0 ux(π, t) = 0 −∞ < t < ∞,
u(x, 0) = cos2(x) 0 ≤ x ≤ π,
ut(x, 0) = sin2(x) 0 ≤ x ≤ π.

1. Using the Fourier series approach,

2. Using the method of images.

Solution: Using the Fourier series approach. To do this, we first rewrite

cos2(x) =
1
2
+

cos(2x)
2

and sin2(x) =
1
2
− cos(2x)

2
.

We know from (you do not need to know/memorize this) page 321 equation (4) that the general solu-
tion is

u(x, t) = A0t + B0 +
∞

∑
n=1

[An sin(
nπat

π
) + Bn cos(

nπat
π

)]cos(
nπx

π
)

Or after simplification,

u(x, t) = A0t + B0 +
∞

∑
n=1

[An sin(nat) + Bn cos(nat)] cos(nx)

Now using the initial condition, we will find An and Bn.

u(x, 0) =
1
2
+

cos(2x)
2

= 0 + B0 +
∞

∑
n=1

[An sin(0) + Bn cos(0)] cos(nx) = B0 +
∞

∑
n=1

Bn cos(nx)
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From which we get B0 = 1/2 and B2 = 1/2 and all other Bn are zero. We next use second initial
condition to figure out An.

ut(x, 0) =
1
2
− cos(2x)

2
= A0 +

∞

∑
n=1

[Anna cos(0)− Bnna sin(0)] cos(nx) = A0 +
∞

∑
n=1

Anna cos(nx).

From this we get that A0 = 1/2 and A22a = −1/2 and all other An is zero. Hence

u(x, t) =
1
2

t +
1
2
+

1
2

cos(2at) cos(2x)− 1
4a

sin(2at) cos(2x)

is the solution we are looking for.
Using the method of images. To this end, we need to extend the initial conditions from 0 ≤ x ≤ π

to −∞ < x < ∞. In order the extension have desired boundary conditions we will use even extension.
Let f (x) = u(x, 0) = 1

2 +
cos(2x)

2 and g(x) = ut(x, 0) = 1
2 −

cos(2x)
2 . Then

fe(x) =

{
f (x) = 1

2 +
cos(2x)

2 when 0 ≤ x ≤ π,
f (−x) = 1

2 +
cos(−2x)

2 when 0 ≤ x ≤ π,

Notice that f (x) is even function therefore we will have fe(x) = 1
2 +

cos(2x)
2 on [−π, π]. Similarly,

ge(x) =

{
g(x) = 1

2 −
cos(2x)

2 when 0 ≤ x ≤ π,
g(−x) = 1

2 −
cos(−2x)

2 when 0 ≤ x ≤ π,

Similarly, g(x) is even therefore, ge(x) = 1
2 −

cos(2x)
2 on [−π, π]. We next extend fe and ge to all −∞ <

x < ∞ into periodic functions F(x) and G(x) with period of 2π

F(x + 2π) = F(x) F(x) = fe(x) =
1
2
+

cos(2x)
2

on [−π, π].

and

G(x + 2π) = G(x) G(x) = ge(x) =
1
2
− cos(2x)

2
on [−π, π].

Notice that fe(x) is already periodic function with period of 2π (its 2π periodic extension will be itself).
Hence F(x) = 1

2 + cos(2x)
2 . Similarly, ge is also periodic function with period 2π, hence G(x) = 1

2 −
cos(2x)

2 . Therefore, we want to solve
utt = a2uxx −∞ < x < ∞, −∞ < t < ∞
u(x, 0) = F(x) = 1

2 +
cos(2x)

2 −∞ < x < ∞,
ut(x, 0) = G(x) = 1

2 −
cos(2x)

2 −∞ < x < ∞.

Notice that F(x) is C2 function as it is a trig function and G(x) is C1 function with similar reason we
can use D’Alambert’s formula to get

u(x, t) =
1
2
[F(x− at) + F(x + at)] +

1
2a

∫ x+at

x−at
G(r)dr

=
1
2
[
1
2
+

cos(2(x− at))
2

+
1
2
+

cos(2(x + at))
2

] +
1
2a

∫ x+at

x−at
[
1
2
− cos(2r)

2
]dr

=
1
2
+

cos(2(x− at)) + cos(2(x + at))
4

+
1
2a

[
r
2
− sin(2r)

4
]x+at
x−at

=
1
2
+

cos(2(x− at)) + cos(2(x + at))
4

+
1
2a

[at− sin(x + at)− sin(x− at)
4

]

After a little algebra the solution we found with the fourier series method is exactly the same as with
the solution we found with the method of images.
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Question 8 (Exercise 5.3, 6) Find the solution u(x, t) to the following Wave equation
utt = a2uxx 0 ≤ x ≤ π, −∞ < t < ∞,
ux(0, t) = −1 and ux(L, t) = 1 −∞ < t < ∞,
u(x, 0) = x2

π − x + 2 cos(3x) and ut(x, 0) = cos(x) 0 ≤ x ≤ π.

Solution: We will follow the steps while converting the non-homogeneous boundary conditions to
homogeneous boundary conditions for heat equation. Therefore, we shall find a particular solution
up(x, t) to Wave equation so that if we let

v(x, t) = u(x, t)− up(x, t)

then v(x, t) solves the Wave equation with homogeneous boundary conditions. To this end, this partic-
ular solution given to us when ux(0, t) = c and ux(L, t) = d

up(x, t) =
a2(d− c)

2L
t2 +

d− c
2L

x2 + cx.

In our case d = 1 and c = −1 therefore,

up(x, t) =
a2(1− (−1))

2π
t2 +

1− (−1)
2π

x2 + (−1)x =
a22
2π

t2 +
2

2π
x2 − x.

Hence

v(x, t) = u(x, t)− up(x, t) = u(x, t)− [
a2

π
t2 +

1
π

x2 − x].

Now
vx(x, t) = ux(x, t)− (up)x)(x, t) = ux(x, t)− (

2x
π
− 1).

From this we have
vx(0, t) = ux(0, t)− (up)x)(0, t) = −1− (−1) = 0

and
vx(π, t) = ux(π, t)− (up)x)(π, t) = 1− (2− 1) = 0.

Hence v satisfies the homogeneous boundary conditions. We see that the choice of up is right. Moreover,
utt − a2uxx = 0 and (up)tt − a2(up)xx = 2a2

π − a2 2
π = 0. Hence we get

vtt − a2vtt = utt − a2uxx − ((up)tt − a2(up)xx) = 0.

Finally we check the initial conditions for v

v(x, 0) = u(x, 0)− up(x, 0) =
x2

π
− x + 2 cos(3x)− [

1
π

x2 − x] = 2 cos(3x).

Similarly,
vt(x, 0) = ut(x, 0)− (up)t(x, 0) = cos(x)− 0 = cos(x).

Combining all of these we see that v solves the following Wave equation vtt = a2vxx 0 ≤ x ≤ π, −∞ < t < ∞,
vx(0, t) = 0 and vx(L, t) = 0 −∞ < t < ∞,
v(x, 0) = 2 cos(3x) and vt(x, 0) = cos(x) 0 ≤ x ≤ π.
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Now we can look for separable solution to this equation and observe that the general solution will be

v(x, t) =
∞

∑
n=1

[An sin(
nπat

L
) + Bn cos(

nπat
L

)]cos(
nπx

L
).

where L = π. So

v(x, t) =
∞

∑
n=1

[An sin(nat) + Bn cos(nat)]cos(nx).

Now the difference here and the general solution we had in HW7 is that instead of sine we have cosine
which is due to the boundary conditions are given in terms of x derivatives vx(0, t) = 0 and vx(L, t) =
0. When you run the machinery to find the solution that is what you will get for the solution. Now we
use this general solution and the initial conditions to find An and Bn.

v(x, 0) = 2 cos(3x) =
∞

∑
n=1

[An sin(0) + Bn cos(0)]cos(nx) =
∞

∑
n=1

Bncos(nx)

From this we get B3 = 2 and all other Bn = 0. Now for the second initial condition we need to find t
derivative of the general solution,

vt(x, t) =
∞

∑
n=1

[Anna cos(nat)− Bnan sin(nat)]cos(nx).

Evaluating this at t = 0 we get

vt(x, 0) = cos(x) =
∞

∑
n=1

[Anna cos(0)− Bnan sin(0)]cos(nx) =
∞

∑
n=1

Annacos(nx)

This gives us for n = 1, A1a cos(x) = cos(x) or A1 = 1/a and all other An = 0. Combining all these we
get (for B3 and A1)

v(x, t) = B3 cos(3at)cos(3x) + A1 sin(at)cos(x) = 2 cos(3at)cos(3x) +
1
a

sin(at)cos(x).

We know that
v(x, t) = u(x, t)− up(x, t).

Hence

u(x, t) = v(x, t) + up(x, t) = 2 cos(3at)cos(3x) +
1
a

sin(at)cos(x) +
a2

π
t2 +

1
π

x2 − x

is the solution we are looking for.

Question 9 (Exercise 5.3, 7) Find the solution u(x, t) to the following Wave equation{
utt = a2uxx + e−t cos(x) −∞ < x < ∞, −∞ < t < ∞,
u(x, 0) = 0 and ut(x, 0) = 0, −∞ < x < ∞.

Solution: We first observe that the Wave equation has a non-homogeneous right-hand side which is
the function h(t, x). Using Proposition 1 we have

u(x, t) =
1
2a

∫ t

0

∫ x+a(t−s)

x−a(t−s)
h(r, s)drds =

1
2a

∫ t

0

∫ x+a(t−s)

x−a(t−s)
e−scos(r)drds.
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Hence we need to find this double integral

u(x, t) =
1
2a

∫ t

0

∫ x+a(t−s)

x−a(t−s)
e−scos(r)drds

=
1
2a

∫ t

0
e−s sin(r)|r=x+a(t−s)

r=x−a(t−s)

=
1
2a

∫ t

0
e−s[sin(x + a(t− s))− sin(x− a(t− s))]ds

=
1
2a

∫ t

0
e−s sin(x + a(t− s))ds− 1

2a

∫ t

0
e−s sin(x− a(t− s))ds.

It remains to find the integral which I left it for you.

Question 10 (Exercise 5.3, 8) Find the solution u(x, t) to the following Wave equation{
utt = a2uxx + e−t cos(x) −∞ < x < ∞, −∞ < t < ∞,
u(x, 0) = f (x) and ut(x, 0) = g(x), −∞ < x < ∞.

Here f ∈ C2 and g ∈ C1.

Solution: Now we are going to split the problem into two pieces. That is, let u(x, t) = u1(x, t) + u2(x, t)
where u1(x, t) solves the Wave equation with homogeneous right-hand side{

(u1)tt = a2(u1)xx −∞ < x < ∞, −∞ < t < ∞,
u1(x, 0) = f (x) and (u1)t(x, 0) = g(x), −∞ < x < ∞.

and u2(x, t) solves{
(u2)tt = a2(u2)xx + e−t cos(x) −∞ < x < ∞, −∞ < t < ∞,
u2(x, 0) = 0 and (u2)t(x, 0) = 0, −∞ < x < ∞.

We focus on the first PDE here that u1 solves. We know that the solution is given by the D’Alambert’s
formula ( f ∈ C2 and g ∈ C1)

u1(x, t) =
1
2
[ f (x + at) + f (x− at)] +

1
2a

∫ x+at

x−at
g(r)dr.

We now focus on the second pde u2 solves. Notice that is exactly the same Wave equation with nonho-
mogeneous term on the right-hand side. Hence

u2(x, t) =
1
2a

∫ t

0
e−s sin(x + a(t− s))ds− 1

2a

∫ t

0
e−s sin(x− a(t− s))ds.

Hence

u(x, t) = u1(x, t) + u2(x, t)

=
1
2
[ f (x + at) + f (x− at)] +

1
2a

∫ x+at

x−at
g(r)dr

+
1
2a

∫ t

0
e−s sin(x + a(t− s))ds− 1

2a

∫ t

0
e−s sin(x− a(t− s))ds
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