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1. Let

f (x) =
{

1 when 0 ≤ x ≤ L,
0 when − L ≤ x < 0.

(a) (5 points) Find the Fourier series F (x) of f (x) on [−L, L] Solution: Notice that the func-
tion is neither even nor odd. Hence we have to find all the terms. We start with a0

a0 =
1
L

∫ L

−L
f (x)dx =

1
L

∫ L

0
1dx = 1.

Then an, n = 1, 2, . . . ,

an =
1
L

∫ L

−L
f (x) cos(

nπx
L

)dx =
1
L

∫ L

0
1 cos(

nπx
L

)dx

=
1
L

sin( nπx
L )

nπ
L

|L0

=
1
L

sin(nπ)
nπ
L

− 1
L

1
nπ
L

=
sin(nπ)

nπ
− 0

nπ
= 0.

We next find bn, n = 1, 2, . . .,

bn =
1
L

∫ L

−L
f (x) sin(

nπx
L

)dx =
1
L

∫ L

0
1 sin(

nπx
L

)dx

=
1
L
[−

cos( nπx
L )

nπ
L

]|L0

= −cos(nπ)

nπ
+

1
nπ

= − (−1)n

nπ
+

1
nπ

Hence

F (x) =
a0

2
+

∞

∑
n=1

[an cos(
nπx

L
) + bn sin(

nπx
L

)]

=
1
2
+

∞

∑
n=1

1− (−1)n

πn
sin(

nπx
L

)

(b) (2 points) At which points on [−L, L], do F (x) and f (x) NOT agree ?
Solution: Except at the end points and the discontinuity point, F (x) = f (x). Hence we
only need to check points x = −L, 0, L. At 0, f (0) = 1 but F (1) = 1/2. Similarly, at
x = −L, f (x) = 0 whereas F (−L) = 1/2. Finally, at x = L we have f (L) = 1 and
F (L) = 1/2. They do not agree at x = −L, 0, L and at all other points they agree.

(c) (3 points) Verify that
π

4
=

∞

∑
k=0

(−1)k

2k + 1
.

Solution: Notice that 1− (−1)n = 0 when n is even and it is 2 when n is odd. Hence if we
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replace n = 2k + 1 we have

F (x) =
1
2
+

∞

∑
k=0

2
π(2k + 1)

sin(
(2k + 1)πx

L
).

From part (b) we know that F (x) = f (x) at x = L/2. From this we get

1 = f (
π

2
) = F (π

2
) =

1
2
+

∞

∑
k=0

2
π(2k + 1)

sin((2k + 1)
π

2
).

After some algebra we get

π

4
=

∞

∑
k=1

(−1)k+1

2k− 1
=

∞

∑
k=0

(−1)k

2k + 1
.
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2. (10 points) Solve 
ut − uxx = e−4t cos(t) sin(2x), 0 ≤ x ≤ π, t ≥ 0,
u(0, t) = 0, u(π, t) = 0,
u(x, 0) = sin(3x).

(1)

Solution: Since the boundary conditions are homogeneous, we can pass to the second step.
That is we shall look for where u(x, t) = u1(x, t) + u2(x, t) where u1 solves the homogeneous
heat equation; 

(u1)t − (u1)xx = 0, 0 ≤ x ≤ π, t ≥ 0,
u1(0, t) = 0, u1(π, t) = 0,
u1(x, 0) = sin(3x).

(2)

and u2 solves the non-homogeneous heat equation with zero initial condition
(u2)t − (u2)xx = e−4t cos(t) sin(2x), 0 ≤ x ≤ π, t ≥ 0,
u2(0, t) = 0, u2(π, t) = 0,
u2(x, 0) = 0.

(3)

Then by linearity of the heat equation we conclude that u(x, t) = u1(x, t) + u2(x, t) solves our
original equation (1). We shall first focus on u1, we know the general solution is (you can use
the proposition from the book, or our lecture notes)

u1(x, t) =
∞

∑
n1

Cne−n2t sin(nx)

and using the initial condition for u1 we get

u1(x, 0) = sin(3x) =
∞

∑
n1

Cn sin(nx)

which tells us C3 = 1 and all other Cn = 0. Hence

u1(x, t) = e−9t sin(3x).

solves (2). Now we focus on v2. To solve (6), we shall use the Duhamel’s principle. That is,

u2(x, t) =
∫ t

0
ṽ(x, t− s; s)ds

where ṽ solves 
ṽt − ṽxx = 0, 0 ≤ x ≤ π, t ≥ 0,
ṽ(0, t; s) = 0, ṽ(π, t; s) = 0,
ṽ(x, 0; s) = e−4s cos(s) sin(2x).

(4)

Here you should think of e−4s cos(s) as a constant independent of t. We know that the general
solution is

ṽ(x, t; s) =
∞

∑
n1

Cne−n2t sin(nx)
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and using the initial condition in (9) we get

ṽ(x, 0; s) =
∞

∑
n1

Cn sin(nx) = e−4s cos(s) sin(2x)

which tells us that C2 = e−4s cos(s) and all other Cn = 0. Hence we have (for n = 2)

ṽ(x, t; s) = e−4s cos(s)e−4t sin(2x).

Using Duhamel’s principle we have

u2(x, t) =
∫ t

0
ṽ(x, t− s; s)ds =

∫ t

0
e−4s cos(s)e−4(t−s) sin(2x)ds

To find u2 we need to find that integral. After some algebra we see that

u2(x, t) =
∫ t

0
e−4s cos(s)e−4(t−s) sin(2x)ds = e−4t sin(2x)

∫ t

0
cos(s)ds = e−4t sin(2x) sin(t)

Combining this with u1 we get

u(x, t) = u1(x, t) + u2(x, t) = e−9t sin(3x) + e−4t sin(2x) sin(t)

is the solution of (1).
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3. (10 points) Consider the Heat equation
ut − 2uxx = 0, 0 ≤ x ≤ 1, t ≥ 0,
u(0, t) = −1, ux(1, t) = 1,
u(x, 0) = x + sin( 3πx

2 )− 1.
(5)

where the boundary conditions are non-homogeneous. Transform the equation into a new
one with homogeneous boundary conditions. (You do not need to solve the new equation).

Solution: We first should make the non-homogeneous boundary conditions homogeneous.
To this end, we look for time-independent or steady-state solution up(x, t) to heat equation.
We know that the only steady state solution is up(x, t) = ax + b for some a, b. We will figure
out a, b so that up(0, t) = −1 and ux(1, t) = 1 (which are our non-homogeneous boundary
conditions). Hence up(0, t) = b = −1 and (up(x, t))x = a which we want to be 1 when x = 1,
i.e. (up(x, t))x = a = 1. Hence we get up(x, t) = x− 1. We now let

v(x, t) = u(x, t)− up(x, t)

and hope that v will satisfy the heat equation with homogeneous boundary conditions. To see
this, as u solves (5), and up is steady-state solution to heat equation, and heat equation is linear
v solves the heat equation vt = 2vxx. Next, we check the boundary conditions

v(0, t) = u(0, t)−up(0, t) = −1− (−1) = 0 and vx(1, t) = ux(1, t)− (up(1, t))x = 1− 1 = 0.

Hence v satisfies the homogeneous boundary conditions. We next see the initial condition

v(x, 0) = u(x, 0)− up(x, 0) = x + sin(
3πx

2
)− 1− (x− 1) = sin(

3πx
2

).

If we summarize what we got for v is that
vt = 2vxx 0 ≤ x ≤ 1, t ≥ 0
v(0, t) = 0 vx(1, t) = 0
v(x, 0) = sin( 3πx

2 ).
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4. (10 points) Describe the steps how to solve the following heat equation
ut − kuxx = h(x, t), 0 ≤ x ≤ L, t ≥ 0,
u(0, t) = a(t), u(L, t) = b(t),
u(x, 0) = f (x).

(6)

Solution:

Step 1: The boundary conditions are non-homogeneous, we will make them homogeneous. To
do this, we let

up(x, t) :=
1
L
(b(t)− a(t))x + a(t)

Now consider
v(x, t) = u(x, t)− up(x, t).

We should see that

v(0, t) = u(0, t)−up(0, t) = a(t)− a(t) = 0 and v(L, t) = u(L, t)−up(L, t) = b(t)− b(t) = 0.

On the other hand,

vt − kvxx = ut − kuxx − (up)t + k(up)xx = h(x, t)− 1
L
(b′(t)− a′(t))x− a′(t) =: H(x, t)

and
v(x, 0) = u(x, 0)− up(x, 0) = f (x)− 1

L
(b(0)− a(0))x + a(0) = F(x)

Hence v satisfies the following equation
vt − kvxx = H(x, t) 0 ≤ x ≤ L, t ≥ 0
v(0, t) = 0 v(L, t) = 0
v(x, 0) = F(x).

Step 2: From this we consider v(x, t) = v1(x, t) + v2(x, t) where where u1 solves the homoge-
neous heat equation;

(u1)t − (u1)xx = 0, 0 ≤ x ≤ L, t ≥ 0,
u1(0, t) = 0, u1(L, t) = 0,
u1(x, 0) = F(x).

(7)

and u2 solves the non-homogeneous heat equation with zero initial condition
(u2)t − (u2)xx = H(x, t), 0 ≤ x ≤ L, t ≥ 0,
u2(0, t) = 0, u2(L, t) = 0,
u2(x, 0) = 0.

(8)

Step 3: Find v1. In case F(x) is not given in terms of sine function we then need to do the half
range extension and then find the Fourier series of F(x) and finally find v1.
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Step 4: Using Duhamel’s principle find v2. That is,

u2(x, t) =
∫ t

0
ṽ(x, t− s; s)ds

where ṽ solves 
ṽt − ṽxx = 0, 0 ≤ x ≤ L, t ≥ 0,
ṽ(0, t; s) = 0, ṽ(L, t; s) = 0,
ṽ(x, 0; s) = H(x, s; s).

(9)

Step 5: Find ṽ first and in case H(x, s; s) is not given in terms of sine function we then need to do
the half range extension and then find the Fourier series of H(x, s; s) and finally find ṽ.
Then find v2.

Step 6: Combining all of these we get

u(x, t) = v(x, t) + up(x, t) = v1(x, t) + v2(x, t) + up(x, t).
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5. (5 points (bonus)) Let u be a solution to the following heat equation
ut = uxx, 0 ≤ x ≤ π, t ≥ 0,
ux(0, t) = 0, ux(π, t) = 0, t ≥ 0
u(x, 0) = f (x), 0 < x < π.

Show that
I(t) =

∫ π

0
eu(x,t)dx

decreases as a function of t for t ≥ 0.

Solution: To show I(t) decreases, we show that I′(t) ≤ 0 for every t ≥ 0. To this end,

I′(t) =
d
dt

{∫ π

0
eu(x,t)dx

}
=
∫ π

0

d
dt
(eu(x,t))dx

=
∫ π

0
ut(x, t)eu(x,t)dx.

Since ut = uxx for all t ≥ 0 and 0 ≤ x ≤ π we have

I′(t) =
∫ π

0
ut(x, t)eu(x,t)dx

=
∫ π

0
uxx(x, t)eu(x,t)dx.

Now we do integrate by parts and use the boundary conditions to get

I′(t) = [ux(x, t)eu(x,t)]π0 −
∫ π

0
ux(x, t)

d
dt

eu(x,t)dx

= ux(π, t)eu(π,t) − ux(0, t)eu(0,t) −
∫ π

0
u2

x(x, t)eu(x,t)dx

= 0− 0−
∫ π

0
u2

x(x, t)eu(x,t)dx.

Since u2
x(x, t) and eu(x,t) are always non-negative, therefore the right-hand side is always non-

positive. That is I′(t) ≤ 0 for every t. Hence I(t) decreases as a function of t for t ≥ 0.


