Diffusion Equation

William Tait

Diffusion is the movement of a dispersed material from an area of higher concentration to an area of lower concentration within a matrix

https://commons.wikimedia.org/wiki/File:Blausen_0315_Diffusion.png

Diffusion Across Cell Membranes

Lakshmi Sharma Diffusion - Cell membranes and Transport

https://commons.wikimedia.org/wiki/File:Blausen_0315_Diffusion.png

http://www.centrusenergy.com/learn-more/uranium-enrichment/gaseous-diffusion/

The equation

$$rac{\partial \phi({f r},t)}{\partial t} =
abla \cdot ig[D(\phi,{f r}) \
abla \phi({f r},t) ig]$$

https://en.wikipedia.org/wiki/Diffusion_equation

The terms

- $\varphi(r, t) = density/concentration as a function of position (r) and time (t)$
- $D(\phi, r) = diffusion coefficient as a function of density/concentration and position$
 - = divergence of vector field when in dot product, gradient of function (d/dx, d/dy, ∇ dz) when used as function operator

History

- 1822 : Fourier proposes heat eqution
- 1827 : Brownian motion discovered
- 1855 : Fick uses heat equation to solve diffusion problem
- 1905 : Brownian motion recognized as a diffusion problem

Derivation

The trivial diffusion equation can be derived from the continuity equation, which is based on the conservation of mass, combined with Fick's first Law

$$rac{\partial \phi}{\partial t} +
abla \cdot {f j} = 0$$
 , where j is flux (continuity) ${f j} = -D(\phi,{f r}) \,
abla \phi({f r},t)$ (Fick's 1st law)

Generalization comes from the Smoluchowski equation is drift must be accounted for

Fun facts

If the diffusion coefficient (material dependent) is a constant (D = constant), then the diffusion equation simplifies to the heat equation in 3 dimensions

$$rac{\partial \phi({f r},t)}{\partial t} = D
abla^2 \phi({f r},t)$$

Einstein proposed Brown ∂t for a sumation problem https://en.wikipedia.org/wiki/Diffusion_equation

Gauss Divergence theorem proves diffusion equation holds for all states of matter, assuming there are no sources or sinks in the system

Diffusion in chemical engineering

- Local concentrations
- Boundary/interfacial zones in processes
- Membranes
- Separations

Example

International Journal of Hydrogen Energy

Volume 36, Issue 22, November 2011, Pages 14779-14786

Dynamic modeling and simulation of a proton exchange membrane electrolyzer for hydrogen production A. Awasthi^a, Keith Scott^b, S. Basu^a A 🖾

- Proton exchange across membrane for hydrogen production
 - Gas diffusion out of the cell

Diffusion in environmental engineering

- Contaminant fate and transport
- Groundwater contamination

Example

Journal of Contaminant Hydrology

Volume 53, Issues 1–2, 1 December 2001, Pages 85-100

Tracer diffusion coefficients in sedimentary rocks: correlation to porosity and hydraulic conductivity

Thomas B Boving ^A^a [∞], Peter Grathwohl ^{b, 1} [∞]

- Diffusion in porous media
- Solid-liquid interface

https://www.sciencedirect.com/science/article/pii/S0169772201001383

Additional fields in which diffusion matters

- Physics
- Cell biology / biochemistry/ biomedical engineering
- Materials science
- Rheology
- Many more: basically whenever there is contact between 2 different materials

Thank you!

Questions?

Sources

- https://en.wikipedia.org/wiki/Diffusion_equation
- https://commons.wikimedia.org/wiki/File:Blausen_0315_Diffusion.png
- http://www.centrusenergy.com/learn-more/uranium-enrichment/gaseous-diffusion/
- https://www.sciencedirect.com/science/article/pii/S0360319911006343
- https://www.sciencedirect.com/science/article/pii/S0169772201001383