
Navier-Stokes Equations

Some background:

Claude-Louis Navier was a French engineer and physicist who 
specialized in mechanics

 Navier formulated the general theory of elasticity in a mathematically 
usable form (1821), making it available to the field of construction with 
sufficient accuracy for the first time. In 1819 he succeeded in 
determining the zero line of mechanical stress, finally correcting Galileo 
Galilei's incorrect results, and in 1826 he established the elastic 
modulus as a property of materials independent of the second moment 



of area. Navier is therefore often considered to be the founder of 
modern structural analysis.

His major contribution however remains the Navier–Stokes equations 
(1822), central to fluid mechanics.

His name is one of the 72 names inscribed on the Eiffel Tower



Sir George Gabriel Stokes was an Irish physicist and mathematician. 
Born in Ireland, Stokes spent all of his career at the University of 
Cambridge, where he served as Lucasian Professor of Mathematics 
from 1849 until his death in 1903. In physics, Stokes made seminal 
contributions to fluid dynamics (including the Navier–Stokes equations) 
and to physical optics. In mathematics he formulated the first version of 
what is now known as Stokes's theorem and contributed to the theory of
asymptotic expansions. He served as secretary, then president, of the 
Royal Society of London

 The stokes, a unit of kinematic viscosity, is named after him.



Navier Stokes Equation:

the simplest form, where  is the fluid velocity vector,  is the fluid 

pressure, and  is the fluid density,  is the kinematic viscosity, and ∇2 

is the Laplacian operator. 



In physics, the Navier–Stokes equations, named after Claude-Louis 
Navier and George Gabriel Stokes, each of whom derived these 
equations independently, are a set of nonlinear partial differential 
equations which describe the motion of viscous fluids and are the 
fundamental equations of fluid dynamics. These equations result from 
applying Newton's second law to fluid dynamics, along with the 
assumption that the stress in the fluid is the sum of a diffusing viscous 
term (based on the way that the velocity is changing) and a pressure 
term, describing viscous flow. 



The Navier–Stokes equations are based on the work of Leonhard Euler 
(1707–1783). Euler considered the fluid as a continuum allowing him to 
derive governing equations for the motion of inviscid (non-viscous) fluids
based on differential calculus. His equations were the first written 
nonlinear partial differential equations—the Euler equations:

, where u is the fluid velocity vector, P is the fluid 
pressure, ρ is the fluid density, and ∇ indicates the gradient differential 
operator.

In 1821 French engineer Claude-Louis Navier introduced the element of
viscosity (friction) for the more realistic and vastly more difficult problem 



of viscous fluids. Throughout the middle of the 19th century, British 
physicist and mathematician Sir George Gabriel Stokes improved on 
this work, though complete solutions were obtained only for the case of 
simple two-dimensional flows. The complex vortices and turbulence, or 
chaos, that occur in three-dimensional fluid (including gas) flows as 
velocities increase have proven intractable to any but approximate 
numerical analysis methods.

Stokes and Navier each contributed a viscous diffusion term to account 
for the viscosity of a fluid.

The Navier Stokes Equations can be written and expressed in several 
different ways to account for different environmental factors, 



dimensions, and varying levels of complexity involved in any given 
situation.

Fluid dynamics deals with the motion of liquids and gases, which when 
studied macroscopically, appear to be continuous in structure. All the 
variables are considered to be continuous functions of the spatial 
coordinates and time. For irrotational flow, expressed as

, 

the Navier-Stokes equations, in 2D can be written as:



In 3D, things are a little more complicated:



The Navier-Stokes equations consists of a time-dependent continuity 
equation for conservation of mass, three time-dependent conservation 
of momentum equations and a time-dependent conservation of energy 
equation. There are four independent variables in the problem, the x, y, 
and z spatial coordinates of some domain, and the time t. There are six 
dependent variables; the pressure p, density r, and temperature T 
(which is contained in the energy equation through the total energy Et) 
and three components of the velocity vector; the u component is in the x
direction, the v component is in the y direction, and the w component is 
in the z direction, All of the dependent variables are functions of all four 
independent variables.. Together with the equation of state such as the 
ideal gas law - p V = n R T, the six equations are just enough to 
determine the six dependent variables. In general, all of the dependent 



variables are functions of all four independent variables. Usually, the 
Navier-Stokes equations are too complicated to be solved in a closed 
form. However, in some special cases the equations can be simplified 
and may admit analytical solutions.





, where Re is the Reynolds number which is a similarity parameter that 
is the ratio of the scaling of the inertia of the flow to the viscous forces in
the flow. The q variables are the heat flux components and Pr is the 
Prandtl number which is a similarity parameter that is the ratio of the 
viscous stresses to the thermal stresses. The tau variables are 
components of the stress tensor. A tensor is generated when you 
multiply two vectors in a certain way. Our velocity vector has three 
components; the stress tensor has nine components. Each component 
of the stress tensor is itself a second derivative of the velocity 
components.



The terms on the left hand side of the momentum equations are called 
the convection terms of the equations. Convection is a physical process 
that occurs in a flow of gas in which some property is transported by the
ordered motion of the flow. The terms on the right hand side of the 
momentum equations that are multiplied by the inverse Reynolds 
number are called the diffusion terms. Diffusion is a physical process 
that occurs in a flow of gas in which some property is transported by the
random motion of the molecules of the gas. Diffusion is related to the 
stress tensor and to the viscosity of the gas. Turbulence, and the 
generation of boundary layers, are the result of diffusion in the flow. The 
Euler equations contain only the convection terms of the Navier-Stokes 
equations and can not, therefore, model boundary layers. There is a 



special simplification of the Navier-Stokes equations that describe 
boundary layer flows.

Notice that all of the dependent variables appear in each equation. To 
solve a flow problem, you have to solve all five equations 
simultaneously; that is why we call this a coupled system of equations.



The Navier–Stokes equations are very useful because they describe the
physics of many different scientific phenomena and are widely used in 
both science and engineering. Scientists and engineers use the 
equations in mathematical models of weather, ocean currents, water 
flow in a pipe, air flow around a wing, drag in race cars, optimizing 
particle filters, studying environmental particle transport, how stars 
move inside a galaxy, and much more. The Navier–Stokes equations in 
their full and simplified forms help with the design of aircraft and cars, 
the study of blood flow, the design of power stations, the analysis of 
pollution, and many other things. Together with Maxwell's equations (the
equations for electricity and magnetism) they can be used to model and 
study how things that can flow and conduct electricity can produce (and 
react to) magnetic fields.



The Navier–Stokes equations dictate not position but rather velocity 
(how fast the fluid is going and where it is going). A solution of the 
Navier–Stokes equations is called a velocity field or flow field, which is a
description of the velocity of the fluid at a given point in space and time. 
It is a field, since it is defined at every point in a region of space and an 
interval of time. Once the velocity field is solved for, other quantities of 
interest (such as pressure. temperature, flow rate or drag force) may be 
found. This is different from what one normally sees in classical 
mechanics, where solutions are typically trajectories of position of a 
particle or deflection of a continuum.  Studying velocity instead of 
position makes more sense for a fluid, but for visualization purposes 
one also can compute various paths that a particle could flow along. 



The Navier–Stokes equations are also of great interest in a purely 
mathematical sense. Surprisingly, despite their wide range of practical 
uses it has not yet been proven that in three dimensions solutions 
always exist, or that if they do exist, then they are smooth, i.e. they do 
not contain any mathematical singularity. These are called the Navier–
Stokes existence and smoothness problems. The Clay Mathematics 
Institute of Cambridge, MA has called this one of the seven most 
important open problems in mathematics, called a Millenium problem, 
and has offered a US$1,000,000 prize for a solution or a 
counterexample.

In 2008 the U.S. Defense Advanced Research Projects Agency 
(DARPA) listed it as one of the DARPA Mathematical Challenges, 23 



mathematical problems for which it was soliciting research proposals for
funding—“Mathematical Challenge Four: 21st Century Fluids. Classical 
fluid dynamics and the Navier-Stokes Equation were extraordinarily 
successful in obtaining quantitative understanding of shock waves, 
turbulence, and solitons, but new methods are needed to tackle 
complex fluids such as foams, suspensions, gels, and liquid crystals.



Optional: Story by Jeremy Teitelbaum, Dean of CLAS

Friday morning, exactly as predicted, the first flakes of snow began to 
fall near my house in Coventry, Conn. The millions of us who live in the 
Northeast Corridor were prepared for a potentially record-breaking 
blizzard, and over the next 24 hours we watched that blizzard do exactly
what the forecasters had predicted.

Accounting for Hurricane Sandy, this was the second time in the past six
months that forecasters predicted catastrophic events with astonishing 



accuracy, saving lives and preventing even more devastating property 
damage. I think it appropriate to celebrate their achievements. I 
therefore propose creating a new holiday, to be celebrated every year 
on Feb. 8, the anniversary of this storm, and to be called National 
Numerical Solutions to the Navier-Stokes Partial Differential Equations 
Day.

The Navier-Stokes partial differential equations, named after their 
discoverers, the 19th-century mathematicians George Gabriel Stokes 
and Claude-Louis Navier, govern the motion of a general fluid. Although 
one can write the equations very compactly using modern mathematical



notation, they contain within them the full range of turbulent behavior 
that occurs in moving fluids, in settings as varied as airflow over a wing, 
water waves on a beach, and, of course, the weather.

The complexity of the Navier-Stokes equations means that one cannot 
hope to write down solutions for them. Instead, scientists and engineers 
use computer programs to construct approximations to solutions; the 
“European Model” that has been cited recently in weather forecasts is 
such a computer program.



While there is no question that such a model is an interdisciplinary 
triumph, with physicists, engineers, computer scientists, statisticians, a 
whole range of environmental scientists, and mathematicians working 
together to collect data, write code, and test the output of the model 
against reality, without the Navier-Stokes equations there would be no 
place to begin.

One of the ironic features of the Navier-Stokes equations is that, despite
their enormous influence in applied mathematics, they are not 
understood from a theoretical perspective. Confronted with a system of 
partial differential equations, the first question that mathematicians ask 



about them is whether or not one can be sure that the equations have a 
solution in the first place. In the case of the Navier-Stokes equations, 
the question of whether or not solutions always exist is unsolved. 
Indeed, establishing the existence (or non-existence) of such solutions 
is one of the seven Clay Foundation Millennium problems, and solving it
carries a prize of $1,000,000.

Whether or not we can solve the mathematical problem of the existence
of solutions to Navier-Stokes, we can see the existence of solutions all 
around us in the working of the weather and the flow of water. The 
astonishing accuracy of weather forecasting that we are witnessing is 



another vindication of what Eugene Wigner called “the unreasonable 
effectiveness of mathematics in the physical sciences.”

Given the life-saving power of those forecasts, as well as the many 
other technological advances that stem from the ever-improving ability 
to approximate solutions of the Navier-Stokes equations, I know that 
you’ll join me in calling for the establishment of National Numerical 
Solutions to the Navier-Stokes Partial Differential Equations Day.
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