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1. (10 points) Use the method of characteristics the solve the first-order partial differential equa-
tion for u = u(x, y)

ux −
ex

1 + ey uy = 0 for −∞ < x < ∞, y > 0

satisfying the side condition u(x, 0) = e2x.
Solution: In notation from section 2.2, we have a(x, y) = 1 and b(x, y) = − ex

1+ey . In order to
make change of variables, we are looking for curves whose tangent at (x, y) is b(x, y)/a(x, y)
which will be parallel to g(x, y) = a(x, y)i + b(x, y). That is

dy
dx

=
b(x, y)
a(x, y)

=
− ex

1+ey

1
.

We can solve this ordinary differential equation to find the curve we are looking for. Hence,
we first get

(1 + ey)dy = −exdx equivalently y + ey = −ex + c

where we did integration to get this and c is arbitrary constant. From this we get

c = ex + ey + y.

Hence, we make the following change of variables;{
w = ex + ey + y,
z = y

We let v(w, z) = u(x, y) and we now rewrite our PDE in terms of v and its derivatives in terms
of w, z. To this end, we first compute

ux = vwwx + vzzx = vwex + 0 and uy = vwwy + vzzx = vw(ey + 1) + vz

Then

0 = ux −
ex

1 + ey uy = vwex − ex

1 + ey [vw(ey + 1) + vz] = vwex − vwex − ex

1 + ey vz.

From this we get

0 =
ex

1 + ey vz equivalently vz = 0.

Since vz = 0, integrating wrt z we get v(w, z) = f (w). Since

u(x, y) = v(w, z) = f (w) = f (ex + ey + y).

We next use the prescribed condition to find f . Hence,

e2x = u(x, 0) = f (ex + ey + y) = f (ex + 1).

If we let t = ex + 1 then ex = t− 1 and therefore, f (t) = f (ex + 1) = e2x = (t− 1)2. Finally,

u(x, y) = f (ex + ey + y) = (ex + ey + y− 1)2.
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2. Let f (x) be given as
f (x) = x when 0 ≤ x < 1.

(a) (2 points) Extend f (x) into an odd periodic function with period of 2.
Solution: As we want to extend f to be an odd function,

fodd(x) =
{

f (x) = x when 0 ≤ x < 1,
− f (−x) = x when − 1 < x ≤ 0.

Hence fodd(x) = x on −1 < x < 1. We let fodd(x) = fodd(x + 2) which is now odd
function with period of 2.

(b) (4 points) Find Fourier series F (x) of the function you found in (a).
Solution: We want to find Fourier series F (x) of fodd(x). Since fodd(x) is an odd function
we have coefficient of all cosine terms are zero,

a0 = 0 and an = 0 for n = 1, 2, . . . .

Hence we only need to find coefficient of sine terms,

bn =
1
1

∫ 1

−1
fodd(x) sin(

nπx
1

)dx = 2
∫ 1

0
fodd(x) sin(nπx)dx = 2

∫ 1

0
x sin(nπx)dx.

If we integrate using the integration by parts we get u = x, du = dx and dv = sin(nπx)dx,
v = − cos(nπx)/(nπ). Hence

bn = 2
∫ 1

0
x sin(nπx)dx = 2

[
− x cos(nπx)

nπ
|x=1
x=0 +

1
nπ

∫ 1

0
cos(nπx)dx

]
= 2

[
−cos(nπ)

nπ
+ 0 +

1
(nπ)2 sin(nπx)|x=1

x=0

]
= 2

[
− cos(nπ) +

1
(nπ)2 sin(nπ)

]
= − 2

nπ
cos(nπ).

Notice that cos(nπ) = (−1)n for n = 1, 2, . . .. Hence

F (x) =
a0

2
+

∞

∑
n=1

an cos(nπx) +
∞

∑
n=1

bn sin(nπx)

= 0 + 0−
∞

∑
n=1

2(−1)n

nπ
sin(nπx)

= −
∞

∑
n=1

2(−1)n

nπ
sin(nπx)

(c) (4 points) Using part (a)-(b), verify that

π

4
=

∞

∑
n=0

(−1)n

2n + 1
.
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Solution: Note that fodd(x) is continuous on (−1, 1) and therefore F (x) = fodd(x) for
every x ∈ (−1, 1). Now if we pick x = 1/2 then

1
2
= f (

1
2
) = F (1

2
) = −

∞

∑
n=1

2(−1)n

nπ
sin(

nπ

2
)

Note that sin( nπ
2 ) = 0 when n is even. Hence if we let n = 2k + 1 for k = 0, 1, . . . then we

have
1
2
= −

∞

∑
n=1

2(−1)n

nπ
sin(

nπ

2
) = −

∞

∑
k=0

2(−1)2k+1

(2k + 1)π
sin(

(2k + 1)π
2

)

Now sin( (2k+1)π
2 ) is 1 when k is even and it is −1 when k is odd. Therefore sin( (2k+1)π

2 ) =

(−1)k. First move π/2 to the left hand side, and use (−1)2k+1 = −1 and from these and
above identity we get

π

4
=

∞

∑
k=1

(−1)k

2k + 1
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3. (10 points) Solve the Poisson equation{
uxx + uyy = x2 + y2, x2 + y2 < 1,
u(x, y) = 0 x2 + y2 = 1.

using the polar coordinates. You may want to look for solutions of the form u(x, y) = f (x2 +
y2).
Solution: As the hint is suggesting, we are going to look for solution u(x, y) = f (x2 + y2). We
first rewrite Laplace’s equation in polar coordinates. We know that in polar coordinates

uxx + uyy = Urr +
1
r

Ur +
1
r2 Uθθ = x2 + y2 = r2

where u(x, y) = U(r, θ) where x = r cos(θ) and y = r sin(θ) or x2 + y2 = r2 and θ =
arctan(y/x). Now

U(r, θ) = u(x, y) = f (x2 + y2) = f (r2) = F(r).

So we are going to look for solution U(r, θ) which only depends only on r. Therefore, Uθθ = 0.
We then have

r2 = Urr +
1
r

Ur +
1
r2 Uθθ = Urr +

1
r

Ur

Say W = Ur then above PDE becomes

r2 = Urr +
1
r

Ur = Wr +
1
r

W.

We can easily find integrating factor µ(r) = e
∫

1/rdr = r. Multiply the above PDE with r to get

r3 = rWr + W = (rW)r.

If we integrate both sides with respect to r we get

r4

4
+ g(θ) = rW

for some g ∈ C1. Note that we are looking for solution depending only on r. Therefore,
g(θ) = C for some C.

r4

4
+ C = rW

Hence

W =
r3

4
+

C
r

.

Remember that

Ur = W =
r3

4
+

C
r

.

From this we get

U(r, θ) =
r4

16
+ C ln r + D

for some constants C, D. We now use the boundary condition u(x, y) = 0 when x2 + y2 = 1.



Math 3435 Final Exam - Page 6 of 16 April 30

That is, U(r, θ) = 0 when r = 1. Therefore,

0 = U(r = 1, θ) =
14

16
+ C ln 1 + D =

1
16

+ D.

From this we get D = −1/16 and hence

U(r, θ) =
r4

16
+ C ln r + D =

r4

16
+ C ln r− 1

16

for arbitrary C. We next observe that ln r blows up (goes to infinity when r → 0) hence we
choose C = 0 to get

U(r, θ) =
r4

16
− 1

16
.

We now convert everything back to Cartesian coordinate system

u(x, y) = U(r, θ) =
r4

16
− 1

16
=

(x2 + y2)2

16
− 1

16
.
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4. (10 points) Suppose thatu(x, t) is solution of the diffusion equation with variable dissipation{
ut − kuxx + h(t)u = 0 −∞ < x < ∞, t ≥ 0,
u(x, 0) = f (x) −∞ < x < ∞.

and g(t) is a solution to g′(t) = h(t)g(t) with g(0) = 1. Then show that v(x, t) = g(t)u(x, t) is
a solution of {

vt − kvxx = 0 −∞ < x < ∞, t ≥ 0,
v(x, 0) = f (x) −∞ < x < ∞.

Solution: Since v(x, t) = g(t)u(x, t) is given to us we then find vt − kvxx first.

vt = g′u + gut and vxx = guxx.

Hence
vt − kvxx = g′u + gut − kguxx.

It is also given to us that g(t) solves g′(t) = h(t)g(t). Hence

vt− kvxx = g′u+ gut− kguxx = hgu+ gut− kguxx = hgu+ g(ut− kuxx) = hgu+ g(−hu) = 0

where we have also used that ut − kuxx = −h(t)u. Hence

vt − kvxx = 0.

we now check the boundary conditions;

v(x, 0) = g(0)u(x, 0) = 1 f (x).

Combining all these we see that v(x, t) = g(t)u(x, t) is a solution of{
vt − kvxx = 0 −∞ < x < ∞, t ≥ 0,
v(x, 0) = f (x) −∞ < x < ∞.
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5. Let u(x, y) be the solution to the following Dirichlet problem{
uxx + uyy = 0 when x2 + y2 < 1,
u(x, y) = 4x3 when x2 + y2 = 1

You may want to rewrite the Dirichlet problem in polar coordinates (including the boundary
condition).

(a) (5 points) Find the solution u(x, y). [See the cover page for the general solution and a
hint].
Solution: As hint suggested we rewrite the Dirichlet in polar coordinates. The Laplace’s
equation in polar coordinates is

Urr +
1
r

Ur +
1
r2 Uθθ = 0

and the boundary condition u(x, y) = 4x3 should also be written in polar coordinates. As
x = r cos(θ) we get 4x3 = r3 cos3(θ). Using the other hint in the front page we have

4 cos3(θ) = 3 cos(θ) + cos(3θ).

Hence we need to solve
and the general solution to this is

U(r, θ) = A0 +
∞

∑
n=1

rn[An cos(nθ) + Bn sin(nθ)]

Also the following identity might be useful in the same question

cos3(θ) =
3
4

cos(θ) +
1
4

cos(3θ).

{
Urr +

1
r Ur +

1
r2 Uθθ = 0 when x2 + y2 = r2 < 1,

U(r, θ) = 3 cos(θ) + cos(3θ) when r2 = x2 + y2 = 1.

It is also given that the general solution to Laplace equation in Polar coordinate is

U(r, θ) = A0 +
∞

∑
n=1

rn[An cos(nθ) + Bn sin(nθ)]

When r = 1 we have

U(1, θ) = A0 +
∞

∑
n=1

rn[An cos(nθ) + Bn sin(nθ)] = 3 cos(θ) + cos(3θ).

From this we see that, A0 = 0, all Bn = 0. Finally n = 1 we have A1 cos(θ) = 3 cos(θ).
Hence A1 = 3. For n = 3 we have A3 cos(3θ) = cos(θ). Therefore, A3 = 1. All An = 0.
From this we get

U(r, θ) = 3r cos(θ) + r3 cos(3θ).

(b) (2 points) Rewrite the solution you found in (a) in Cartesian coordinates, i.e. (x, y), and
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verify that it is the solution of the Laplace equation satisfying the given boundary condi-
tion.
Solution: We have x = r cos(θ) and y = r sin(θ).

u(x, y) = U(r, θ) = 3r cos(θ) + r3 cos(3θ) = 3x + r3 cos(3θ)

Now we need to find r3 cos(3θ) in polar coordinates. One way to see this is

r3 cos(3θ) = Re(r3e3iθ) = Re((reθ)3) = Re((x + iy)3)

Hence we need to find Re((x + iy)3),

Re((x + iy)3) = Re(x3 + 3x2y− 3xy2 − iy3) = x3 − 3xy2.

From this we conclude that u(x, y) = x3− 3xy2 + 3x. To verify that it satisfies the Laplace
equation

uxx = 6x and uyy = −6x.

Hence uxx + uyy = 6x − 6x = 0. The boundary condition is that when x2 + y2 = 1, or
y2 = 1− x2. Then

u(x, y) = x3 − 3xy2 + 3x = x3 − 3x(1− x2) + 3x = x3 − 3x + 3x3 + 3x = 4x3.

We see that u(x, y) = x3 − 3xy2 + 3x satisfies the Laplace equation with boundary condi-
tion.

(c) (3 points) Find the maximum value of u(x, y) in the disk of radius 1.
Since u is harmonic in the disk with radius 1 then by maximum principle we know that u
attains its maximum on the boundary, i.e., circle centered at 0 with radius 1;

max
B̄(0,1)

u(x, y) = max
∂B(0,1)

u(x, y) = max
∂B(0,1)

4x3 = 4.
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6. (10 points) Find the solution u(x, t) to the following Wave equation{
utt − a2uxx = e−t cos(x) −∞ < x < ∞, −∞ < t < ∞,
u(x, 0) = sin(x) and ut(x, 0) = a cos(x), −∞ < x < ∞.

Solution: We first observe that the Wave equation has a non-homogeneous right-hand side
which is the function h(t, x). Notice that h(x, t) = e−t cos(x) is smooth. Let u = u1 + u2 where
u1 solves{

(u1)tt − a2(u2)xx = 0 −∞ < x < ∞, −∞ < t < ∞,
u1(x, 0) = sin(x) and (u1)t(x, 0) = a cos(x), −∞ < x < ∞.

and u2 solves{
(u2)tt − a2(u2)xx = e−t cos(x) −∞ < x < ∞, −∞ < t < ∞,
u2(x, 0) = 0 and (u2)t(x, 0) = 0, −∞ < x < ∞.

Since Wave equation is linear and using the super position principle we know that u = u1 + u2
solves the original Wave equation above.

We focus on Wave equation u1 solves. Since f (x) = sin(x) is at least C2 function and g(x) =
a cos(x) is at least C1 we can use the D’Alambert’s formula to get

u1(x, t) =
1
2
[ f (x + at) + f (x− at)] +

1
2a

∫ x+at

x−at
g(r)dr =

1
2
[sin(x + at) + sin(x− at)] +

1
2a

∫ x+at

x−at
a cos(r)dr

=
1
2
[sin(x + at) + sin(x− at)] +

a
2a

sin(r)|x+at
x−at

=
1
2
[sin(x + at) + sin(x− at)] +

1
2
[sin(x + at)− sin(x− at)]

= sin(x + at).

We now focus on the PDE that u2 solves. As h(x, t) is at least C1 we can use Proposition 1 to
have

u2(x, t) =
1
2a

∫ t

0

∫ x+a(t−s)

x−a(t−s)
h(r, s)drds =

1
2a

∫ t

0

∫ x+a(t−s)

x−a(t−s)
e−scos(r)drds.

Hence we need to find this double integral

u2(x, t) =
1
2a

∫ t

0

∫ x+a(t−s)

x−a(t−s)
e−scos(r)drds

=
1
2a

∫ t

0
e−s sin(r)|r=x+a(t−s)

r=x−a(t−s)

=
1
2a

∫ t

0
e−s[sin(x + a(t− s))− sin(x− a(t− s))]ds

=
1
2a

∫ t

0
e−s sin(x + a(t− s))ds− 1

2a

∫ t

0
e−s sin(x− a(t− s))ds.

Hence

u(x, t) = u1(x, t)+u2(x, t) = sin(x+ at)+
1
2a

∫ t

0
e−s sin(x+ a(t− s))ds− 1

2a

∫ t

0
e−s sin(x− a(t− s))ds.



Math 3435 Final Exam - Page 11 of 16 April 30

7. Let u(x, t) be the solution to the following heat equation
ut − uxx = 1

π xet + t[2− 2
π x + sin(x)] 0 ≤ x ≤ π, t ≥ 0

u(0, t) = t2, u(π, t) = et t ≥ 0,
u(x, 0) = x

π + sin(2x).

(a) (3 points) Find a particular solution up and let v(x, t) = u(x, t)− up(x, t) so that v(x, t)
satisfies the homogeneous boundary condition and solves the non-homogeneous heat
equation.
Solution: As the boundary conditions are non-homogeneous, the first step is to make
them homogeneous. To this end, we let

up(x, t) = (b(t)− a(t))x/L + a(t) = (
et − t2

π
)x + t2

so that up(0, t) = t2 and up(π, t) = et. The second step is to let

v(x, t) = u(x, t)− up(x, t)

so that the non-homogeneous boundary conditions become homogeneous. Now v solves
the non-homogeneous heat equation

vt− vxx = ut−uxx− [(up)t− (up)xx] =
1
π

xet + t[2− 2
π

x+ sin(x)]− [(
et − 2t

π
)x+ 2t− 0] = t sin(x).

The boundary conditions

v(0, t) = u(0, t)− up(0, t) = t2 − t2 = 0 and v(π, t) = u(π, t)− up(π, t) = et − et = 0.

The initial condition

v(x, 0) = u(x, 0)− up(x, 0) =
x
π
+ sin(2x)− x

π
= sin(2x).

(b) (3 points) Write the PDE for which v(x, t) solves, the boundary conditions and the initial
condition v(x, t) satisfies.
Solution: Hence, combining all of these we see that v solves

vt − vxx = t sin(x) 0 ≤ x ≤ π, t ≥ 0,
v(0, t) = 0 v(π, t) = 0,
v(x, 0) = sin(2x).

(1)

(c) (4 points) Without solving the new equation corresponding to v describe how to solve it.
Solution: [You should describe the steps below without solving the problem] As v solves
the non-homogeneous heat equation with initial conditions, the next step is to look for
v1, v2 with v(x, t) = v1(x, t) + v2(x, t) where v1 solves homogeneous heat equation with
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the initial condition in (1)
(v1)t − (v1)xx = 0 0 ≤ x ≤ π, t ≥ 0
v1(0, t) = 0 v1(π, t) = 0
v1(x, 0) = sin(2x).

(2)

and v2 solves the non-homogeneous heat equation with zero initial condition
(v2)t − (v2)xx = t sin(x) 0 ≤ x ≤ π, t ≥ 0
v2(0, t) = 0 v2(π, t) = 0
v2(x, 0) = 0.

(3)

We first focus on v1. We know the general solution is

v1(x, t) =
∞

∑
n=1

Cne−n2t sin(nx).

Using this and the given initial condition for v1 we have

v1(x, t) =
∞

∑
n=1

Cn sin(nx) = sin(2x)

which tells us that C2 = 1 and all other Cn = 0. Hence we have

v1(x, t) = e−4t sin(2x).

We now focus on v2. From Duhamel’s principle

v2(x, t) =
∫ t

0
ṽ(x, t− s; s)ds

where ṽ(x, t; s) solves the following homogeneous heat equation
ṽt − ṽxx = 0 0 ≤ x ≤ π, t ≥ 0
ṽ(0, t; s) = 0 ṽ(π, t; s) = 0
ṽ(x, 0; s) = s sin(x).

We know that the general solutions is

ṽ(x, t; s) =
∞

∑
n=1

Cne−n2t sin(nx).

Using this and the initial condition for ṽ(x, t; s) we get

ṽ(x, 0; s) = s sin(x) =
∞

∑
n=1

Cn sin(nx)

From this, we see that C1 = s and all other Cn = 0. Hence

ṽ(x, t; s) = se−t sin(x).
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Using this we get

v2(x, t) =
∫ t

0
ṽ(x, t− s; s)ds

=
∫ t

0
se−(t−s) sin(x)ds

= e−t sin(x)
∫ t

0
sesds

= e−t sin(x)[tet − et + 1]
= sin(x)[t− 1 + e−t].

Hence
v(x, t) = v1(x, t) + v2(x, t) = e−4t sin(2x) + sin(x)(t− 1 + e−t).

Finally,

u(x, t) = v(x, t) + up(x, t) = e−4t sin(2x) + sin(x)(t− 1 + e−t) + (
et − t2

π
)x + t2

is the solution we are looking for.
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8. Assume that u(x, t) satisfies the following diffusion equation{
utt − uxx = 0 −∞ < x < ∞, t ≥ 0,
u(x, 0) = f (x), ut(x, 0) = g(x), −∞ < x < ∞

where f , g ∈ C2. Assume that f (x) and g(x) vanish when |x| is big, say |x| > 103435. Define

F(t) =
1
2

∫ ∞

−∞
u2

x(x, t)dx and G(t) =
1
2

∫ ∞

−∞
u2

t (x, t)dx.

(a) (3 points) Show that E(t) = F(t) + G(t) is constant for t ≥ 0 (You may use ux(x, t) → 0
as x → ±∞).
Solution: We show that E′(t) = 0 for every t ≥ 0. This shows that E(t) is constant for
every t ≥ 0.

E′(t) =
d
dt
[
1
2

∫ ∞

−∞
u2

x(x, t)dx] +
d
dt
[
1
2

∫ ∞

−∞
u2

t (x, t)dx]

=
1
2

∫ ∞

−∞

∂

∂t
u2

x(x, t)dx +
1
2

∫ ∞

−∞

∂

∂t
u2

t (x, t)dx

=
∫ ∞

−∞
ux(x, t)uxt(x, t)dx +

∫ ∞

−∞
ut(x, t)utt(x, t)dx

= [ux(x, t)ut(x, t)]x=∞
x=−∞ −

∫ ∞

−∞
uxx(x, t)ut(x, t)dx +

∫ ∞

−∞
ut(x, t)utt(x, t)dx

= −
∫ ∞

−∞
uxx(x, t)ut(x, t)dx +

∫ ∞

−∞
ut(x, t)utt(x, t)dx

= −
∫ ∞

−∞
uxx(x, t)ut(x, t)dx +

∫ ∞

−∞
ut(x, t)uxx(x, t)dx = 0.

(b) (3 points) Compute E(0). (You may use ux(x, 0) = f ′(x).)
Solution: Direct computation gives us

E(0) = F(0) + G(0) =
1
2

∫ ∞

−∞
u2

x(x, 0)dx +
1
2

∫ ∞

−∞
u2

t (x, 0)dx

=
1
2

∫ ∞

−∞
( f ′(x))2dx +

1
2

∫ ∞

−∞
g2(x)dx

(c) (4 points) Suppose that E(t) = 0 for every t ≥ 0. Show that u(x, t) = constant.
Solution: Since E(t) = 0 for every t ≥ 0 we have

0 = E(t) = F(t) + G(t) =
1
2

∫ ∞

−∞
u2

x(x, t)dx +
1
2

∫ ∞

−∞
u2

t (x, t)dx.

From this we see that each F(t) = 0 and G(t) = 0. From these observations we have

0 = F(t) =
1
2

∫ ∞

−∞
u2

x(x, t)dx implies ux(x, t) = 0.
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Similarly,

0 = G(t) =
1
2

∫ ∞

−∞
u2

t (x, t)dx implies ut(x, t) = 0.

Now we have u(x, t) for which we see that u(x, t) = constant.
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9. (10 points (bonus)) Use parts (a)-(c) in Question 8 to show that{
utt = uxx when −∞ < x < ∞, t > 0,
u(x, 0) = f (x) and ut(x, 0) = g(x) when −∞ < x < ∞

has a unique solution. Here f , g ∈ C2 and f (x) and g(x) vanish when |x| is big, say |x| >
103435.
Solution: Suppose there are two solutions u1(x, t) and u2(x, t) solving the above Wave equa-
tion. Since Wave equation is linear if we let v(x, t) = u1(x, t) − u2(x, t) then we see that v
solves the Wave equation. Moreover, v(x, 0) = u1(x, 0) − u2(x, 0) = f (x) − f (x) = 0 and
vt(x, 0) = (u1)t(x, 0)− (u2)t(x, 0) = g(x)− g(x) = 0. Therefore,{

vtt − vxx = 0 −∞ < x < ∞, t ≥ 0,
v(x, 0) = 0 = f (x) vt(x, 0) = 0 = g(x), −∞ < x < ∞

Now we know E(t) is constant for every t ≥ 0. That is E(t) = E(0).

E(t) = F(t) + G(t) =
1
2

∫ ∞

−∞
v2

x(x, t)dx +
1
2

∫ ∞

−∞
v2

t (x, t)dx.

On the other hand, from part (b) we have (since f = 0 = g)

E(0) =
1
2

∫ ∞

−∞
( f ′(x))2dx +

1
2

∫ ∞

−∞
g2(x)dx = 0

Hence E(t) = E(0) = 0. Now we can use part (c) to conclude that v(x, t) = constant. Say
v(x, t) = c. If we check the boundary condition, v(x, 0) = c = 0 we get v(x, t) = 0 for every
(x, t) with −∞ < x < ∞ and t ≥ 0. In turn this gives, u1(x, t)− u2(x, t) = v(x, t) = 0. Hence
u1(x, t) = u2(x, t). Above pde has a unique solution.


