MINIMAL SURFACE EQUATION

Audrey Karl

THE PDE

Formula, Terms, Unknowns

MINIMAL SURFACE

- equivalent to having zero mean curvature
- Shape who has the least amount of area needed to occupy space/ Minimizes the amount of space needed to create enclosure
- quasi-linear elliptic PDE
- similar to Laplace's Equation (compared to the wave or heat equation), but its analysis is much harder
\mathbb{R}^{n}. Assuming that u is sufficiently smooth, the area of the surface is given by the nonlinear functional

$$
\begin{equation*}
\mathcal{A}(u)=\int_{\Omega}\left(1+|\nabla u|^{2}\right)^{1 / 2} \mathrm{~d} x_{1} \ldots \mathrm{~d} x_{n} \tag{1}
\end{equation*}
$$

MINIMIZES THE AREA FOR A GIVEN SURFACE CONSTRAINT

- For a smooth surface in $\mathrm{R}^{\mathrm{n+1}}$ representing $x_{n+1}=u\left(x_{1}, \ldots, x_{n}\right)$ defined on a bounded open set Ω in R^{n}
-If u minimizes $A(U)$ in U_{g} then equation 1 becomes the minimal surface equation
Source
https://people.maths.ox.ac.uk/trefethen/p dectb/minsurf2.pdf

$$
\begin{equation*}
\nabla \cdot\left(\nabla u /\left(1+|\nabla u|^{2}\right)^{1 / 2}\right)=0 \tag{2}
\end{equation*}
$$

This quasi-linear elliptic PDE is known as the minimal surface equation.

MANY DEFINITIONS

- Minimal surfaces can be defined in several equivalent ways in R^{3}
- All definitions are equivalent
- They show how this equation applies to many different fields of math, including:
- differential geometry
- calculus of variations
- potential theory
- complex analysis
- mathematical physics

DIFFERENTIAL EQUATION DEFINITION

- A surface $M \subset R^{3}$ is minimal if and only if it can be locally expressed as the graph of a solution of
- $\left(1+U_{x}{ }^{2}\right) U_{y y}-2 U_{x} U_{y} U_{x y}+\left(1+U_{y}{ }^{2}\right) U_{x x}=0$
- Originally found in 1762 by Lagrange
- In 1776, Jean Baptiste Meusnier discovered that it implied a vanishing mean curvałure

MANY DEFINITIONS

Local Least Area

A surface $M \subset R^{3}$ is minimal if and only if every point $p \in M$ has a neighborhood with least-area relative to its boundary.

This property is local: there might exist other surfaces that minimize area better with the same global boundary

Variational

A surface $M \subset R^{3}$ is minimal if and only if it is a critical point of the area functional for all compactly supported variations.

This makes minimal surfaces a 2-dimensional analogue to geodesics

Mean Curvature

A surface $M \subset R^{3}$ is minimal if and only if its mean curvature vanishes identically.

Direct implication: every point on the surface is a saddle point with equal and opposite principal curvatures.

SOAP FILM DEFINITION

- A surface $M \subset R^{3}$ is minimal if and only if every point $p \in M$ has a neighborhood D_{p} which is equal to the unique idealized soap film with boundary ∂D_{p}
- By the Young-Laplace equation the curvałure of a soap film is proportional to the difference in pressure between the sides: if it is zero, the membrane has zero mean curvature.
- Note that spherical bubbles are not minimal surfaces as per this definition: while they minimize total area subject to a constraint on internal volume, they have a positive pressure.

MANY MORE DEFINITIONS

- Energy Definition
- Ties minimal surfaces to harmonic functions and potential theory
- Harmonic Definition
- Implies that the maximum principle for harmonic functions is that there are no compact complete minimal surfaces in \mathbf{R}^{3}.
- Gauss Map Definition
- links the mean curvature to the derivatives of the Gauss map and CauchyRiemann equations.
- Mean Curvature Flow Definition - Minimal surfaces are the critical points for the mean curvature flow
- Local Least Area and Variational Definitions
- allow extending minimal surfaces to other Riemannian manifolds than \mathbf{R}^{3}.

JOSEPH ANTOINE FERDINAND PLATEAU (1801-1883)

- The minimal surface problem is also known as the classical Plateau problem
- He experimented by dipping wire contours into solutions of soapy water and glycerin
- Although he did not have the mathematical skills to investigate quantitatively, he theorized much with bubble blowing

LAGRANGE
 1762

- Attempted to find the surface $z=z(x, y)$ of least area stretched across a given closed contour
- Derived the Euler-Lagrange equation for the solution
- Did not find a solution beyond the plane (the trivial solution)

$$
\frac{d}{d x}\left(\frac{z_{x}}{\sqrt{1+z_{x}^{2}+x_{y}^{2}}}\right)+\frac{d}{d y}\left(\frac{z_{y}}{\sqrt{1+z_{x}^{2}+x_{y}^{2}}}\right)=0
$$

JEAN BAPTISTE MARIE MEUSNIER

- Discovered that the helicoid and catenoid satisfy Lagrange's equation https://www.youtube.com/wa tch? $\mathrm{V}=E 6 \mathrm{~J}+\mathrm{YM}$ Vayel
- The differential expression corresponds to twice the mean curvature of the surface
- Conclusion: surfaces with zero mean curvature are area-minimizing.

GASPARD MONGE AND LEGENDRE 1795

- Derived representation formulas for the solution surfaces
- Successfully used by Heinrich Scherk in 1830 to derive his surfaces
- These were generally regarded as practically unusable at the time

Others:

- Catalan proved in 1842/43 that the helicoid is the only ruled minimal surface.
- Later there were many other important contributions from Schwarz, Beltrami, Bonnet, Darboux, Lie, Riemmann, Serret, and Weingarten

CELSO COSTA 1982

- Disproved the idea that the plane, the catenoid, and the helicoid were the only complete embedded minimal surfaces in \mathbf{R}^{3} of finite topological type.
- Stimulated new work on using the old parametric methods
- Demonstrated the importance of computer graphics to visualize the studied surfaces and numerical methods to solve the "period problem"

HERMANN KARCHER 1989

- Proved existence of triply periodic minimal surfaces
- originally described empirically by Alan Schoen in 1970
- Led to many new surface families and methods of deriving new surfaces from old
- for example by adding handles or distorting them
- The Schwarz P surface \rightarrow

SOME MODERN SURFACES INCLUDE

- The Gyroid: One of Schoen's 1970 surfaces, a triply periodic surface of particular interest for liquid crystal structure
- The Saddle Tower Family: generalizations of Scherk's second surface
- Costa's Minimal Surface
- Famous conjecture disproof of the idea that the plane, helicoid and the catenoid were the only embedded minimal surfaces that could be formed by puncturing a compact surface
- Jim Hoffman, David Hoffman and William Meeks III then extended the definition to produce a family of surfaces with different rotational symmetries.
- The Chen-Gackstatter Surface Family
- added handles to the Enneper surface.

SOME EXAMPLES OF GYROIDS

 (gyro meaning "a circle" and "-id" for "belonging to")

COSTA'S MINIMAL SURFACE

CHEN-GACKSTATTER SURFACE

The First 9 CG Surfaces

APPLICATIONS

BUBBLES!

The minimal surface problem is also known as the classical Plateau problem, after the Belgian physicist Joseph Antoine Ferdinand Plateau (1801-1883)

NEW SHAPES AND PATTERNS

New shapes and patterns to build off of

MANY FIELDS OF ENGINEERING AND SCIENCE

- Discrete differential geometry discrete minimal surfaces are studied
- often used in this field to approximate minimal surfaces numerically, even if no closed form expressions are known.
- Brownian motion studies on minimal surfaces lead to probabilistic proofs of several theorems on minimal surfaces.
- Molecular Engineering and Materials Science
- anticipated applications in self-assembly of complex materials
- General relativity
- Links to the theory of black holes and the Plateau problem
- Art and Design

MODELING MOLECULAR INTERACTIONS

Angles that form are identical to bond angles

GROWING CRYSTALS

- Calcite particles can be "grown" in surface treated polymer membranes that can be seen under an electron microscope
- Demonstrates a natural yet primitive minimal surface shape (a gyroid) for its efficiency in compression rather tension like we're used to seeing at visible scales.

ART AND ARCHITECTURE

ARCHETECTURE

The Olympiapark in Münich by Frei Otto was inspired by soap surfaces.

FUTURE OF THE FIELD

Theoretical and Digital

Many applications to

- Lie groups and Lie algebras
- Homologies and cohomologies
- Bordisms and varifolds
- Computer visualization and animation techniques

Physical

- Have relevance to a variety of problems in materials science and civil engineering.

