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1. Let

f (x) =
{

1 when 0 ≤ x ≤ π,
0 when − π ≤ x < 0.

(a) (5 points) Find the Fourier series F (x) of f (x) on [−π, π]

Solution: Notice that the function is neither even nor odd. Hence we have to find all the
terms. We start with a0

a0 =
1
π

∫ π

−π
f (x)dx =

1
π

∫ π

0
1dx = 1.

Then an, n = 1, 2, . . . ,

an =
1
π

∫ π

−π
f (x) cos(

nπx
π

)dx =
1
π

∫ π

0
1 cos(

nπx
π

)dx

=
1
π

sin( nπx
π )

nπ
π

|π0

=
1
π

sin(nπ)
nπ
π

− 1
π

1
nπ
π

=
sin(nπ)

nπ
− 0

nπ
= 0.

We next find bn, n = 1, 2, . . .,

bn =
1
π

∫ π

−π
f (x) sin(

nπx
π

)dx =
1
π

∫ π

0
1 sin(

nπx
π

)dx

=
1
π
[−

cos( nπx
π )

nπ
π

]|π0

= −cos(nπ)

nπ
+

1
nπ

= − (−1)n

nπ
+

1
nπ

Hence

F (x) =
a0

2
+

∞

∑
n=1

[an cos(
nπx

π
) + bn sin(

nπx
π

)]

=
1
2
+

∞

∑
n=1

1− (−1)n

πn
sin(

nπx
π

)

(b) (2 points) At which points on [−π, π], do F (x) and f (x) NOT agree ?
Solution: Except at the end points and the discontinuity point, F (x) = f (x). Hence
we only need to check points x = −π, 0, π. At 0, f (0) = 1 but F (1) = 1/2[1 + 0]/2.
Similarly, at x = −π, f (x) = 0 whereas F (−π) = 1/2 = [1 + 0]/2. Finally, at x = π we
have f (π) = 1 and F (π) = 1/2 = [1 + 0]/2. They do not agree at x = −π, 0, π and at all
other points they agree.

(c) (3 points) Verify that
π

4
=

∞

∑
k=0

(−1)k

2k + 1
.

Solution: Notice that 1− (−1)n = 0 when n is even and it is 2 when n is odd. Hence if we
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replace n = 2k + 1 we have

F (x) =
1
2
+

∞

∑
k=0

2
π(2k + 1)

sin(
(2k + 1)πx

π
).

From part (b) we know that F (x) = f (x) at x = π/2. From this we get

1 = f (
π

2
) = F (π

2
) =

1
2
+

∞

∑
k=0

2
π(2k + 1)

sin((2k + 1)
π

2
).

After some algebra we get

π

4
=

∞

∑
k=1

(−1)k+1

2k− 1
=

∞

∑
k=0

(−1)k

2k + 1
.
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2. (10 points) Solve 
ut − uxx = t sin(2πx), 0 ≤ x ≤ 1, t ≥ 0,
u(0, t) = 0, u(1, t) = 0, t ≥ 1
u(x, 0) = sin(3πx) 0 ≤ x ≤ 1.

(1)

Solution: Since the boundary conditions are homogeneous, we can pass to the second step.
That is we shall look for where u(x, t) = u1(x, t) + u2(x, t) where u1 solves the homogeneous
heat equation; 

(u1)t − (u1)xx = 0, 0 ≤ x ≤ 1, t ≥ 0,
u1(0, t) = 0, u1(1, t) = 0, t ≥ 0,
u1(x, 0) = sin(3πx) 0 ≤ x ≤ 1.

(2)

and u2 solves the non-homogeneous heat equation with zero initial condition
(u2)t − (u2)xx = t sin(2πx), 0 ≤ x ≤ 1, t ≥ 0,
u2(0, t) = 0, u2(1, t) = 0, t ≥ 0,
u2(x, 0) = 0 0 ≤ x ≤ 1.

(3)

Then by linearity of the heat equation we conclude that u(x, t) = u1(x, t) + u2(x, t) solves our
original equation (1). We shall first focus on u1, we know the general solution is (you can use
the proposition from the book, or our lecture notes)

u1(x, t) =
∞

∑
n1

Cne−n2π2t sin(nπx)

and using the initial condition for u1 we get

u1(x, 0) = sin(3πx) =
∞

∑
n1

Cn sin(nπx)

which tells us C3 = 1 and all other Cn = 0. Hence

u1(x, t) = e−9π2t sin(3πx).

solves (2). Now we focus on v2. To solve (3), we shall use the Duhamel’s principle. That is,

u2(x, t) =
∫ t

0
ṽ(x, t− s; s)ds

where ṽ solves 
ṽt − ṽxx = 0, 0 ≤ x ≤ 1, t ≥ 0,
ṽ(0, t; s) = 0, ṽ(1, t; s) = 0, t ≥ 0,
ṽ(x, 0; s) = s sin(2πx) 0 ≤ x ≤ 1.

(4)

Here you should think of s as a constant independent of t. We know that the general solution
is

ṽ(x, t; s) =
∞

∑
n1

Cne−n2π2t sin(nπx)
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and using the initial condition in (4) we get

ṽ(x, 0; s) =
∞

∑
n1

Cn sin(nπx) = s sin(2πx)

which tells us that C2 = s and all other Cn = 0. Hence we have (for n = 2)

ṽ(x, t; s) = se−4π2t sin(2πx).

Using Duhamel’s principle we have

u2(x, t) =
∫ t

0
ṽ(x, t− s; s)ds =

∫ t

0
se−4π2(t−s) sin(2πx)ds =

1
(4π2)2 (4π2t+ e−4π2t− 1) sin(2πx).

Combining this with u1 we get

u(x, t) = u1(x, t) + u2(x, t) = e−9π2t sin(3πx) +
1

(4π2)2 (4π2t + e−4π2t − 1) sin(2πx).
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3. (10 points) Consider the Heat equation
ut − 4uxx = sin(2πx)t + 2xt, 0 ≤ x ≤ 1, t ≥ 0,
u(0, t) = 1, ux(1, t) = t2,
u(x, 0) = 1 + sin(3πx)− x.

(5)

where the boundary conditions are non-homogeneous. Transform the equation into a new
one with homogeneous boundary conditions. (You do not need to solve the new equation).

Solution: We first should make the non-homogeneous boundary conditions homogeneous.
To this end, we look for particular solution up(x, t) to heat equation of the form a(t)x + b(t).
We first have u(0, t) = b(t) = 1. Also, up(x, t) = a(t)x + 1. Second boundary condition
is given in terms x derivative, we first have (up)x(x, t) = a(t) and hence we should have
(up)x(1, t) = a(t) = t2. Hence up(x, t) = t2x + 1. We now let

v(x, t) = u(x, t)− up(x, t)

and hope that v will satisfy the heat equation with homogeneous boundary conditions.

vt − 4vxx = ut − 4uxx − [(up)t − 4(up)xx] = sin(2πx)t + 2xt− [2tx− 0] = sin(2πx)t.

Next, we check the boundary conditions

v(0, t) = u(0, t)− up(0, t) = 1− 1 = 0 and vx(1, t) = ux(1, t)− (up(1, t))x = t2 − t2 = 0.

Hence v satisfies the homogeneous boundary conditions. We next see the initial condition

v(x, 0) = u(x, 0)− up(x, 0) = 1 + sin(3πx)− x− 1 = sin(3πx)− x

If we summarize what we got for v is that
vt − 4vxx = sin(2πx)t 0 ≤ x ≤ 1, t ≥ 0
v(0, t) = 0, vx(1, t) = 0 t ≥ 0,
v(x, 0) = sin(3πx)− x 0 ≤ x ≤ 1.
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4. (10 points) Describe the steps how to solve the following heat equation
ut − kuxx = h(x, t), 0 ≤ x ≤ π, t ≥ 0,
u(0, t) = a(t), u(π, t) = b(t),
u(x, 0) = f (x).

(6)

Solution:

Step 1: The boundary conditions are non-homogeneous, we will make them homogeneous. To
do this, we let

up(x, t) :=
1
L
(b(t)− a(t))x + a(t)

Now consider
v(x, t) = u(x, t)− up(x, t).

We should see that

v(0, t) = u(0, t)−up(0, t) = a(t)− a(t) = 0 and v(L, t) = u(L, t)−up(L, t) = b(t)− b(t) = 0.

On the other hand,

vt − kvxx = ut − kuxx − (up)t + k(up)xx = h(x, t)− 1
L
(b′(t)− a′(t))x− a′(t) =: H(x, t)

and
v(x, 0) = u(x, 0)− up(x, 0) = f (x)− 1

L
(b(0)− a(0))x + a(0) = F(x)

Hence v satisfies the following equation
vt − kvxx = H(x, t) 0 ≤ x ≤ L, t ≥ 0
v(0, t) = 0 v(L, t) = 0
v(x, 0) = F(x).

Step 2: From this we consider v(x, t) = v1(x, t) + v2(x, t) where where u1 solves the homoge-
neous heat equation;

(u1)t − (u1)xx = 0, 0 ≤ x ≤ L, t ≥ 0,
u1(0, t) = 0, u1(L, t) = 0,
u1(x, 0) = F(x).

(7)

and u2 solves the non-homogeneous heat equation with zero initial condition
(u2)t − (u2)xx = H(x, t), 0 ≤ x ≤ L, t ≥ 0,
u2(0, t) = 0, u2(L, t) = 0,
u2(x, 0) = 0.

(8)

Step 3: Find v1. In case F(x) is not given in terms of sine function we then need to do the half
range extension and then find the Fourier series of F(x) and finally find v1.
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Step 4: Using Duhamel’s principle find v2. That is,

u2(x, t) =
∫ t

0
ṽ(x, t− s; s)ds

where ṽ solves 
ṽt − ṽxx = 0, 0 ≤ x ≤ L, t ≥ 0,
ṽ(0, t; s) = 0, ṽ(L, t; s) = 0,
ṽ(x, 0; s) = H(x, s; s).

(9)

Step 5: Find ṽ first and in case H(x, s; s) is not given in terms of sine function we then need to do
the half range extension and then find the Fourier series of H(x, s; s) and finally find ṽ.
Then find v2.

Step 6: Combining all of these we get

u(x, t) = v(x, t) + up(x, t) = v1(x, t) + v2(x, t) + up(x, t).
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5. (10 points (bonus)) For a given φ with limx→±∞ φ(x) = 0 “rapidly”, the solution to the fol-
lowing Heat conduction {

ut = kuxx, −∞ ≤ x ≤ ∞, t ≥ 0,
u(x, 0) = φ(x) −∞ ≤ x ≤ ∞

(10)

is given by

u(x, t) =
1√

4πkt

∫ ∞

−∞
exp

(
− (y− x)2

4kt

)
dx

Here k > 0.

(a) Using (10) show that C(t) =
∫ ∞
−∞ u(x, t)dx remains constant in time. You may assume

limx→±∞ ux(x, t) = 0. (Hint: Use (10) and do integration by parts to show that C′(t) = 0
for every t ≥ 0).
Using the hint, we shall show that C′(t) = 0 for every t ≥ 0.

C′(t) =
d
dt

∫ ∞

−∞
u(x, t)dx =

∫ ∞

−∞
ut(x, t)dx.

Using the PDE, we replace ut in the integral by kuxx

C′(t) = k
∫ ∞

−∞
uxx(x, t)dx = kux(x, t)|∞−∞ = 0

as limx→±∞ ux(x, t) = 0. Hence C′(t) = 0 we conclude that C(t) =constant.

(b) Using (10) show that E(t) =
∫ ∞
−∞ u2(x, t)dx decreases in time. ((Hint: Use (10) and do

integration by parts to show that E′(t) < 0 for every t ≥ 0).
Solution: We once again use the hint here to show that E′(t) < 0 for every t ≥ 0.

E′(t) =
d
dt

∫ ∞

−∞
u2(x, t)dx =

∫ ∞

−∞
2u(x, t)ut(x, t)dx.

Using the PDE, we replace ut with kuxx in the integral

E′(t) = k
∫ ∞

−∞
2u(x, t)uxx(x, t)dx.

Now doing an integration by parts, and using boundary conditions, and k > 0, we have

E′(t) = 2ku(x, t)ux(x, t)|∞−∞ − 2k
∫ ∞

−∞
ux(x, t)uxx(x, t)dx

= 0− 0− 2k
∫ ∞

−∞
u2

x(x, t)(x, t)dx ≤ 0

Hence we conclude that E′(t) ≤ 0 for every t ≥ 0. This shows that E decreases in time.


